Document No. E0795E20 (Ver. 2.0)
Date Published October 2005 (K) Japan
Printed in Japan
URL: http://www.elpida.com
Elpida Memory, Inc. 2005
DATA SHEET
1GB Registered DDR2 SDRAM DIMM
EBE10RD4AGFA (128M words × 72 bits, 1 Rank)
Description
The EBE10RD4AGFA is a 128M words × 72 bits, 1
rank DDR2 SDRAM Module, mounting 18 pieces of
DDR2 SDRAM sealed in FBGA (µBGA) package.
Read and write operations are performed at the cross
points of the CK and the /CK. This high-speed data
transfer is realized by the 4bits prefetch-pipelined
architecture. Data strobe (DQS and /DQS) both for
read and write are available f or high spe ed and reliable
data bus design. By setting extended mode register,
the on-chip Delay Locked Loop (DLL) can be set
enable or disable. This module provides high density
mounting without utilizing surface mount technology.
Decoupling capacitors ar e mounted beside each FBGA
(µBGA) on the module board.
Note: Do not push the components or drop the
modules in order to avoid mechanical defects,
which may result in electrical defects.
Features
240-pin socket type dual in l in e memory module
(DIMM)
PCB height: 30.0mm
Lead pitch: 1.0mm
Lead-free (RoHS compliant)
Power supply: VDD = 1.8V ± 0.1V
Data rate: 667Mbps/533Mbps/400Mbps (max.)
SSTL_18 compatible I/O
Double-data-rate architecture: two data transfers per
clock cycle
Bi-directional, data strobe (DQS and /DQS) is
transmitted /received with data, to be used in
capturing data at the receiver
DQS is edge aligned with data for READs; center
aligned with dat a for WRITEs
Differential clock inputs (CK and /CK)
DLL aligns DQ and DQS transitions with CK
transitions
Commands entered on each p ositive CK e dge; data
referenced to both edges of DQS
Four internal banks for concurrent operation
(components)
Burst length: 4, 8
/CAS latency (CL): 3, 4, 5
Auto precharge option for each burst access
Auto refresh and self refresh modes
Average refresh period
7.8µs at 0°C TC +85°C
3.9µs at +85°C < TC +95°C
Posted CAS by programmable additive latency for
better command and data bus efficiency
Off-Chip-Driver Impedance Adjustment and On-Die-
Termination for better signal quality
/DQS can be disabled for single-ended Data Strobe
operation
1 piece of PLL clock driver, 2 pieces of register driver
and 1 piece of serial EEPROM (2k bits EEPROM) for
Presence Detect (PD)
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
2
Ordering Information
Part number Data rate
Mbps (max.)
Component
JEDEC speed bin*1
(CL-tRCD-tRP)
Package Contact
pad
Mounted devices
EBE10RD4AGFA-6E-E 667 DDR2-667 (5-5-5) EDE5104AGSE-6E-E
EBE10RD4AGFA-5C-E 533 DDR2-533 (4-4-4) EDE5104AGSE-6E-E
EDE5104AGSE-5C-E
EBE10RD4AGFA-4A-E 400 DDR2-400 (3-3-3)
240-pin DIMM
(lead-free) Gold EDE5104AGSE-6E-E
EDE5104AGSE-5C-E
EDE5104AGSE-4A-E
Note: 1. Module /CAS latency = component CL + 1
Pin Configurations
1 pin Front side
Back side
64 pin65 pin 120 pin
121 pin 184 pin 185 pin 240 pin
Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
1 VREF 61 A4 121 VSS 181 VDD
2 VSS 62 VDD 122 DQ4 182 A3
3 DQ0 63 A2 123 DQ5 183 A1
4 DQ1 64 VDD 124 VSS 184 VDD
5 VSS 65 VSS 125 DQS9 185 CK0
6 /DQS0 66 VSS 126 /DQS9 186 /CK0
7 DQS0 67 VDD 127 VSS 187 VDD
8 VSS 68 NC/Par_In 128 DQ6 188 A0
9 DQ2 69 VDD 129 DQ7 189 VDD
10 DQ3 70 A10 130 VSS 190 BA1
11 VSS 71 BA0 131 DQ12 191 VDD
12 DQ8 72 VDD 132 DQ13 192 /RAS
13 DQ9 73 /WE 133 VSS 193 /CS0
14 VSS 74 /CAS 134 DQS10 194 VDD
15 /DQS1 75 VDD 135 /DQS10 195 ODT0
16 DQS1 76 NC 136 VSS 196 A13
17 VSS 77 NC 137 NC 197 VDD
18 /RESET 78 VDD 138 NC 198 VSS
19 NC 79 VSS 139 VSS 199 DQ36
20 VSS 80 DQ32 140 DQ14 200 DQ37
21 DQ10 81 DQ33 141 DQ15 201 VSS
22 DQ11 82 VSS 142 VSS 202 DQS13
23 VSS 83 /DQS4 143 DQ20 203 /DQS13
24 DQ16 84 DQS4 144 DQ21 204 VSS
25 DQ17 85 VSS 145 VSS 205 DQ38
26 VSS 86 DQ34 146 DQS11 206 DQ39
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
3
Pin No. Pin name Pin No. Pin name Pin No. Pin name Pin No. Pin name
27 /DQS2 87 DQ35 147 /DQS11 207 VSS
28 DQS2 88 VSS 148 VSS 208 DQ44
29 VSS 89 DQ40 149 DQ22 209 DQ45
30 DQ18 90 DQ41 150 DQ23 210 VSS
31 DQ19 91 VSS 151 VSS 211 DQS14
32 VSS 92 /DQS5 152 DQ28 212 /DQS14
33 DQ24 93 DQS5 153 DQ29 213 VSS
34 DQ25 94 VSS 154 VSS 214 DQ46
35 VSS 95 DQ42 155 DQS12 215 DQ47
36 /DQS3 96 DQ43 156 /DQS12 216 VSS
37 DQS3 97 VSS 157 VSS 217 DQ52
38 VSS 98 DQ48 158 DQ30 218 DQ53
39 DQ26 99 DQ49 159 DQ31 219 VSS
40 DQ27 100 VSS 160 VSS 220 NC
41 VSS 101 SA2 161 CB4 221 NC
42 CB0 102 NC 162 CB5 222 VSS
43 CB1 103 VSS 163 VSS 223 DQS15
44 VSS 104 /DQS6 164 DQS17 224 /DQS15
45 /DQS8 105 DQS6 165 /DQS17 225 VSS
46 DQS8 106 VSS 166 VSS 226 DQ54
47 VSS 107 DQ50 167 CB6 227 DQ55
48 CB2 108 DQ51 168 CB7 228 VSS
49 CB3 109 VSS 169 VSS 229 DQ60
50 VSS 110 DQ56 170 VDD 230 DQ61
51 VDD 111 DQ57 171 NC 231 VSS
52 CKE0 112 VSS 172 VDD 232 DQS16
53 VDD 113 /DQS7 173 NC 233 /DQS16
54 NC 114 DQS7 174 NC 234 VSS
55 NC/Err_Out 115 VSS 175 VDD 235 DQ62
56 VDD 116 DQ58 176 A12 236 DQ63
57 A11 117 DQ59 177 A9 237 VSS
58 A7 118 VSS 178 VDD 238 VDDSPD
59 VDD 119 SDA 179 A8 239 SA0
60 A5 120 SCL 180 A6 240 SA1
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
4
Pin Description
Pin name Function
A0 to A13 Address input
Row address A0 to A13
Column address A0 to A9, A11
A10 (AP) Auto precharge
BA0, BA1 Bank select address
DQ0 to DQ63 Data input/output
CB0 to CB7 Check bit (Data input/output)
/RAS Row address strobe command
/CAS Column address strobe command
/WE Write enable
/CS0 Chip select
CKE0 Clock enable
CK0 Clock input
/CK0 Differential clock input
DQS0 to DQS17, /DQS0 to /DQS17 Input and output data strobe
SCL Clock input for serial PD
SDA Data input/output for serial PD
SA0 to SA2 Serial address input
VDD Power for internal circuit
VDDSPD Power for serial EEPROM
VREF Input reference voltage
VSS Ground
ODT0 ODT control
/RESET Reset pin (forces register and PLL inputs low) *1
Par_In*2 Parity bit for the address and control bus
Err_Out*2 Parity error found on the address and control bus
NC No connection
Note: 1. Reset pin is connected to both OE of PLL and reset to register.
2. NC/Err_Out (Pin No. 55) and NC/Par_In (Pin No. 68) are for optional function to check address and
command parity.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
5
Serial PD Matrix*1
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
0 Number of bytes utilized by module
manufacturer 1 0 0 0 0 0 0 0 80H 128 bytes
1 Total number of bytes in serial PD
device 0 0 0 0 1 0 0 0 08H 256 bytes
2 Memory type 0 0 0 0 1 0 0 0 08H DDR2 SDRAM
3 Number of row address 0 0 0 0 1 1 1 0 0EH 14
4 Number of column address 0 0 0 0 1 0 1 1 0BH 11
5 Number of DIMM ranks 0 1 1 0 0 0 0 0 60H 1
6 Module data width 0 1 0 0 1 0 0 0 48H 72
7 Module data width continuation 0 0 0 0 0 0 0 0 00H 0
8 Voltage interface level of this assembly 0 0 0 0 0 1 0 1 05H SSTL 1.8V
9 DDR SDRAM cycle time, CL = 5
-6E 0 0 1 1 0 0 0 0 30H 3.0ns*1
-5C 0 0 1 1 1 1 0 1 3DH 3.75ns*1
-4A 0 1 0 1 0 0 0 0 50H 5.0ns*1
10 SDRAM access from clock (tAC)
-6E 0 1 0 0 0 1 0 1 45H 0.45ns*1
-5C 0 1 0 1 0 0 0 0 50H 0.5ns*1
-4A 0 1 1 0 0 0 0 0 60H 0.6ns*1
11 DIMM configuration type 0 0 0 0 0 0 1 0 02H ECC
12 Refresh rate/type 1 0 0 0 0 0 1 0 82H 7.8µs
13 Primary SDRAM width 0 0 0 0 0 1 0 0 04H × 4
14 Error checking SDRAM width 0 0 0 0 0 1 0 0 04H × 4
15 Reserved 0 0 0 0 0 0 0 0 00H 0
16 SDRAM device attributes:
Burst length supported 0 0 0 0 1 1 0 0 0CH 4,8
17 SDRAM device attributes: Number of
banks on SDRAM device 0 0 0 0 0 1 0 0 04H 4
18 SDRAM device attributes:
/CAS latency 0 0 1 1 1 0 0 0 38H 3, 4, 5
19 DIMM Mechanical Characteristics 0 0 0 0 0 0 0 1 01H 4.00mm max.
20 DIMM type information 0 0 0 0 0 0 0 1 01H Registered
21 SDRAM module attributes 0 0 0 0 0 0 0 0 00H Normal
22 SDRAM device attributes: General 0 0 0 0 0 0 1 1 03H Weak Driver 50
ODT Support
23 Minimum clock cycle time at CL = 4
-6E, -5C 0 0 1 1 1 1 0 1 3DH 3.75ns*1
-4A 0 1 0 1 0 0 0 0 50H 5.0ns*1
24 Maximum data access time (tAC) from
clock at CL = 4
-6E, -5C 0 1 0 1 0 0 0 0 50H 0.5ns*1
-4A 0 1 1 0 0 0 0 0 60H 0.6ns*1
25 Minimum clock cycle time at CL = 3 0 1 0 1 0 0 0 0 50H 5.0ns*1
26 Maximum data access time (tAC) from
clock at CL = 3 0 1 1 0 0 0 0 0 60H 0.6ns*1
27 Minimum row precharge time (tRP) 0 0 1 1 1 1 0 0 3CH 15ns
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
6
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
28 Minimum row active to row active delay
(tRRD) 0 0 0 1 1 1 1 0 1EH 7.5ns
29 Minimum /RAS to /CAS delay (tRCD) 0 0 1 1 1 1 0 0 3CH 15ns
30 Minimum active to precharge time
(tRAS)
-6E, -5C 0 0 1 0 1 1 0 1 2DH 45ns
-4A 0 0 1 0 1 0 0 0 28H 40ns
31 Module rank density 0 0 0 0 0 0 0 1 01H 1GB
32 Address and command setup time
before clock (tIS)
-6E 0 0 1 0 0 0 0 0 20H 0.20ns*1
-5C 0 0 1 0 0 1 0 1 25H 0.25ns*1
-4A 0 0 1 1 0 1 0 1 35H 0.35ns*1
33 Address and command hold time after
clock (tIH)
-6E 0 0 1 0 1 0 0 0 28H 0.28ns*1
-5C 0 0 1 1 1 0 0 0 38H 0.38ns*1
-4A 0 1 0 0 1 0 0 0 48H 0.48ns*1
34 Data input setup time before clock
(tDS)
-6E, -5C 0 0 0 1 0 0 0 0 10H 0.10ns*1
-4A 0 0 0 1 0 1 0 1 15H 0.15ns*1
35 Data input hold time after clock (tDH)
-6E 0 0 0 1 1 0 0 0 18H 0.18ns*1
-5C 0 0 1 0 0 0 1 1 23H 0.23ns*1
-4A 0 0 1 0 1 0 0 0 28H 0.28ns*1
36 Write recovery time (tWR) 0 0 1 1 1 1 0 0 3CH 15ns*1
37 Internal write to read command delay
(tWTR)
-6E, -5C 0 0 0 1 1 1 1 0 1EH 7.5ns*1
-4A 0 0 1 0 1 0 0 0 28H 10ns*1
38 Internal read to precharge command
delay (tRTP) 0 0 0 1 1 1 1 0 1EH 7.5ns*1
39 Memory analysis probe characteristics 0 0 0 0 0 0 0 0 00H TBD
40 Extension of Byte 41 and 42 0 0 0 0 0 0 0 0 00H Undefined
41 Active command period (tRC)
-6E, -5C 0 0 1 1 1 1 0 0 3CH 60ns*1
-4A 0 0 1 1 0 1 1 1 37H 55ns*1
42 Auto refresh to active/
Auto refresh command cycle (tRFC) 0 1 1 0 1 0 0 1 69H 105ns*1
43 SDRAM tCK cycle max. (tCK max.) 1 0 0 0 0 0 0 0 80H 8ns*1
44 Dout to DQS skew
-6E 0 0 0 1 1 0 0 0 18H 0.24ns*1
-5C 0 0 0 1 1 1 1 0 1EH 0.30ns*1
-4A 0 0 1 0 0 0 1 1 23H 0.35ns*1
45 Data hold skew (tQHS)
-6E 0 0 1 0 0 0 1 0 22H 0.34ns*1
-5C 0 0 1 0 1 0 0 0 28H 0.40ns*1
-4A 0 0 1 0 1 1 0 1 2DH 0.45ns*1
46 PLL relock time 0 0 0 0 1 1 1 1 0FH 15µs
47 to 61 0 0 0 0 0 0 0 0 00H
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
7
Byte No. Function described Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 Hex value Comments
62 SPD Revision 0 0 0 1 0 0 1 0 12H Rev. 1.2
63 Checksum for bytes 0 to 62
-6E 0 0 0 0 1 1 0 1 0DH
-5C 0 1 0 1 0 0 0 1 51H
-4A 1 1 0 0 1 0 1 1 CBH
64 to 65 Manufacturer’s JEDEC ID code 0 1 1 1 1 1 1 1 7FH Continuation
code
66 Manufacturer’s JEDEC ID code 1 1 1 1 1 1 1 0 FEH Elpida Memory
67 to 71 Manufacturer’s JEDEC ID code 0 0 0 0 0 0 0 0 00H
72 Manufacturing location × × × × × × × × ×× (ASCII-8bit
code)
73 Module part number 0 1 0 0 0 1 0 1 45H E
74 Module part number 0 1 0 0 0 0 1 0 42H B
75 Module part number 0 1 0 0 0 1 0 1 45H E
76 Module part number 0 0 1 1 0 0 0 1 31H 1
77 Module part number 0 0 1 1 0 0 0 0 30H 0
78 Module part number 0 1 0 1 0 0 1 0 52H R
79 Module part number 0 1 0 0 0 1 0 0 44H D
80 Module part number 0 0 1 1 0 1 0 0 34H 4
81 Module part number 0 1 0 0 0 0 0 1 41H A
82 Module part number 0 1 0 0 0 1 1 1 47H G
83 Module part number 0 1 0 0 0 1 1 0 46H F
84 Module part number 0 1 0 0 0 0 0 1 41H A
85 Module part number 0 0 1 0 1 1 0 1 2DH
86 Module part number
-6E 0 0 1 1 0 1 1 0 36H 6
-5C 0 0 1 1 0 1 0 1 35H 5
-4A 0 0 1 1 0 1 0 0 34H 4
87 Module part number
-6E 0 1 0 0 0 1 0 1 45H E
-5C 0 1 0 0 0 0 1 1 43H C
-4A 0 1 0 0 0 0 0 1 41H A
88 Module part number 0 0 1 0 1 1 0 1 2DH
89 Module part number 0 1 0 0 0 1 0 1 45H E
90 Module part number 0 0 1 0 0 0 0 0 20H (Space)
91 Revision code 0 0 1 1 0 0 0 0 30H Initial
92 Revision code 0 0 1 0 0 0 0 0 20H (Space)
93 Manufacturing date × × × × × × × × ×× Year code
(BCD)
94 Manufacturing date × × × × × × × × ×× Week code
(BCD)
95 to 98 Module serial number
99 to 127 Manufacture specific data
Note: 1. These specifications are defined based on compo nent specification, not module.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
8
Block Diagram
DQSDM
DQ0 to DQ3 4
DQS0 R
S
/CS
D0
/RCS0
VSS
DQ8 to DQ11 4
DQS1
R
S
RS
RS
RS
RS
RS
RS
RS
/CS*2
BA0 to BA1
A0 to A13
/RAS
/CAS
CKE0
/WE
ODT0
/RCS0 -> /CS: SDRAMs D0 to D17
RBA0 to RBA1 -> BA0 to BA1: SDRAMs D0 to D17
RA0 to RA13 -> A0 to A13: SDRAMs D0 to D17
/RRAS -> /RAS: SDRAMs D0 to D17
/RCAS -> /CAS: SDRAMs D0 to D17
RCKE0 -> CKE: SDRAMs D0 to D17
/RWE -> /WE: SDRAMs D0 to D17
RODT0 -> ODT0: SDRAMs D0 to D17
R
E
G
I
S
T
E
R
/PCK7*
3
/RESET*
3
/DQS0
/DQS
DQSDM /CS
D1
/DQS
/DQS1
DQ16 to DQ19 4
DQS2
R
S
DQSDM /CS
D2
/DQS
/DQS2
DQ24 to DQ27 4
DQS3
R
S
DQS
DM /CS
D3
/DQS
/DQS3
DQ32 to DQ35 4
DQS4
R
S
DQSDM /CS
D4
/DQS
/DQS4
DQ40 to DQ43 4
DQS5
R
S
DQSDM /CS
D5
/DQS
/DQS5
DQ48 to DQ51 4
DQS6
R
S
DQS
DM /CS
D6
/DQS
/DQS6
DQ56 to DQ59 4
DQS7
R
S
DQSDM /CS
D7
/DQS
/DQS7
CB0 to CB3 4
DQS8
R
S
DQ0
to DQ3
DQSDM /CS
D8
/DQS
/DQS8
DQSDM
DQ4 to /DQ7 4
DQS9
R
S
/CS
D9
DQ12 to DQ15 4R
S
/DQS9
/DQS
DQSDM /CS
D10
/DQS
DQ20 to DQ23 4R
S
DQSDM /CS
D11
/DQS
DQ28 to DQ31 4R
S
DQS
DM /CS
D12
/DQS
DQ36 to DQ39 4R
S
DQSDM /CS
D13
/DQS
DQ44 to DQ47 4R
S
DQSDM /CS
D14
/DQS
DQ52 to DQ55 4R
S
DQS
DM /CS
D15
/DQS
DQ60 to DQ63 4R
S
DQSDM /CS
D16
/DQS
CB4 to CB7 4R
S
DQSDM /CS
D17
/DQS
DQS10
/DQS10
DQS11
/DQS11
DQS12
/DQS12
DQS13
/DQS13
DQS14
/DQS14
DQS15
/DQS15
DQS16
/DQS16
DQS17
/DQS17
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
DQ0
to DQ3
R
S
/RST
PCK7*
3
Notes:
1. DQ wring may be changed within a nibble.
2. /CS connects to D/CS of register and /CSR of register2.
/CSR of register1 and D/CS of register2 connects to VDD.
3. /RESET, PCK7 and /PCK7 connect to both registers.
Other signals to one of two registers.
P
L
L
OE
CK0
/CK0
/RESET
PCK0 to PCK6, PCK8, PCK9 -> CK: SDRAMs D0 to D17
/PCK0 to /PCK6, /PCK8, /PCK9 -> /CK: SDRAMs D0 to D17
PCK7 -> CK: register
/PCK7 -> /CK: register
D0 to D17: 512M bits DDR2 SDRAM
U0: 2k bits EEPROM
R
S
: 22
PLL: CUA877
Register: SSTUA32866
Serial PD
SDA
A0 A1 A2
SA0SA1SA2
SCL SCL
U0
SDA
WP
Serial PD
D0 to D17
D0 to D17
D0 to D17
VDDSPD
VSS
VREF
VDD
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
R
S
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
9
Differential Clock Net Wiring (C K0, /CK0)
120
0ns (nominal)
120
120
CK0
Notes: 1. The clock delay from the input of the PLL clock to the input of any SDRAM or register willl
be set to 0ns (nominal).
2. Input, output and feedback clock lines are terminated from line to line as shown, and not
from line to ground.
3. Only one PLL output is shown per output type. Any additional PLL outputs will be wired
in a similar manner.
4. Termination resistors for the PLL feedback path clocks are located as close to the
input pin of the PLL as possible.
C
/CK0
SDRAM
Register 1
Register 2
PLL
Feedback in
IN
OUT1
OUT'N'
Feedback out
120
C
SDRAM
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
10
Electrical Specifications
All voltages are referenced to VSS (GND).
Absolute Maximum Ratings
Parameter Symbol Value Unit Note
Voltage on any pin relative to VSS VT –0.5 to +2.3 V 1
Supply voltage relative to VSS VDD –0.5 to +2.3 V
Short circuit output current IOS 50 mA 1
Power dissipation PD 18 W
Operating case temperature TC 0 to +95 °C 1, 2
Storage temperature Tstg –55 to +100 °C 1
Note: 1. DDR2 SDRAM component specificati on.
2. Supporting 0°C to +85°C and being able to extend to +95°C with doubling auto-refresh commands in
frequency to a 32ms period (tREFI = 3.9µs) and higher temperature self-refresh entry via the control of
EMRS (2) bit A7 is required.
Caution
Exposing the device to stress above those listed in Absolute Maximum Ratings could cause
permanent damage. The device is not meant to be operated under conditions outside the limits
described in the operational section of this specification. Exposure to Absolute Maximum Rating
conditions for extended periods may affect device reliability.
DC Operating Conditions (TC = 0°C to +85°C) (DDR2 SDRAM Component Specification)
Parameter Symbol min. typ. max. Unit Notes
Supply voltage VDD, VDDQ 1.7 1.8 1.9 V 4
VSS 0 0 0 V
VDDSPD 1.7 3.6 V
Input reference voltage VREF 0.49 × VDDQ 0.50 × VDDQ 0.51 × VDDQ V 1, 2
Termination voltage VTT VREF 0.04 VREF VREF + 0.04 V 3
DC input logic high VIH (DC) VREF + 0.125 VDDQ + 0.3 V
DC input low VIL (DC) 0.3 VREF – 0.125 V
AC input logic high
-6E VIH (AC) VREF + 0.200 V
-5C, -4A VIH (AC) VREF + 0.250 V
AC input low
-6E VIL (AC) VREF – 0.200 V
-5C, -4A VIL (AC) VREF 0.250 V
Notes: 1. The value of VREF may be selected by the user to provide optimum noise margin in the system. Typically
the value of VREF is e xpected to b e about 0 .5 × VDDQ of the transm itting devic e and V R EF are e xpected
to track variations in VDDQ.
2. Peak to peak AC noise on VREF may not exceed ±2% VREF (DC).
3. VTT of transmitting device must track VREF of receiving device.
4. VDDQ must be equal to VDD.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
11
DC Characteristics 1 (TC = 0°C to +85°C, VDD = 1.8V ± 0.1V, VSS = 0V)
Parameter Symbol Grade max. Unit Test condition
Operating current
(ACT-PRE) IDD0 -6E
-5C
-4A
2570
2440
2120 mA
one bank; tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
Operating current
(ACT-READ-PRE) IDD1 -6E
-5C
-4A
2920
2760
2430 mA
one bank; IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRC = tRC (IDD),
tRAS = tRAS min.(IDD); tRCD = tRCD (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
Precharge power-down
standby current IDD2P -6E
-5C
-4A
750
700
620 mA
all banks idle;
tCK = tCK (IDD);
CKE is L;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
Precharge quiet standby
current IDD2Q -6E
-5C
-4A
1020
970
840 mA
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are STABLE;
Data bus inputs are FLOATING
Idle standby current IDD2N -6E
-5C
-4A
1200
1060
930 mA
all banks idle;
tCK = tCK (IDD);
CKE is H, /CS is H;
Other control and address bus inputs are
SWITCHING;
Data bus inputs are SWITCHING
IDD3P-F -6E
-5C
-4A
1290
1240
1110 mA Fast PDN Exit
MRS(12) = 0
Active power-down standby
current
IDD3P-S -6E
-5C
-4A
1020
970
840 mA
all banks open;
tCK = tCK (IDD);
CKE is L;
Other control and
address bus inputs are
STABLE;
Data bus inputs are
FLOATING
Slow PDN Exit
MRS(12) = 1
Active standby current IDD3N -6E
-5C
-4A
1850
1720
1580 mA
all banks open;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are
SWITCHING;
Data bus inputs are SWITCHING
Operating current
(Burst read operating) IDD4R -6E
-5C
-4A
4270
3660
3060 mA
all banks open, continuous burst reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD), tRP = tRP
(IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data pattern is same as IDD4W
Operating current
(Burst write operating) IDD4W -6E
-5C
-4A
4090
3660
3060 mA
all banks open, continuous burst writes;
BL = 4, CL = CL(IDD), AL = 0;
tCK = tCK (IDD), tRAS = tRAS max.(IDD),
tRP = tRP (IDD);
CKE is H, /CS is H between valid commands;
Address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
12
Parameter Symbol Grade max. Unit Test condition
Auto-refresh current IDD5 -6E
-5C
-4A
5440
5030
4630 mA
tCK = tCK (IDD);
Refresh command at every tRFC (IDD) interval;
CKE is H, /CS is H between valid commands;
Other control and address bus inputs are SWITCHING;
Data bus inputs are SWITCHING
Self-refresh current IDD6 150 mA
Self Refresh Mode;
CK and /CK at 0V;
CKE 0.2V;
Other control and address bus inputs are FLOATING;
Data bus inputs are FLOATING
Operating current
(Bank interleaving) IDD7 -6E
-5C
-4A
6380
6250
5770 mA
all bank interleaving reads, IOUT = 0mA;
BL = 4, CL = CL(IDD), AL = tRCD (IDD) 1 × tCK (IDD);
tCK = tCK (IDD), tRC = tRC (IDD), tRRD = tRRD(IDD),
tRCD = 1 × tCK (IDD);
CKE is H, CS is H between valid commands;
Address bus inputs are STABLE during DESELECTs;
Data pattern is same as IDD4W;
Notes: 1. IDD specifications are tested after the device is properly init ialized.
2. Input slew rate is specified by AC Input Test Condition.
3. IDD parameters are specified with ODT disabled.
4. Data bus consists of DQ, DM, DQS, /DQS, RDQS, /RDQS, LDQS, /LDQS, UDQS, and /UDQS. IDD
values must be met with all combinations of EMRS bits 10 and 1 1.
5. Definitions for IDD
L is defined as VIN VIL (AC) (max.)
H is defined as VIN VIH (AC) (min.)
STABLE is defined as inputs stable at an H or L level
FLOATING is defined as inputs at VREF = VDDQ/2
SWITCHING is defined as:
inputs changing between H and L every other clock cycle (once per two clocks) for address and control
signals, and inputs changing between H and L every other data transfer (once per clock) for DQ signals
not including masks or strobes.
6. Refer to AC Timing for IDD Test Conditions.
AC Timing for IDD Test Conditions
For purposes of IDD testing, the following parameters are to be utilized.
DDR2-667 DDR2-533 DDR2-400
Parameter 5-5-5 4-4-4 3-3-3 Unit
CL(IDD) 5 4 3 tCK
tRCD(IDD) 15 15 15 ns
tRC(IDD) 60 60 55 ns
tRRD(IDD) 7.5 7.5 7.5 ns
tCK(IDD) 3 3.75 5 ns
tRAS(min.)(IDD) 45 45 40 ns
tRAS(max.)(IDD) 70000 70000 70000 ns
tRP(IDD) 15 15 15 ns
tRFC(IDD) 105 105 105 ns
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
13
DC Characteristics 2 (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter Symbol Value Unit Notes
Input leakage current ILI 2 µA VDD VIN VSS
Output leakage current ILO 5 µA VDDQ VOUT VSS
Minimum required output pull-up under AC
test load VOH VTT + 0.603 V 5
Maximum required output pull-down under
AC test load VOL VTT 0.603 V 5
Output timing measurement reference level VOTR 0.5 × VDDQ V 1
Output minimum sink DC current IOL +13.4 mA 3, 4, 5
Output minimum source DC current IOH 13.4 mA 2, 4, 5
Notes: 1. The VDDQ of the device under test is referenced.
2. VDDQ = 1.7V; VOUT = 1.42V.
3. VDDQ = 1.7V; VOUT = 0.28V.
4. The DC value of VREF applied to the receiving device is expected to be set to VTT.
5. After OCD calibration to 18 at TC = 25°C, VDD = VDDQ = 1.8V.
DC Characteristics 3 (TC = 0°C to + 85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter Symbol min. max. Unit Notes
AC differential input voltage VID (AC) 0.5 VDDQ + 0.6 V 1, 2
AC differential cross point voltage VIX (AC) 0.5 × VDDQ 0.175 0.5 × VDDQ + 0.175 V 2
AC differential cross point voltage VOX (AC) 0.5 × VDDQ 0.125 0.5 × VDDQ + 0.125 V 3
Notes: 1. VID(AC) specifies the input differential voltage |VTR -VCP| required for switching, where VTR is the true
input signal (such as CK, DQS, LDQS or UDQS) and VCP is the complementary input signal (such as
/CK, /DQS, /LDQS or /UDQS). The minimum value is equal to VIH(AC) VIL(AC).
2. The typical value of VIX(AC ) is expected to be about 0.5 × VDDQ of the transmitting device and VI X(AC)
is expected to track variations in VDDQ . VIX(AC) indicates the voltag e at which differential input signal s
must cross.
3. The typical value of VOX(AC) is expected to be about 0.5 × VDDQ of the transmitting device and
VOX(AC) is expected to track variations in VDDQ . VOX(AC) indicates the voltage at which differential
output signals must cross.
Crossing point
VSSQ
VTR
VCP
VID VIX or VOX
VDDQ
Differential Signal Levels*1, 2
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
14
ODT DC Electrical Characteristics (TC = 0°C to + 85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter Symbol min. typ. max. Unit Note
Rtt effective impedance value for EMRS (A6, A2) = 0, 1; 75 Rtt1(eff) 60 75 90 1
Rtt effective impedance value for EMRS (A6, A2) = 1, 0; 150 Rtt2(eff) 120 150 180 1
Rtt effective impedance value for EMRS (A6, A2) = 1, 1; 50 Rtt3(eff) 40 50 60 1
Deviation of VM with respect to VDDQ/2 VM 6  +6 % 1
Note: 1. Test condition for Rtt measurements.
Measurement Definition for Rtt(eff)
Apply VIH (AC) and VIL (AC) to test pin separatel y, then measure current I(VIH(AC)) and I(VIL(AC)) respectively.
VIH(AC), and VDDQ values defined in SSTL_18.
VIH(AC) VIL(A C)
I(VIH(AC)) I(VIL(AC))
Rtt(eff) =
Measurement Definition for VM
Measure voltage (VM) at test pin (midpoint) with no load.
2 × VM
VDDQ
VM = × 100%
1
OCD Default Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V)
(DDR2 SDRAM Component Specification)
Parameter min typ. max. Unit Notes
Output impedance 12.6 18 23.4 1
Pull-up and pull-down mismatch 0 4 1, 2
Output slew rate 1.5 5 V/ns 3, 4
Notes: 1. Impedance measurement condition for output source DC current: VDDQ = 1.7V; VOUT = 1420mV;
(VOUTVDDQ)/IOH must be less than 23.4 for values of VOUT between VDDQ and VDDQ280mV.
Impedance measurement condition for output sink DC current: VDDQ = 1.7V; VOUT = 280mV;
VOUT/IOL must be less than 23.4 for values of VOUT between 0V and 280mV.
2. Mismatch is absolute value between pull up and pull down, both ar e measured at same temperature and
voltage.
3. Slew rate measured from VIL(AC) to VIH(AC).
4. The absolute value of the slew rate as me asured from DC to DC is equa l to or greater than the sl ew rate
as measured from AC to AC. This is guaranteed by design and characterization.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
15
Pin Capacitance (T A = 25°C, VDD = 1.8V ± 0.1V)
Parameter Symbol Pins min. max. Unit Notes
Input capacitance CI1 Address, /RAS, /CAS,
/WE, /CS, CKE, ODT 2.5 3.5 pF 1
Input capacitance CI2 CK, /CK 2 3 pF 2
Data and DQS input/output
capacitance
-6E CO DQ, DQS, /DQS, CB 2.5 3.5 pF 3
-5C, -4A 2.5 4.0 pF 3
Notes: 1. Register component specification.
2. PLL component specification.
3. DDR2 SDRAM component specification.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
16
AC Characteristics (TC = 0°C to +85°C, VDD, VDDQ = 1.8V ± 0.1V, VSS = 0V)
(DDR2 SDRAM Component Specification)
-6E -5C -4A
Frequency (Mbps) 667 533 400
Parameter Symbol min. max. min. max. min. max. Unit Notes
/CAS latency CL 5 5 4 5 3 5 tCK
Active to read or write command
delay tRCD 15 15 15 ns
Precharge command period tRP 15 15 15 ns
Active to active/auto refresh
command time tRC 60 60 55 ns
DQ output access time from CK,
/CK tAC 450 +450500 +500600 +600 ps
DQS output access time from
CK, /CK tDQSCK 400 +400450 +450500 +500 ps
CK high-level width tCH 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK low-level width tCL 0.45 0.55 0.45 0.55 0.45 0.55 tCK
CK half period tHP min.
(tCL, tCH) min.
(tCL, tCH) min.
(tCL, tCH) ps
Clock cycle time tCK 3000 8000 3750 8000 5000 8000 ps
DQ and DM input hold time tDH 175 225 275 ps 5
DQ and DM input setup time tDS 100 100 150 ps 4
Control and Address input pulse
width for each input tIPW 0.6 0.6 0.6 tCK
DQ and DM input pulse width
for each input tDIPW 0.35 0.35 0.35 tCK
Data-out high-impedance time
from CK,/CK tHZ tAC max. tAC max. tAC max. ps
Data-out low-impedance time
from CK,/CK tLZ tAC min. tAC max. tAC min. tAC max. tAC min. tAC max. ps
DQS-DQ skew for DQS and
associated DQ signals tDQSQ 240 300 350 ps
DQ hold skew factor tQHS 340 400 450 ps
DQ/DQS output hold time from
DQS tQH tHP – tQHS tHP – tQHS tHP – tQHS ps
Write command to first DQS
latching transition tDQSS WL 0.25 WL + 0.25 WL 0.25 WL + 0.25 WL 0.25 WL + 0.25 tCK
DQS input high pulse width tDQSH 0.35 0.35 0.35 tCK
DQS input low pulse width tDQSL 0.35 0.35 0.35 tCK
DQS falling edge to CK setup
time tDSS 0.2 0.2 0.2 tCK
DQS falling edge hold time from
CK tDSH 0.2 0.2 0.2 tCK
Mode register set command
cycle time tMRD 2 2 2 tCK
Write postamble tWPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
Write preamble tWPRE 0.35 0.35 0.35 tCK
Address and control input hold
time tIH 275 375 475 ps 5
Address and control input setup
time tIS 200 250 350 ps 4
Read preamble tRPRE 0.9 1.1 0.9 1.1 0.9 1.1 tCK
Read postamble tRPST 0.4 0.6 0.4 0.6 0.4 0.6 tCK
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
17
-6E -5C -4A
Frequency (Mbps) 667 533 400
Parameter Symbol min. max. min. max. min. max. Unit Notes
Active to precharge command tRAS 45 70000 45 70000 40 70000 ns
Active to auto-precharge delay tRAP tRCD min. tRCD min. tRCD min. ns
Active bank A to active bank B
command period tRRD 7.5 7.5 7.5 ns
Write recovery time tWR 15 1515ns
Auto precharge write recovery +
precharge time tDAL (tWR/tCK)+
(tRP/tCK) (tWR/tCK)+
(tRP/tCK) (tWR/tCK)+
(tRP/tCK) tCK 1
Internal write to read command
delay tWTR 7.5 7.5 10ns
Internal read to precharge
command delay tRTP 7.5 7.5 7.5 ns
Exit self refresh to a non-read
command tXSNR tRFC + 10 tRFC + 10 tRFC + 10 ns
Exit self refresh to a read
command tXSRD 200 200 200 tCK
Exit precharge power down to
any non-read command tXP 2 22tCK
Exit active power down to read
command tXARD 2 22tCK 3
Exit active power down to read
command
(slow exit/low power mode) tXARDS 7 AL 6 AL 6 AL tCK 2, 3
CKE minimum pulse width (high
and low pulse width) tCKE 3 33tCK
Output impedance test driver
delay tOIT 0 12 0 12 0 12 ns
Auto refresh to active/auto
refresh command time tRFC 105 105 105 ns
Average periodic refresh interval
(0°C TC +85°C) tREFI 7.8 7.8 7.8 µs
(+85°C < TC +95°C) tREFI 3.9 3.9 3.9 µs
Minimum time clocks remains
ON after CKE asynchronously
drops low tDELAY tIS + tCK +
tIH tIS + tCK +
tIH tIS + tCK +
tIH ns
Notes: 1. For each of the terms above, if not already an integer, round to the next higher i nteg er.
2. AL: Additive Latency.
3. MRS A12 bit defines which active power down exit timing to be applied.
4. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIH(AC) level for a rising signal and VIL(AC) for a falling signal applied to the device u nder test.
5. The figures of Input Waveform Timing 1 and 2 are referenced from the input signal crossing at the
VIH(DC) level for a rising signal and VIL(DC) for a falling signal applied to the device under test.
DQS
/DQS
tDS tDH tDS tDH VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VIL (DC)(max.)
VIL (AC)(max.)
VSS
VREF
CK
/CK
tIS tIH tIS tIH VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VIL (DC)(max.)
VIL (AC)(max.)
VSS
VREF
Input Waveform Timing 1 (tDS, tDH) Input Waveform Timing 2 (tIS, tIH)
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
18
ODT AC Electrical Characteristics (DDR2 SDRAM Component Specification)
Parameter Symbol min. max. Unit Notes
ODT turn-on delay tAOND 2 2 tCK
ODT turn-on
-6E tAON tAC(min) tAC(max) + 700 ps 1
-5C, -4A tAON tAC(min) tAC(max) + 1000 ps 1
ODT turn-on (power down mode) tAONPD tAC(min) + 2000 2tCK + tAC(max) + 1000 ps
ODT turn-off delay tAOFD 2.5 2.5 tCK
ODT turn-off tAOF tAC(min) tAC(max) + 600 ps 2
ODT turn-off (power down mode) tAOFPD tAC(min) + 2000 2.5tCK + tAC(max) + 1000 ps
ODT to power down entry latency tANPD 3 3 tCK
ODT power down exit latency tAXPD 8 8 tCK
Notes: 1. ODT turn on time min is when the device leaves high impedance and ODT resistance begins to turn on.
ODT turn on time max is when the ODT resistance is fully on. Both are measured from tAOND.
2. ODT turn off time min is when the device starts to turn off ODT resistance.
ODT turn off time max is when the bus is in high impedance. Both are measured from tAOFD.
AC Input Test Conditions
Parameter Symbol Value Unit Notes
Input reference voltage VREF 0.5 × VDDQ V 1
Input signal maximum peak to peak swing VSWING(max.) 1.0 V 1
Input signal maximum slew rate SLEW 1.0 V/ns 2, 3
Notes: 1. Input waveform timing is referenced to the input signal crossing through the VREF level applied to the
device under test.
2. The input signal minimum slew rate is to be maintained over the range from VIL(DC) (max.) to VIH(AC)
(min.) for rising edges and the range from VIH(DC) (m in.) to VIL(AC) (max.) for falling edges as shown in
the below figure.
3. AC timings are referenced with input waveforms switching from VIL(AC) to VIH(AC) on the positive
transitions and VIH(AC) to VIL(AC) on the negative transitions.
VSWING(max.)
TR
TF
Start of falling edge input timing Start of rising edge input timing
VIH (DC)(min.)
VIL (AC)(max.)
TF
Falling slew =
VDDQ
VIH (AC)(min.)
VIH (DC)(min.)
VIL (DC)(max.)
VIL (AC)(max.)
VSS
VREF
VIH (AC) min.
VIL (DC)(max.)
TR
Rising slew =
AC Input Test Signal Wave forms
VTT
Measurement point
DQ RT =25
Output Load
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
19
Pin Functions
CK, /CK (input pin)
The CK and the /CK are the master clock inputs. All inputs except DMs, DQSs and DQs are referred to the cross
point of the CK rising edge and the VREF level. When a read operation, DQSs and DQs are referred to the cross
point of the CK and the /CK. When a write operation, DQs are referred to the cross point of the DQS and the VREF
level. DQSs for write operation are referred to the cross point of the CK and the /CK.
/CS (input pin)
When /CS is low, commands and data can be input. When /CS is high, all inputs are ignored. However, internal
operations (bank active, burst operations, etc.) are held.
/RAS, /CAS, and /WE (input pins)
These pins define operating commands (read, write, etc.) depending on the combinations of their voltage levels.
See “Command operation”.
A0 to A13 (input pins)
Row address (AX0 to AX13) i s determined by the A0 to the A13 level at th e cross point of the CK rising edge and the
VREF level in a bank active command cycle. Column address (AY0 to AY9, AY11) is loaded via the A0 to the A9
and A11 at the cross point of the CK rising edge and the VREF level in a read or a write command cycle. This
column address becomes the starting address of a burst operation.
A10 (AP) (input pin)
A10 defines the precharge mode when a precharge command, a read command or a write command is issued. If
A10 = high when a precharge command is issued, all banks are precharged. If A10 = low when a precharge
command is issued, only the bank that is selected by BA1, BA0 is precharged. If A10 = high when read or write
command, auto-precharge function is enabled. While A10 = low, auto-precharge function is disabled.
BA0, BA1 (input pin)
BA0, BA1 are bank select signals (BA). T he memory array is divided into bank 0, bank 1 , bank 2 and bank 3. (See
Bank Select Signal Table)
[Bank Select Signal Table]
BA0 BA1
Bank 0 L L
Bank 1 H L
Bank 2 L H
Bank 3 H H
Remark: H: VIH. L: VIL.
CKE (input pin)
CKE controls power down and self-refresh. The po wer down and the sel f-refresh commands are entered when the
CKE is driven low and exited when it resumes to high.
The CKE level must be k ept for 1 CK cycle at least, that is , if CKE changes at the cross point of the CK risin g edge
and the VREF level with proper setup time tIS, at the next CK rising edge CKE level must be kept with proper hold
time tIH.
DQ, CB (input and output pins)
Data are input to and output from these pins.
DQS (input and output pin)
DQS and /DQS provide the read data strobes (as output) and the write data strobes (as input).
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
20
VDD (power supply pins)
1.8V is applied. (VDD is for the internal circuit.)
VDDSPD (power supply pin)
1.8V is applied (For serial EEPROM).
VSS (power supply pin)
Ground is connected.
/RESET(input pin)
LVCMOS reset input. When /RESET is Low, all registers are reset.
Par_IN (Parity input pin)
Parity bit for the address and control bus.
Err_Out (Error output pin)
Parity error found on the address and co ntrol bus.
Detailed Operation Part and Timing Waveforms
Refer to the EDE5104AGSE, EDE5108AGSE datasheet (E0715E). DM pins of component dev ice fixed to VSS level
on the module board. DIMM /CAS latency = compo nent CL + 1 for registered type.
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
21
Physical Outline
Detail A
0.20 ± 0.15
2.50 ± 0.20
1.00
133.35
(DATUM -A-)
63.00 55.00
AB
1 120
240
121
FULL R
0.80 ± 0.05
Unit: mm
1.27 ± 0.10
3.00
4.00 min
10.00
4.00
17.80
30.00
4.00 max 0.5 min
Component area
(Front)
Component area
(Back)
5.00
Detail B
3.80
1.50 ± 0.10
2.50
4.00
FULL R
(DATUM -A-)
ECA-TS2-0093-01
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
22
CAUTION FOR HANDLING MEMORY MODULES
When handling or inserting memory modules, be sure not to touch any components on the modules, such as
the memory ICs, chip capacitors and chip resistors. It is necessary to avoid undue mechanical stress on
these components to prevent damaging them.
In particular, do not push module cover or drop the modules in order to protect from mechanical defects,
which would be electrical defects.
When re-packing memory modules, be sure the modules are not touching each other.
Modules in contact with other modules may cause excessive mechanical stress, which may damage the
modules.
MDE0202
NOTES FOR CMOS DEVICES
1 PRECAUTION AGAINST ESD FOR MOS DEVICES
Exposing the MOS devices to a strong electric field can cause destruction of the gate
oxide and ultimately degrade the MOS devices operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it, when once
it has occurred. Environmental control must be adequate. When it is dry, humidifier
should be used. It is recommended to avoid using insulators that easily build static
electricity. MOS devices must be stored and transported in an anti-static container,
static shielding bag or conductive material. All test and measurement tools including
work bench and floor should be grounded. The operator should be grounded using
wrist strap. MOS devices must not be touched with bare hands. Similar precautions
need to be taken for PW boards with semiconductor MOS devices on it.
2 HANDLING OF UNUSED INPUT PINS FOR CMOS DEVICES
No connection for CMOS devices input pins can be a cause of malfunction. If no
connection is provided to the input pins, it is possible that an internal input level may be
generated due to noise, etc., hence causing malfunction. CMOS devices behave
differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed
high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected
to V
DD
or GND with a resistor, if it is considered to have a possibility of being an output
pin. The unused pins must be handled in accordance with the related specifications.
3 STATUS BEFORE INITIALIZATION OF MOS DEVICES
Power-on does not necessarily define initial status of MOS devices. Production process
of MOS does not define the initial operation status of the device. Immediately after the
power source is turned ON, the MOS devices with reset function have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or
contents of registers. MOS devices are not initialized until the reset signal is received.
Reset operation must be executed immediately after power-on for MOS devices having
reset function.
CME0107
EBE10RD4AGFA
Data Sheet E0795E20 (Ver. 2.0)
23
µBGA is a registered trademark of Tessera, Inc.
All other trademarks are the intellectual prop erty of their respective owners.
M01E0107
No part of this document may be copied or reproduced in any form or by any means without the prior
written consent of Elpida Memory, Inc.
Elpida Memory, Inc. does not assume any liability for infringement of any intellectual property rights
(including but not limited to patents, copyrights, and circuit layout licenses) of Elpida Memory, Inc. or
third parties by or arising from the use of the products or information listed in this document. No license,
express, implied or otherwise, is granted under any patents, copyrights or other intellectual property
rights of Elpida Memory, Inc. or others.
Descriptions of circuits, software and other related information in this document are provided for
illustrative purposes in semiconductor product operation and application examples. The incorporation of
these circuits, software and information in the design of the customer's equipment shall be done under
the full responsibility of the customer. Elpida Memory, Inc. assumes no responsibility for any losses
incurred by customers or third parties arising from the use of these circuits, software and information.
[Product applications]
Elpida Memory, Inc. makes every attempt to ensure that its products are of high quality and reliability.
However, users are instructed to contact Elpida Memory's sales office before using the product in
aerospace, aeronautics, nuclear power, combustion control, transportation, traffic, safety equipment,
medical equipment for life support, or other such application in which especially high quality and
reliability is demanded or where its failure or malfunction may directly threaten human life or cause risk
of bodily injury.
[Product usage]
Design your application so that the product is used within the ranges and conditions guaranteed by
Elpida Memory, Inc., including the maximum ratings, operating supply voltage range, heat radiation
characteristics, installation conditions and other related characteristics. Elpida Memory, Inc. bears no
responsibility for failure or damage when the product is used beyond the guaranteed ranges and
conditions. Even within the guaranteed ranges and conditions, consider normally foreseeable failure
rates or failure modes in semiconductor devices and employ systemic measures such as fail-safes, so
that the equipment incorporating Elpida Memory, Inc. products does not cause bodily injury, fire or other
consequential damage due to the operation of the Elpida Memory, Inc. product.
[Usage environment]
This product is not designed to be resistant to electromagnetic waves or radiation. This product must be
used in a non-condensing environment.
If you export the products or technology described in this document that are controlled by the Foreign
Exchange and Foreign Trade Law of Japan, you must follow the necessary procedures in accordance
with the relevant laws and regulations of Japan. Also, if you export products/technology controlled by
U.S. export control regulations, or another country's export control laws or regulations, you must follow
the necessary procedures in accordance with such laws or regulations.
If these products/technology are sold, leased, or transferred to a third party, or a third party is granted
license to use these products, that third party must be made aware that they are responsible for
compliance with the relevant laws and regulations.
The information in this document is subject to change without notice. Before using this document, confirm that this is the latest version.