AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 1
www.analogictech.com
General Description
The AAT2153 SwitchReg is a 2.5A step-down converter
with an input voltage range of 2.7V to 5.5V and an
adjustable output voltage from 0.6V to VIN. The 1.4MHz
switching frequency enables the use of small external
components. The small footprint and high efficiency make
the AAT2153 an ideal choice for portable applications.
The AAT2153 delivers 2.5A maximum output current
while consuming only 42µA of no-load quiescent current.
Ultra-low RDS(ON) integrated MOSFETs and 100% duty
cycle operation make the AAT2153 an ideal choice for
high output voltage, high current applications which
require a low dropout threshold.
The AAT2153 provides excellent transient response and
high output accuracy across the operating range. No
external compensation components are required.
The AAT2153 maintains high efficiency throughout the
load range. The AAT2153’s unique architecture produces
reduced ripple and spectral noise. Over-temperature and
short-circuit protection safeguard the AAT2153 and sys-
tem components from damage.
The AAT2153 is available in a Pb-free, space-saving
16-pin 3x3mm QFN package. The product is rated over
an operating temperature range of -40°C to +85°C.
Features
• 2.5AMaximumOutputCurrent
• InputVoltage:2.7Vto5.5V
• OutputVoltage:0.6VtoVIN
• Upto95%Efficiency
• LowNoiseLightLoadMode
• 42µANoLoadQuiescentCurrent
• NoExternalCompensationRequired
• 1.4MHzSwitchingFrequency
• 100%DutyCycleLow-DropoutOperation
• InternalSoftStart
• Over-TemperatureandCurrentLimitProtection
• <1µAShutdownCurrent
• 16-Pin3x3mmQFNPackage
• TemperatureRange:-40°Cto+85°C
Applications
• CellularPhones
• DigitalCameras
• HardDiskDrives
• MP3Players
• PDAsandHandheldComputers
• PortableMediaPlayers
• USBDevices
Typical Application
2.2µH
L1
22µF
C3
10µF
C1
2.5V3.3V
187k
R3
59k
R4
LX 14
N/C
6
EN
7
VCC
9
VP
10
N/C
8
LX 13
PGND 3
VP
12
VP
11
FB 4
LX 15
PGND 2
PGND 1
SGND
5
N/C 16
AAT2153
U1
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2 2153.2008.12.1.1
www.analogictech.com
Pin Descriptions
Pin # Symbol Function
1, 2, 3 PGND Main power ground return pin. Connect to the output and input capacitor return. (See board layout rules.)
4FB Feedbackinputpin.Foranadjustableoutput,connectanexternalresistivedividertothispin.Forxed
outputvoltageversions,FBistheoutputpinoftheconverter.
5 SGND Signal ground. Connect the return of all small signal components to this pin. (See board layout rules.)
6, 8, 16 N/C Not internally connected.
7 EN Enable input pin. A logic high enables the converter; a logic low forces the AAT2153 into shutdown mode
reducingthesupplycurrenttolessthan1µA.Thepinshouldnotbeleftoating.
9VCC Biassupply.Suppliespowerfortheinternalcircuitry.Connecttoinputpower.
10, 11, 12 VP Input supply voltage for the converter power stage. Must be closely decoupled to PGND.
13, 14, 15 LX Connect inductor to these pins. Switching node internally connected to the drain of both high- and low-side
MOSFETs.
EP Exposed paddle (bottom); connect to PGND directly beneath package.
Pin Configuration
QFN33-16
(Top View)
VP
VP
VP
N/C
PGND
PGND
PGND
1
2
3
4
N/C
SGND
EN
16
15
14
13
5
6
7
8
12
11
10
9
N/C
VC
C
LX
LX
LX
FB
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 3
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 3
www.analogictech.com
Absolute Maximum Ratings1
Symbol Description Value Units
VCC, VPVCC, VP to GND 6 V
VLX LXtoGND -0.3 to VP + 0.3 V
VFB FBtoGND -0.3 to VCC + 0.3 V
VEN EN to GND -0.3 to -6 V
TJOperating Junction Temperature Range -40 to150 °C
Thermal Characteristics
Symbol Description Value Units
qJA Maximum Thermal Resistance 50 °C/W
qJC Maximum Thermal Resistance 4.2 °C/W
PDMaximum Power Dissipation (TA = 25°C)2, 3 2.0 W
Recommended Operating Conditions
Symbol Description Value Units
TAAmbient Temperature Range -40 to 85 °C
1. Stresses above those listed in Absolute Maximum Ratings may cause damage to the device. Functional operation at conditions other than the operating conditions specified is
not implied. Only one Absolute Maximum Rating should be applied at any one time.
2. Mountedonademoboard(FR4,instillair).ExposedpadmustbemountedtoPCB.
3. Derate 20mW/°C above 25°C.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
4 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
4 2153.2008.12.1.1
www.analogictech.com
Electrical Characteristics1
VIN = 3.6V; TA = -40°C to +85°C, unless otherwise noted. Typical values are TA = 25°C.
Symbol Description Conditions Min Typ Max Units
VIN Input Voltage 2.7 5.5 V
VOUT Output Voltage Range 0.6 VIN V
VUVLO UVLOThreshold
VIN Rising 2.7 V
Hysteresis 250 mV
VIN Falling 1.8 V
VOUT Output Voltage Tolerance IOUT = 0A to 2.5A, VIN = 2.7V to 5.5V -3.0 3.0 %
IQQuiescent Current NoLoad 42 90 µA
ISHDN Shutdown Current VEN = GND 1.0 µA
ILIM CurrentLimit 2.8 3.5 A
RDS(ON)H High Side Switch On-Resistance 0.120 W
RDS(ON)L LowSideSwitchOn-Resistance 0.085 W
DVLOADREG LoadRegulation ILOAD = 0A to 2.5A 0.5 %
DVLINEREG/DVIN LineRegulation VIN = 2.7V to 5.5V 0.2 %/V
VFB
Feedback Threshold Voltage Accuracy
(Adjustable Version) NoLoad,TA = 25°C 0.591 0.60 0.609 V
IFB FBLeakageCurrent VOUT = 1.0V 0.2 µA
FOSC Internal Oscillator Frequency 1.12 1.4 1.68 MHz
TSStart-Up Time From Enable to Output Regulation;
CFF = 100pF 150 µs
TSD Over-Temperature Shutdown Threshold 140 °C
THYS Over-Temperature Shutdown Hysteresis 15 °C
EN
VIL EnableThresholdLow 0.6 V
VIH Enable Threshold High 1.4 V
IEN EnableLeakageCurrent VIN = VEN = 5.5V -1.0 1.0 µA
1. The AAT2153 is guaranteed to meet performance specifications over the -40°C to +85°C operating temperature range and is assured by design, characterization, and correla-
tion with statistical process controls.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 5
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 5
www.analogictech.com
Typical Characteristics
Efficiency vs. Output Current
(VOUT = 3.3V)
Output Current (mA)
Efficiency (%)
30
40
50
0
10
20
60
70
80
90
100
0110 100 1000 10000
VIN = 5.0V
VIN = 4.5V
VIN = 4.2V
Load Regulation
(VOUT = 3.3V)
Output Current (mA)
Load Regulation (%)
-0.6
-0.4
-0.2
-1.0
-0.8
0.0
0.2
0.4
0.6
0.8
1.0
0.11 10 100 1000 10000
VIN = 5.0V
VIN = 4.5V
VIN = 4.2V
Efficiency vs. Output Current
(VOUT = 1.8V)
Output Current (mA)
Efficiency (%)
0110 100 1000 10000
30
40
50
0
10
20
60
70
80
90
100
VIN = 4.2V
VIN = 3.6V
VIN = 2.7V
Load Regulation
(VOUT = 1.8V)
Output Current (mA)
Load Regulation (%)
-0.6
-0.4
-0.2
-1.0
-0.8
0.0
0.2
0.4
0.6
0.8
1.0
0.11 10 100 1000 10000
VIN = 4.2V
VIN = 3.6V
VIN = 2.7V
Efficiency vs. Output Current
(VOUT = 1.2V)
Output Current (mA)
Efficiency (%)
0110 100 1000 10000
30
40
50
0
10
20
60
70
80
90
100
VIN = 4.2V
VIN = 3.6V
VIN = 2.7V
Load Regulation
(VOUT = 1.2)
Output Current (mA)
Load Regulation (%)
0.11 10 100 1000 10000
-0.6
-0.4
-0.2
-1.0
-0.8
0.0
0.2
0.4
0.6
0.8
1.0
VIN = 4.2V
VIN = 3.6V
VIN = 2.7V
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
6 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
6 2153.2008.12.1.1
www.analogictech.com
Typical Characteristics
Quiescent Current vs. Input Voltage
(VOUT = 1.8V; No Load)
Input Voltage (V)
Quiescent Current (µA)
20
30
40
50
60
70
80
2.72.9 3.13.3 3.53.7 3.94.1 4.34.5 4.74.9 5.15.3 5.5
10
0
85°C
25°C
-40°C
Output Voltage vs. Temperature
(VOUT = 1.8V; IOUT = 2.5A)
Temperature (°C)
Output Voltage Error (%)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-40-30 -20-10 0102030405060708090
-3.5
-3.0
-2.5
-2.0
-1.5
-1.0
-0.5
0.0
0.5
1.0
1.5
Output Voltage vs. Input Voltage
(VOUT = 1.8V; IOUT = 1A)
Input Voltage (V)
Output Voltage (V)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
85°C
25°C
-40°C
Switching Frequency vs. Temperature
(VOUT = 1.8V; IOUT = 2.5A)
Temperature (°C)
Switching Frequency Variation (%)
-40-30 -20-10 0102030405060708090
-6
-5
-4
-3
-2
-1
0
1
Load Transient Response
(VOUT = 1.8V)
Time (100µs/div)
Output Voltage (AC coupled)
(top)(mV)
Output Current
(bottom) (A)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
Load Transient Response
(VOUT = 1.8V; CFF = 100pF)
Time (100µs/div)
Output Voltage (AC coupled)
(top)(mV)
Output Current
(bottom) (A)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-0.60
-0.50
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 7
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 7
www.analogictech.com
Typical Characteristics
Load Transient Response
(IOUT = 1A to 2.5A; VOUT = 1.8V; R1 = 0Ω; COUT = 2x22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 1A to 2.5A; VOUT = 1.8V; R1 = 10Ω; COUT = 22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 250mA to 2.5A; VOUT = 1.8V; R1 = 0Ω; COUT = 2x22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 250mA to 2.5A; VOUT = 1.8V; R1 = 10Ω; COUT = 22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 100mA to 2.5A; VOUT = 1.8V; R1 = 0Ω; COUT = 2x22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 100mA to 2.5A; VOUT = 1.8V; R1 = 10Ω; COUT = 22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
8 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
8 2153.2008.12.1.1
www.analogictech.com
Typical Characteristics
Load Transient Response
(IOUT = 10mA to 2.5A; VOUT = 1.8V; R1 = 0Ω; COUT = 2x22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Load Transient Response
(IOUT = 10mA to 2.5A; VOUT = 1.8V; R1 = 10Ω; COUT = 22µF)
Time (100µs/div)
Output Voltage (top) (V)
Load Current (bottom) (A)
1.6
1.7
1.8
1.9
2.0
0
1
2
3
Line Transient Response
(VOUT = 1.8V; IOUT = 1.5A; CFF = 100pF)
Time (100µs/div)
Input Voltage
(top) (V)
Output Voltage (AC coupled)
(bottom) (V)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
-0.04
-0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
Line Regulation
(VOUT = 1.8V; IOUT = 1A)
Input Voltage (V)
VOUT Error (%)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-0.40
-0.30
-0.20
-0.10
0.00
0.10
0.20
0.30
0.40
2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 4.7 4.9 5.1 5.3 5.5
Enable Soft Start
(VIN = 3.6V; VOUT = 1.8V; IOUT = 2.5A; CFF = 100pF)
Time (100µs/div)
VOUT
(1V/div)
EN
(2V/div)
IIN
(1A/div)
Enable Soft Start
(VIN = 3.6V; VOUT = 1.8V; IOUT = 2.5A; CFF = 1nF)
Time (100µs/div)
VOUT
(1V/div)
EN
(2V/div)
IIN
(1A/div)
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 9
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 9
www.analogictech.com
Typical Characteristics
Heavy Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 2.5A; R1 = 10Ω; COUT = 22µF)
Time (400ns/div)
Output Voltage (AC Coupled)
(top) (mV)
Inductor Ripple Current
(bottom) (A)
-10
0
10
2.2
2.4
2.6
2.8
Heavy Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 2.5A; R1 = 0Ω; COUT = 2x22µF)
Time (400ns/div)
Output Voltage (AC Coupled)
(top) (mV)
Inductor Ripple Current
(bottom) (A)
-10
0
10
2.2
2.4
2.6
2.8
Light Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA; CFF = 0pF)
Time (5µs/div)
Output Voltage (AC coupled)
(top)(mV)
Inductor Ripple Current
(bottom) (A)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-240
-200
-160
-120
-80
-40
0
40
80
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Light Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA; CFF = 0pF)
Time (200µs/div)
Output Voltage (AC coupled)
(top)(mV)
Inductor Ripple Current
(bottom) (A)
VIN = 2.7V VIN = 3.6V
VIN = 4.2V
-240
-200
-160
-120
-80
-40
0
40
80
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Light Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA; CFF = 100pF)
Time (5µs/div)
Output Voltage (AC coupled)
(top)(mV)
Inductor Ripple Current
(bottom) (A)
-240
-200
-160
-120
-80
-40
0
40
80
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Light Load Switching Waveform
(VIN = 3.6V; VOUT = 1.8V; IOUT = 1mA; CFF = 100pF)
Time (500µs/div)
Output Voltage (AC coupled)
(top)(mV)
Inductor Ripple Current
(bottom) (A)
-240
-200
-160
-120
-80
-40
0
40
80
-0.1
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
10 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
10 2153.2008.12.1.1
www.analogictech.com
Functional Description
The AAT2153 is a high performance 2.5A monolithic
step-down converter operating at a 1.4MHz switching
frequency. It minimizes external component size, opti-
mizes efficiency over the complete load range, and pro-
duces reduced ripple and spectral noise. Apart from the
small bypass input capacitor, only a small L-C filter is
required at the output. Typically, a 3.3µH inductor and a
22µF ceramic capacitor are recommended for a 3.3V
output (see table of recommended values).
At dropout, the converter duty cycle increases to 100%
and the output voltage tracks the input voltage minus
the RDS(ON) drop of the P-channel high-side MOSFET (plus
the DC drop of the external inductor). The device inte-
grates extremely low RDS(ON) MOSFETs to achieve low
dropout voltage during 100% duty cycle operation. This
is advantageous in applications requiring high output
voltages (typically > 2.5V) at low input voltages.
The integrated low-loss MOSFET switches can provide
greaterthan95%efficiencyatfullload.Lightloadopera-
tion maintains high efficiency, low ripple and low spectral
noiseevenatlowercurrents(typically<150mA).
In battery-powered applications, as VIN decreases, the
converter dynamically adjusts the operating frequency
prior to dropout to maintain the required duty cycle and
provide accurate output regulation. Output regulation is
maintained until the dropout voltage, or minimum input
voltage, is reached. At 2.5A output load, dropout voltage
headroom is approximately 200mV.
The AAT2153 typically achieves better than ±0.5% out-
put regulation across the input voltage and output load
range. A current limit of 3.5A (typical) protects the IC
and system components from short-circuit damage.
Typical no load quiescent current is 42µA.
Thermal protection completely disables switching when
the maximum junction temperature is detected. The
Functional Block Diagram
VPVCC
ENSGND PGND
LOGIC
0.6V REF
Temp.
Sensing
OSC
OP. AMP
LX
FB DH
DL
CMP
1M
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 11
www.analogictech.com
junction over-temperature threshold is 140°C with 15°C
of hysteresis. Once an over-temperature or over-current
fault condition is removed, the output voltage automati-
cally recovers.
Peak current mode control and optimized internal com-
pensation provide high loop bandwidth and excellent
response to input voltage and fast load transient events.
Soft start eliminates output voltage overshoot when the
enable or the input voltage is applied. Under-voltage
lockout prevents spurious start-up events.
Control Loop
The AAT2153 is a peak current mode step-down con-
verter. The current through the P-channel MOSFET (high
side) is sensed for current loop control, as well as short-
circuit and overload protection. A fixed slope compensa-
tion signal is added to the sensed current to maintain
stability for duty cycles greater than 50%. The peak cur-
rent mode loop appears as a voltage-programmed cur-
rent source in parallel with the output capacitor.
The output of the voltage error amplifier programs the
current mode loop for the necessary peak switch current
to force a constant output voltage for all load and line
conditions. Internal loop compensation terminates the
transconductance voltage error amplifier output. The
reference voltage is internally set to program the con-
verter output voltage greater than or equal to 0.6V.
Soft Start/Enable
Soft start limits the current surge seen at the input and
eliminates output voltage overshoot. When pulled low,
the enable input forces the AAT2153 into a low-power,
non-switching state. The total input current during shut-
down is less than 1µA.
Current Limit and
Over-Temperature Protection
For overload conditions, the peak input current is limit-
ed. To minimize power dissipation and stresses under
current limit and short-circuit conditions, switching is
terminated after entering current limit for a series of
pulses. Switching is terminated for seven consecutive
clock cycles after a current limit has been sensed for a
series of four consecutive clock cycles.
Thermal protection completely disables switching when
internal dissipation becomes excessive. The junction
over-temperature threshold is 140°C with 15°C of hys-
teresis. Once an over-temperature or over-current fault
conditions is removed, the output voltage automatically
recovers.
Under-Voltage Lockout
Internal bias of all circuits is controlled via the VCC
input. Under-voltage lockout (UVLO) guarantees suffi-
cient VIN bias and proper operation of all internal cir-
cuitry prior to activation.
3.0µH
L1
2x22µF
C3
10µF
C1
0
R1
0.1µF
C2
C1 Murata 10µF 6.3V X5R GRM42-6X5R106K6.3
C3 Murata 22µF 6.3V GRM21BR60J226ME39L X5R 0805
L1 see Table 2
R1 and C2 are an optional noise filter for internal V
CC
.
R6, C4, C5-C7 are not populated
C8 100pF to 1nF feed-forward capacitor for enhanced transient response
VOUT+
VIN+
LX 14
N/C
6
EN
7
VCC
9
VP
10
N/C
8
LX 13
PGND 3
VP
12
VP
11
FB 4
LX 15
PGND 2
PGND 1
SGND
5
N/C 16
AAT2153
U1
R3
C8
59.0k
R4
100K
R2
Enable LX
GNDGND
VOUT(V) R3 (kW)
0.8 19.6
0.9 29.4
1.0 39.2
1.1 49.9
1.2 59.0
1.3 68.1
1.4 78.7
1.5 88.7
1.8 118
2.0 137
2.5 187
3.3 267
Figure 1: AAT2153 Evaluation Schematic.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
12 2153.2008.12.1.1
www.analogictech.com
Component Selection
Inductor Selection
The step-down converter uses peak current mode con-
trol with slope compensation to maintain stability for
duty cycles greater than 50%. The output inductor value
must be selected so the inductor current down slope
meets the internal slope compensation requirements.
The inductor should be set equal to the output voltage
numeric value in µH. This guarantees that there is suf-
ficient internal slope compensation.
Manufacturer’s specifications list both the inductor DC
current rating, which is a thermal limitation, and the
peak current rating, which is determined by the satura-
tion characteristics. The inductor should not show any
appreciable saturation under normal load conditions.
Some inductors may meet the peak and average current
ratings yet result in excessive losses due to a high DCR.
Always consider the losses associated with the DCR and
its effect on the total converter efficiency when selecting
an inductor.
The 3.3µH CDRH4D28 series Sumida inductor has a
49.2mW worst case DCR and a 1.57A DC current rating.
At full 2.5A load, the inductor DC loss is 97mW which
gives less than 1.5% loss in efficiency for a 2.5A, 3.3V
output.
Input Capacitor
Selecta10µFto22µFX7RorX5Rceramiccapacitorfor
the input. To estimate the required input capacitor size,
determine the acceptable input ripple level (VPP) and solve
for C. The calculated value varies with input voltage and
is a maximum when VIN is double the output voltage.

· 1 - = for VIN = 2 · VO

VO
VIN
VO
VIN
1
4
CIN(MIN) = 1

- ESR · 4 · FS

VPP
IO
Always examine the ceramic capacitor DC voltage coef-
ficient characteristics when selecting the proper value.
Forexample,thecapacitanceofa10µF,6.3V,X5Rceram-
ic capacitor with 5.0V DC applied is actually about 6µF.
Some examples of DC bias voltage versus capacitance for
different package sizes are shown in Figure 2.
Capacitance vs. DC Bias Voltage
DC Bias Voltage (V)
Capacitance (F)
0.01.0 2.03.0 4.05.0 6.07.0
000.0E+0
5.0E+6
10.0E+6
15.0E+6
20.0E+6
25.0E+6
1206 Package
0805 Package
Figure 2: Capacitance vs. DC Bias Voltage for
Different Package Sizes.
ThemaximuminputcapacitorRMScurrentis:

IRMS = IO · · 1 -

VO
VIN
VO
VIN
The input capacitor RMS ripple current varies with the
input and output voltage and will always be less than or
equal to half of the total DC load current.

· 1 - = D · (1 - D) = 0.52 =

VO
VIN
VO
VIN
1
2
for VIN = 2 · VO
IO
RMS(MAX)
I2
=
The term
· 1 -
VO
VIN
VO
VIN
appears in both the input voltage
ripple and input capacitor RMS current equations and is
a maximum when VO is twice VIN. This is why the input
voltage ripple and the input capacitor RMS current ripple
are a maximum at 50% duty cycle.
The input capacitor provides a low impedance loop for
theedgesofpulsedcurrentdrawnbytheAAT2153.Low
ESR/ESL X7R and X5R ceramic capacitors are ideal for
this function. To minimize stray inductance, the capaci-
tor should be placed as closely as possible to the IC. This
keeps the high frequency content of the input current
localized, minimizing EMI and input voltage ripple.
The proper placement of the input capacitor (C1) can be
seenintheevaluationboardlayoutintheLayoutsection
of this datasheet (see Figure 3).
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 13
www.analogictech.com
A laboratory test set-up typically consists of two long
wires running from the bench power supply to the evalu-
ation board input voltage pins. The inductance of these
wires, along with the low-ESR ceramic input capacitor,
can create a high Q network that may affect converter
performance. This problem often becomes apparent in
the form of excessive ringing in the output voltage dur-
ing load transients. Errors in the loop phase and gain
measurements can also result.
Since the inductance of a short PCB trace feeding the
input voltage is significantly lower than the power leads
from the bench power supply, most applications do not
exhibit this problem.
In applications where the input power source lead induc-
tance cannot be reduced to a level that does not affect
the converter performance, a high ESR tantalum or alu-
minum electrolytic should be placed in parallel with the
low ESR/ESL bypass ceramic capacitor. This dampens
the high Q network and stabilizes the system.
Output Capacitor
The output capacitor limits the output ripple and pro-
vides holdup during large load transitions. A 10µF to
22µF X5R or X7R ceramic capacitor typically provides
sufficient bulk capacitance to stabilize the output during
largeloadtransitionsandhastheESRandESLcharac-
teristics necessary for low output ripple.
The output voltage droop due to a load transient is dom-
inated by the capacitance of the ceramic output capacitor.
During a step increase in load current, the ceramic output
capacitor alone supplies the load current until the loop
responds. Within two or three switching cycles, the loop
responds and the inductor current increases to match the
load current demand. The relationship of the output volt-
age droop during the three switching cycles to the output
capacitancecanbeestimatedby:
COUT =
3 · ILOAD
VDROOP · FS
Once the average inductor current increases to the DC
load level, the output voltage recovers. The above equa-
tion establishes a limit on the minimum value for the
output capacitor with respect to load transients.
The internal voltage loop compensation also limits the
minimum output capacitor value to 10µF. This is due to
its effect on the loop crossover frequency (bandwidth),
phase margin, and gain margin. Increased output capac-
itance will reduce the crossover frequency with greater
phase margin.
Adjustable Output Resistor Selection
The output voltage on the AAT2153 is programmed with
external resistors R3 and R4. To limit the bias current
required for the external feedback resistor string while
maintaining good noise immunity, the minimum sug-
gestedvalueforR4is59kW. Although a larger value will
further reduce quiescent current, it will also increase the
impedance of the feedback node, making it more sensi-
tive to external noise and interference. Table 1 summa-
rizes the resistor values for various output voltages with
R4settoeither59kW for good noise immunity or 221kW
for reduced no load input current.
The external resistor R3, combined with an external
100pF feed forward capacitor (C8 in Figure 1), delivers
enhanced transient response for extreme pulsed load
applications and reduces ripple in light load conditions.
The addition of the feed forward capacitor typically
requires a larger output capacitor C3-C4 for stability. The
external resistors set the output voltage according to the
followingequation:


R3
R4
VOUT = 0.6V 1 +
or




VOUT
VREF
R3 = - 1 R4
VOUT (V)
R4 = 59kW
R3 (kW)
R4 = 221kW
R3 (kW)
0.8 19.6 75
0.9 29.4 113
1.0 39.2 150
1.1 49.9 187
1.2 59.0 221
1.3 68.1 261
1.4 78.7 301
1.5 88.7 332
1.8 118 442
1.85 124 464
2.0 137 523
2.5 187 715
3.0 237 887
3.3 267 1000
Table 1: AAT2153 Resistor Values for Various
Output Voltages.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
14 2153.2008.12.1.1
www.analogictech.com
Thermal Calculations
There are three types of losses associated with the
AAT2153step-downconverter:switchinglosses,conduc-
tion losses, and quiescent current losses. Conduction
losses are associated with the RDS(ON) characteristics of the
power output switching devices. Switching losses are
dominated by the gate charge of the power output switch-
ing devices. At full load, assuming continuous conduction
mode(CCM),asimplifiedformofthelossesisgivenby:
PTOTAL
IO
2 · (RDS(ON)H · VO + RDS(ON)L · [VIN - VO])
VIN
=
+ (tsw · FS · IO + IQ) · VIN
IQ is the step-down converter quiescent current. The
term tsw is used to estimate the full load step-down con-
verter switching losses.
For the condition where the step-down converter is in
dropout at 100% duty cycle, the total device dissipation
reducesto:
PTOTAL
IO
2 · (RDS(ON)H · VO + RDS(ON)L · [VIN - VO])
VIN
=
+ (tsw · FS · IO + IQ) · VIN
Since RDS(ON), quiescent current, and switching losses all
vary with input voltage, the total losses should be inves-
tigated over the complete input voltage range.
Given the total losses, the maximum junction tempera-
ture can be derived from the qJA for the QFN33-16 pack-
age, which is 50°C/W.
TJ(MAX) = PTOTAL · ΘJA + TAMB
Layout
Thesuggested PCBlayoutfor the AAT2153isshownin
Figures 3 and 4. The following guidelines should be used
to help ensure a proper layout.
1. The input capacitor (C1) should connect as closely as
possible to VP and PGND.
2. C2andL1shouldbeconnectedascloselyaspossi-
ble.TheconnectionofL1totheLXpinshouldbeas
short as possible.
3. The feedback trace or FB pin should be separate
from any power trace and connect as closely as pos-
sible to the load point. Sensing along a high-current
load trace will degrade DC load regulation.
4. The resistance of the trace from the load return to
PGND should be kept to a minimum. This will help to
minimize any error in DC regulation due to differ-
ences in the potential of the internal signal ground
and the power ground.
5. Connect unused signal pins to ground to avoid
unwanted noise coupling.
Figure 3: AAT2153 Evaluation Board Figure 4: AAT2153 Evaluation Board
Top Side Layout. Bottom Side Layout.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 15
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 15
www.analogictech.com
Design Example
Specifications
VO 3.3V @ IO=2.5A,PulsedLoadDILOAD = 2.4A
VIN 2.7V to 4.2V (3.6V nominal)
FS 1.4MHz
TAMB 85°C in QFN33-16 Package
Output Inductor
L = VO (µH) = 3.3µH; see Table 2.
ForWurthinductor74477890033.3µHDCR=30mW max.
V
O
V
O
3.3
V
3.3V
I =
· 1 - = · 1 - = 153m
A
L · F
S
V
IN
3.3µH · 1.4MHz
4.2V
I
PK
= I
O
+ I = 2.5A + 0.077A = 2.577A
2
P
L
= I
O
2
· DCR = 2.5A
2
· 30m = 188mW
Output Capacitor
VDROOP = 0.2V
1
23
13.3V · (4.2V - 3.3V)
3.3µH · 1.4MHz · 4.2V
23
RMS(MAX)
IL · FS · VIN(MAX)
= ·
·
3 · ILOAD
VDROOP · FS
3 · 2.4A
0.2V · 1.4MHz
COUT== = 25.7µF; use 2x22µF
· = 44mArms
·
(VOUT) · (VIN(MAX) - VOUT)=
Pesr = esr · IRMS2 = 5m · (44mA)2 = 9.8µW
Input Capacitor
Input Ripple VPP = 50mV
CIN == = 11.9µF; use 2x10µF
1
- ESR · 4 · FS
VPP
IO1 + IO2
1
- 5m · 4 · 1.2MHz
50mV
1.4A
IO
RMS(MAX)
I
P = esr · IRMS
2 = 5m · (1.25A)2 = 6.25mW
2
== 1.25Arms
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
16 2153.2008.12.1.1
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
16 2153.2008.12.1.1
www.analogictech.com
AAT2153 Losses
Total losses can be estimated by calculating the dropout (VIN = VO) losses where the power MOSFET RDS(ON) will be at
the maximum value. All values assume an 85°C ambient temperature and a 120°C junction temperature with the QFN
50°C/W package.
PLOSS = IO
2 · RDS(ON)H = 2.5A2 · 0.12 = 750mW
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 750mW = 122.5°C
The total losses are also investigated at the nominal lithium-ion battery voltage (3.6V). The simplified version of the
RDS(ON) losses assumes that the N-channel and P-channel RDS(ON) are equal.
PTOTAL = IO
2 · RDS(ON) + [(tsw · FS · IO + IQ) · VIN]
= 2.5A2 · 120m + [(5ns · 1.4MHz · 2.5A + 70µA) · 3.6V] = 813mW
TJ(MAX) = TAMB + ΘJA · PLOSS = 85°C + (50°C/W) · 813mW = 125.6°C
VOUT (V)
Inductance
(µH) Part Number Manufacturer Size (mm)
Rated Current
(A)
ISAT
(A)
DCR
(mW)
3.3 3.0 CDRH5D28RHPNP Sumida 6x6x3 2.4 31.8
3.3 3.3 7447789003 Wurth 7x7x3 3.42 4.7 30.0
2.5 2.5 CDRH5D28NP Sumida 6x6x3 2.6 4.2 24.0
1.8 1.8 CDRH4D28 Sumida 6x6x2 2.5 46.0
1.5 1.4 CDRH5D14HPNP Sumida 6x6x1.5 2.8 5.0 40.3
1.2 1.2 CDRH4D28 Sumida 5x5x3 2.56 3.9 23.6
1.0 1.0 CDRH5D14NP Sumida 6x6x1.5 3.6 3.3 25.6
0.8 0.9 CDRH5D14HPNP Sumida 6x6x1.5 3.5 5.0 27.5
0.6 0.6 CDRH5D14HPNP Sumida 6x6x1.5 3.9 6.0 22.5
Table 2: Surface Mount Inductors.
Manufacturer Part Number Value Voltage Temp. Co. Case
Murata GRM21BR60J106KE19 10µF 6.3V X5R 0805
Murata GRM21BR60J226ME39 22µF 6.3V X5R 0805
Murata GRM31CR60J226KE19 22µF 6.3V X5R 1206
Table 3: Surface Mount Capacitors.
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.200812.1.1 17
www.analogictech.com
AAT2153
2.5A Low Noise Step-Down ConverterSwitchRegTM
PRODUCT DATASHEET Gill Sans MT Bold Italic
15/18, convert to outlines
2153.2008.12.1.1 17
www.analogictech.com
Advanced Analogic Technologies, Inc.
3230 Scott Boulevard, Santa Clara, CA 95054
Phone (408) 737-4600
Fax (408) 737-4611
© Advanced Analogic Technologies, Inc.
AnalogicTech cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AnalogicTech product. No circuit patent licenses, copyrights, mask work rights, or other intellectual
propertyrightsareimplied.AnalogicTechreservestherighttomakechangestotheirproductsorspecicationsortodiscontinueanyproductorservicewithoutnotice.ExceptasprovidedinAnalogicTech’stermsand
conditions of sale, AnalogicTech assumes no liability whatsoever, and AnalogicTech disclaims any express or implied warranty relating to the sale and/or use of AnalogicTech products including liability or warranties
relatingtotnessforaparticularpurpose,merchantability,orinfringementofanypatent,copyrightorotherintellectualpropertyright.Inordertominimizerisksassociatedwiththecustomer’sapplications,adequate
design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. Testing and other quality control techniques are utilized to the extent AnalogicTech deems necessary to
supportthiswarranty.Specictestingofallparametersofeachdeviceisnotnecessarilyperformed.AnalogicTechandtheAnalogicTechlogoaretrademarksofAdvancedAnalogicTechnologiesIncorporated.Allother
brand and product names appearing in this document are registered trademarks or trademarks of their respective holders.
Ordering Information
Package Marking1Part Number (Tape and Reel)2
QFN33-16 5QXYY AAT2153IVN-0.6-T1
All AnalogicTech products are offered in Pb-free packaging. The term “Pb-free” means semiconductor
products that are in compliance with current RoHS standards, including the requirement that lead not exceed
0.1% by weight in homogeneous materials. For more information, please visit our website at
http://www.analogictech.com/about/quality.aspx.
Package Information
QFN33-163
3.000 ± 0.050
Pin 1 Dot By Marking
1.700 ± 0.050
0.400 ± 0.050
1.700 ± 0.050
3.000 ± 0.050
0.500 ± 0.050
0.850 ± 0.050
Pin 1 Identification
C0.3
0.025 ± 0.025
0.214 ± 0.036
0.230 ± 0.050
Top View Bottom View
Side View
1
13
5
9
All dimensions in millimeters.
1. XYY=assemblyanddatecode.
2. Sample stock is generally held on part numbers listed in BOLD.
3. The leadless package family, which includes QFN, TQFN, DFN, TDFN and STDFN, has exposed copper (unplated) at the end of the lead terminals due to the manufacturing
process. A solder fillet at the exposed copper edge cannot be guaranteed and is not required to ensure a proper bottom solder connection.