MPC5748G
MPC5748G Microcontroller
Data Sheet
Features
2 x 160 MHz Power Architecture® e200Z4 Dual issue,
32-bit CPU
Single precision floating point operations
8 KB instruction cache and 4 KB data cache
Variable length encoding (VLE) for significant code
density improvements
1 x 80 MHz Power Architecture® e200Z2 Single issue,
32-bit CPU
Using variable length encoding (VLE) for
significant code size footprint reduction
End to end ECC
All bus masters, for example, cores generate single
error correction, double error detection (SECDED)
code for every bus transaction
SECDED covers 64-bit data and 29-bit address
Memory interfaces
6 MB on-chip flash supported with the flash
controller
3 x flash page buffers (3 port flash controller)
768 KB on-chip SRAM across three RAM ports
Clock interfaces
8-40 MHz external crystal (FXOSC)
16 MHz IRC (FIRC)
128 KHz IRC (SIRC)
32 KHz external crystal (SXOSC)
Clock Monitor Unit (CMU)
Frequency modulated phase-locked loop (FMPLL)
Real Time Counter (RTC)
2x System Memory Protection Unit (SMPU) each with
16 region descriptors and 16-byte region granularity
16 Semaphores to manage access to shared resource
Interrupt controller (INTC) capable of routing
interrupts to any CPU
Multiple crossbar switch architecture for concurrent
access to peripherals, flash, and RAM from multiple
bus masters
32-channels eDMA controller with multiple transfer
request sources using DMAMUX
Boot Assist Flash (BAF) supports internal flash
programming via a serial link (LIN / SCI)
Analog
Two analog-to-digital converters (ADC), one 10-bit
and one 12-bit
Three analogue comparators
Cross Trigger Unit to enable synchronization of
ADC conversions with a timer event from the
eMIOS or from the PIT
Communication
Four Deserial Peripheral Interface (DSPI)
Six Serial Peripheral interface (SPI)
18 serial communication interface (LIN) modules
Eight enhanced FlexCAN3 with FD support
Four inter-IC communication interface (IIC)
One USB OTG Controller (USB_0) and One USB
SPH Controller (USB_1) with ULPI Interface.
ENET complex (10/100 Ethernet) that supports
Multi queue with AVB support, 1588, and MII/
RMII
2 x ENET with L2 switch
Secure Digital Hardware Controller (uSDHC)
Dual-channel FlexRay Controller
Audio
3 x Synchronous Audio Interface (SAI)
Fractional clock dividers (FCD) operating in
conjunction with the SAIs
Configurable I/O domains supporting FLEXCAN,
LINFlex, Ethernet, USB, MLB, uSDHC and general
I/O
Supports wake-up from low power modes via the
WKPU controller
On-chip voltage regulator (VREG)
Debug functionality
e200Z2 core:NDI per IEEE-ISTO 5001-2008
Class3+
e200Z4 core(s): NDI per IEEE-ISTO 5001-2008
Class 3+
NXP Semiconductors Document Number MPC5748G
Data Sheet: Technical Data Rev. 6, 11/2018
NXP reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products.
Timer
16 Periodic Interrupt Timers (PITs)
Three System Timer Module (STM)
Four Software WatchDog Timers (SWT)
96 Configurable Enhanced Modular Input Output Subsystem (eMIOS) channels
Device/board boundary Scan testing supported with per Joint Test Action Group (JTAG) of IEEE (IEEE 1149.1) and
1149.7 (cJTAG)
Security
Hardware Security Module (HSMv2)
Password and Device Security (PASS and TDM) supporting advanced censorship and life-cycle management
One Fault Collection and Control Unit (FCCU) to collect faults and issue interrupts
Functional Safety
ISO26262 ASIL compliance
Multiple operating modes
Includes enhanced low power operation
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
2 NXP Semiconductors
Table of Contents
1 Block diagram.................................................................................... 4
2 Family comparison.............................................................................4
3 Ordering parts.....................................................................................9
3.1 Determining valid orderable parts ..........................................9
3.2 Ordering Information ............................................................. 9
4 General............................................................................................... 10
4.1 Absolute maximum ratings..................................................... 10
4.2 Recommended operating conditions....................................... 11
4.3 Voltage regulator electrical characteristics............................. 13
4.4 Voltage monitor electrical characteristics...............................16
4.5 Supply current characteristics................................................. 18
4.6 Electrostatic discharge (ESD) characteristics......................... 21
4.7 Electromagnetic Compatibility (EMC) specifications............ 22
5 I/O parameters....................................................................................22
5.1 AC specifications @ 3.3 V Range...........................................22
5.2 DC electrical specifications @ 3.3V Range............................23
5.3 AC specifications @ 5 V Range..............................................24
5.4 DC electrical specifications @ 5 V Range..............................25
5.5 Reset pad electrical characteristics..........................................26
5.6 PORST electrical specifications..............................................28
6 Peripheral operating requirements and behaviours............................28
6.1 Analog..................................................................................... 28
6.1.1 ADC electrical specifications....................................28
6.1.2 Analog Comparator (CMP) electrical specifications 32
6.2 Clocks and PLL interfaces modules........................................33
6.2.1 Main oscillator electrical characteristics................... 33
6.2.2 32 kHz Oscillator electrical specifications ...............35
6.2.3 16 MHz RC Oscillator electrical specifications........35
6.2.4 128 KHz Internal RC oscillator Electrical
specifications ............................................................ 36
6.2.5 PLL electrical specifications .................................... 36
6.3 Memory interfaces...................................................................37
6.3.1 Flash memory program and erase specifications.......37
6.3.2 Flash memory Array Integrity and Margin Read
specifications............................................................. 38
6.3.3 Flash memory module life specifications..................39
6.3.4 Data retention vs program/erase cycles.....................39
6.3.5 Flash memory AC timing specifications...................40
6.3.6 Flash read wait state and address pipeline control
settings ......................................................................41
6.4 Communication interfaces.......................................................41
6.4.1 DSPI timing...............................................................41
6.4.2 FlexRay electrical specifications...............................47
6.4.2.1 FlexRay timing...................................... 47
6.4.2.2 TxEN......................................................48
6.4.2.3 TxD........................................................49
6.4.2.4 RxD........................................................50
6.4.3 uSDHC specifications............................................... 51
6.4.4 Ethernet switching specifications..............................52
6.4.5 MediaLB (MLB) electrical specifications.................54
6.4.5.1 MLB 3-pin interface DC characteristics54
6.4.5.2 MLB 3-pin interface electrical
specifications......................................... 54
6.4.6 USB electrical specifications.....................................56
6.4.6.1 USB electrical specifications.................56
6.4.6.2 ULPI timing specifications....................56
6.4.7 SAI electrical specifications .....................................58
6.5 Debug specifications............................................................... 60
6.5.1 JTAG interface timing ..............................................60
6.5.2 Nexus timing............................................................. 62
6.5.3 WKPU/NMI timing...................................................64
6.5.4 External interrupt timing (IRQ pin)...........................65
7 Thermal attributes.............................................................................. 65
7.1 Thermal attributes................................................................... 65
8 Dimensions.........................................................................................67
8.1 Obtaining package dimensions ...............................................67
9 Pinouts................................................................................................68
9.1 Package pinouts and signal descriptions................................. 68
10 Reset sequence................................................................................... 68
10.1 Reset sequence duration..........................................................68
10.2 BAF execution duration.......................................................... 68
10.3 Reset sequence description......................................................69
11 Revision History.................................................................................71
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 3
1 Block diagram
4 KB d-cache8 KB i-cache
Nexus 3+SPFP-APU
64-bit AHBE2 E-ECC
160 MHz e200z4
Peripheral
bridge
E2 E-ECC
Flash
160 MHz e200z4
Low power
unit interface
E2 E-ECC64-bit data SMPU
64-bit AHB
E2 E-ECC
Nexus 3+
80 MHz e200z2
Flexray
MLB150
HSM
uSDHC
Ethernet(ENET)
Ethernet Switch
eDMA
HS_USBSPH
System bus masters
System
HS_USBOTG
128 KHz
SIRC
2 x MEMU
WKPU
BAF
FMPLL
RTC/API
4 x SWTs
16 x SEMA4
16 x PIT-RTI
32 KHz
SXOSC
8–40 MHz
FXOSC
Padkeeper
support
Register
protection
MC_CGM,
MC_PCU,
MC_ME,
MC_RGM
STCU
(MBIST/
LBIST)
SIUL
3 x STM
PMC
16 MHz FIRC
DEBUG/
JTAG
FCCU
PASS
SSCM
CMU
TDM
Peripheral clusters
80 ch 10-bit ADC0
(mix int and ext) 64 ch 12-bit ADC1
(mix int and ext) 1 x FlexCAN(PN)
7 x FlexCAN 1x 18 LinFlex
4 x I2C3 x analog
comparator (CMP) 4 x DSPI
6 x SPI 3 x SAI
3 x FCD
3 x eMIOS + BCTU 3-core INTC DMA and
2 x chmux 1 x CRC
3 x SA-PF buffers
6 MB array (inc EEE)
E2 E-ECC
Triple ported
64-bit wide RAM
256 KB array
3xRAM
E2 E-ECC
256 KB array
256 KB array
LPU_CTL
2 x DSMC3 x DSMC
*All FlexCANs optionally
support CAN FD
Figure 1. MPC5748G block diagram
2Family comparison
The following table provides a summary of the different members of the MPC5748G
family and their proposed features. This information is intended to provide an
understanding of the range of functionality offered by this family. For full details of all of
the family derivatives please contact your marketing representative.
Block diagram
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
4 NXP Semiconductors
NOTE
All optional features (Flash memory, RAM, Peripherals) start
with lowest peripheral number (for example: STM_0) or
memory address and end at the highest available peripheral
number or memory address (for example: MPC574xC have 2
STM, ending with STM_1).
Table 1. MPC5748G Family Comparison1
Feature MPC5747C MPC5748C MPC5746G MPC5747G MPC5748G
CPUs e200z4
e200z2
e200z4
e200z2
e200z4
e200z4
e200z2
e200z4
e200z4
e200z2
e200z4
e200z4
e200z2
FPU e200z4 e200z4 e200z4
e200z4
e200z4
e200z4
e200z4
e200z4
Maximum
Operating
Frequency2
160MHz (z4)
80MHz (z2)
160MHz (z4)
80MHz (z2)
160MHz (z4)
160MHz (z4)
80MHz (z2)
160MHz (z4)
160MHz (z4)
80MHz (z2)
160MHz (z4)
160MHz (z4)
80MHz (z2)
Flash memory 4 MB 6 MB 3 MB 4 MB 6 MB
EEPROM support 32 KB to 128 KB emulated 32 KB to 192 KB emulated
RAM 512 KB 768 KB
ECC End to End
SMPU SMPU_0: 12 entry, SMPU_1: 12 entry SMPU_0: 16 entry, SMPU_1: 16 entry
DMA 32 channels
10-bit ADC 48 Standard channels
32 External channels
12-bit ADC 16 Precision channels
16 Standard channels
32 External channels
AnalogComparator 3
BCTU 1
SWT 2 43
STM 2 3
PIT-RTI 16 channels PIT
1 channels RTI
RTC/API Yes
Total Timer I/O496 channels
16-bits
LINFlexD 1 M/S, 15 M 1 M/S, 17 M
FlexCAN 8 with optional CAN FD support
DSPI/SPI 4 x DSPI
6 x SPI
Table continues on the next page...
Family comparison
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 5
Table 1. MPC5748G Family Comparison1 (continued)
Feature MPC5747C MPC5748C MPC5746G MPC5747G MPC5748G
I2C 4
SAI/I2S 3
FXOSC 8 - 40 MHz
SXOSC 32 KHz
FIRC 16 MHz
SIRC 128 KHz
FMPLL Yes
LPU Yes
FlexRay 2.1 (dual
channel)
Yes, 128 MB
MLB150 0 1
USB 2.0 SPH 0 1
USB 2.0 OTG 0 1
SDHC 1
Ethernet (RMII, MII
+ 1588, Muti queue
AVB support)
Up to 2
3 Port L2 Ethernet
Switch
Optional
CRC 1
MEMU 2
STCU 1
HSM-v2 (security) Optional
Censorship Yes
FCCU 1
Safety level Specific functions ASIL-B certifiable
User MBIST Yes
User LBIST Yes
I/O Retention in
Standby
Yes
GPI 17 (176 LQFP-EP), 18 (256 BGA), 18 (324 BGA)
GPIO 129 (176 LQFP-EP), 178 (256 BGA), 246 (324 BGA)
Debug JTAGC,
cJTAG
Nexus Z4 N3+
Z2 N3+
Packages 176 LQFP-EP
256 BGA, 324 BGA
1. Feature set dependent on selected peripheral multiplexing, table shows example. Peripheral availability is package
dependent.
2. Based on 125°C ambient operating temperature and subject to full device characterisation.
3. Additional SWT included when HSM option selected
Family comparison
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
6 NXP Semiconductors
4. Refer device datasheet and reference manual for information on to timer channel configuration and functions.
Table 2. MPC5748G Family Comparison - NVM Memory Map 1
Start Address End Address Flash block RWW MPC5746 MPC5747 MPC5748
0x01000000 0x0103FFFF 256 KB code
Flash block 0
6 available available available
0x01040000 0x0107FFFF 256 KB code
Flash block 1
6 available available available
0x01080000 0x010BFFFF 256 KB code
Flash block 2
6 available available available
0x010C0000 0x010FFFFF 256 KB code
Flash block3
6 available available available
0x01100000 0x0113FFFF 256 KB code
Flash block 4
6 available available available
0x01140000 0x0117FFFF 256 KB code
Flash block 5
6 available available available
0x01180000 0x011BFFFF 256 KB code
Flash block 6
6 available available available
0x011C0000 0x011FFFFF 256 KB code
Flash block 7
6 available available available
0x01200000 0x0123FFFF 256 KB code
Flash block 8
7 available available available
0x01240000 0x0127FFFF 256 KB code
Flash block 9
7 available available available
0x01280000 0x012BFFFF 256 KB code
Flash block 10
7 not available available available
0x012C0000 0x012FFFFF 256 KB code
flash block 11
7 not available available available
0x01300000 0x0133FFFF 256 KB code
flash block 12
7 not available available available
0x01340000 0x0137FFFF 256 KB code
flash block 13
7 not available available available
0x01380000 0x013BFFFF 256 KB code
flash block 14
7 not available not available available
0x013C0000 0x013FFFFF 256 KB code
flash block 15
7 not available not available available
0x01400000 0x0143FFFF 256 KB code
flash block 16
8 not available not available available
0x01440000 0x0147FFFF 256 KB code
flash block 17
8 not available not available available
0x01480000 0x014BFFFF 256 KB code
flash block 18
8 not available not available available
0x14C0000 0x014FFFFF 256 KB code
flash block 19
9 not available not available available
0x01500000 0x0153FFFF 256 KB code
flash block 20
9 not available not available available
0x01540000 0x0157FFFF 256 KB code
flash block 21
9 not available not available available
Family comparison
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 7
Table 3. MPC5748G Family Comparison - NVM Memory Map 2
Start Address End Address Flash block RWW MPC5747C
MPC5748C
MPC5746G
MPC5747G
MPC5748G
0x00F90000 0x00F93FFF 16 KB data Flash 2 available available
0x00F94000 0x00F97FFF 16 KB data Flash 2 available available
0x00F98000 0x00F9BFFF 16 KB data Flash 2 available available
0x00F9C000 0x00F9FFFF 16 KB data Flash 2 available available
0x00FA0000 0x00FA3FFF 16 KB data Flash 3 available available
0x00FA4000 0x00FA7FFF 16 KB data Flash 3 available available
0x00FA8000 0x00FABFFF 16 KB data Flash 3 available available
0x00FAC000 0x00FAFFFF 16 KB data Flash 3 available available
0x00FB0000 0x00FB7FFF 32 KB data Flash 2 not available available
0x00FB8000 0x00FBFFFF 32 KB data flash 3 not available available
0x00FC0000 0x00FC7FFF 32 KB data flash 0 available available
0x00FC8000 0x00FCFFFF 32 KB data flash 0 available available
0x00FD0000 0x00FD7FFF 32 KB data flash 1 available available
0x00FD8000 0x00FDFFFF 32 KB data flash 1 available available
0x00FE0000 0x00FEFFFF 64 KB data flash 0 available available
0x00FF0000 0x00FFFFFF 64 KB data flash 1 available available
Table 4. MPC5748G Family Comparison - RAM Memory Map
Start Address End Address Allocated size [KB] MPC5747C MPC5748C
MPC5746G
MPC5747G
MPC5748G
0x40000000 0x40001FFF 8 available available
0x40002000 0x4000FFFF 56 available available
0x40010000 0x4001FFFF 64 available available
0x40020000 0x4003FFFF 128 available available
0x40040000 0x4007FFFF 256 available available
0x40080000 0x400BFFFF 256 not available available
Family comparison
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
8 NXP Semiconductors
Ordering parts
3.1 Determining valid orderable parts
To determine the orderable part numbers for this device, go to www.nxp.com and
perform a part number search for the following device number: MPC5748G .
3.2 Ordering Information
Qualification Status
Power Architecture
Automotive Platform
Core Version
Flash Size (core dependent)
Product
Optional fields
P PC 57 SK0 MJ
4 8
Temperature spec.
Package Code
Qualification Status
P = Engineering samples
S = Automotive qualified
PC = Power Architecture
Automotive Platform
57 = Power Architecture in 55nm
Core Version
4 = e200z4 Core Version (highest
core version in the case of multiple
cores)
Flash Memory Size
6 = 3 MB
7 = 4 MB
8 = 6 MB
Product Version
C = Body Control Feature Set
G = Gateway Feature Set
Optional fields
S = HSM (Security Module)
Fab and mask version indicator Temperature spec.
C = -40.C to +85.C Ta
V = -40.C to +105.C Ta
M = -40.C to +125.C Ta
R = Tape & Reel (blank if Tray)
R
Package Code
KU = 176 LQFP EP
MJ = 256 MAPBGA
MN = 324 MAPBGA
CPU Frequency
2 = Each z4 operates up to 120
MHz
6 = Each z4 operates up to 160
MHz
Shipping Method
R = Tape and reel
Blank = Tray
6
CPU Frequency
Fab and mask indicator
M
G
Example Code
Blank = Feature not available
F = CAN FD
B = Both HSM and CAN FD
T = HSM and 2nd Ethernet
G = CAN FD and 2nd Ethernet
H = HSM, CAN FD, and 2nd Eternet
Note: Not all part number combinations are available as production product
K=TSMC Fab
#=Version of maskset
0=0N65H
1=1N81M
0A=0N78S
,
3
Ordering parts
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 9
General
4.1 Absolute maximum ratings
NOTE
Functional operating conditions appear in the DC electrical
characteristics. Absolute maximum ratings are stress ratings
only, and functional operation at the maximum values is not
guaranteed. See footnotes in Table 5 for specific conditions
Stress beyond the listed maximum values may affect device
reliability or cause permanent damage to the device.
Table 5. Absolute maximum ratings
Symbol Parameter Conditions1Min Max Unit
VDD_HV_A, VDD_HV_B,
VDD_HV_C23.3 V - 5. 5V input/output supply voltage –0.3 6.0 V
VDD_HV_FLA3, 43.3 V flash supply voltage (when supplying
from an external source in bypass mode)
–0.3 3.63 V
VDD_LP_DEC5Decoupling pin for low power regulators6 –0.3 1.32 V
VDD_HV_ADC1_REF73.3 V / 5.0 V ADC1 high reference voltage –0.3 6 V
VDD_HV_ADC0
VDD_HV_ADC1
3.3 V to 5.5V ADC supply voltage –0.3 6.0 V
VSS_HV_ADC0
VSS_HV_ADC1
3.3V to 5.5V ADC supply ground –0.1 0.1 V
VDD_LV8, 9, 10, 11 Core logic supply voltage –0.3 1.32 V
VINA Voltage on analog pin with respect to
ground (VSS_HV)
–0.3 Min (VDD_HV_x,
VDD_HV_ADCx,
VDD_ADCx_REF)
+0.3
V
VIN Voltage on any digital pin with respect to
ground (VSS_HV)
Relative to
VDD_HV_A,
VDD_HV_B,
VDD_HV_C
–0.3 VDD_HV_x + 0.3 V
IINJPAD Injected input current on any pin during
overload condition
Always –5 5 mA
IINJSUM Absolute sum of all injected input currents
during overload condition
–50 50 mA
Tramp Supply ramp rate 0.5 V / min 100V/ms
TA12 Ambient temperature -40 125 °C
TSTG Storage temperature –55 165 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. VDD_HV_B and VDD_HV_C are common together on the 176 LQFP-EP package.
4
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
10 NXP Semiconductors
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
4. VDD_HV_FLA must be disconnected from ANY power sources when VDD_HV_A = 5V
5. This pin should be decoupled with low ESR 1 µF capacitor.
6. Not available for input voltage, only for decoupling internal regulators
7. 10-bit ADC does not have dedicated reference and its reference is double bonded to 10-bit ADC supply(VDD_HV_ADC0).
8. Allowed 1.45 – 1.5 V for 60 seconds cumulative time at maximum TJ = 150 °C, remaining time as defined in footnotes 10
and 11.
9. Allowed 1.38 – 1.45 V– for 10 hours cumulative time at maximum TJ = 150 °C, remaining time as defined in footnote 11.
10. 1.32 – 1.38 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.326 V at
maximum TJ = 150 °C.
11. If HVD on core supply (VHVD_LV_x) is enabled, it will generate a reset when supply goes above threshold.
12. TJ=150°C. Assumes TA=125°C
Assumes maximum θJA. SeeThermal attributes
4.2 Recommended operating conditions
The following table describes the operating conditions for the device, and for which all
specifications in the data sheet are valid, except where explicitly noted. The device
operating conditions must not be exceeded in order to guarantee proper operation and
reliability. The ranges in this table are design targets and actual data may vary in the
given range.
NOTE
For normal device operations, all supplies must be within
operating range corresponding to the range mentioned in
following tables. This is required even if some of the
features are not used.
If VDD_HV_A is in 5.0V range, VDD_HV_FLA should be
externally supplied using a 3.3V source. If VDD_HV_A is
in 3.3V range, VDD_HV_FLA should be shorted to
VDD_HV_A.
VDD_HV_A, VDD_HV_B and VDD_HV_C are all
independent supplies and can each be set to 3.3V or 5V.
The following tables: 'Recommended operating conditions
(VDD_HV_x = 3.3 V)' and table 'Recommended operating
conditions (VDD_HV_x = 5 V)' specify their ranges when
configured in 3.3V or 5V respectively.
Table 6. Recommended operating conditions (VDD_HV_x = 3.3 V)
Symbol Parameter Conditions1Min2Max Unit
VDD_HV_A
VDD_HV_B
VDD_HV_C
HV IO supply voltage 3.15 3.6 V
VDD_HV_FLA3HV flash supply voltage 3.15 3.6 V
Table continues on the next page...
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 11
Table 6. Recommended operating conditions (VDD_HV_x = 3.3 V) (continued)
Symbol Parameter Conditions1Min2Max Unit
VDD_HV_ADC1_REF HV ADC1 high reference voltage 3.0 5.5 V
VDD_HV_ADC0
VDD_HV_ADC1
HV ADC supply voltage max(VDD_H
V_A,VDD_H
V_B,VDD_H
V_C) - 0.05
3.6 V
VSS_HV_ADC0
VSS_HV_ADC1
HV ADC supply ground -0.1 0.1 V
VDD_LV4Core supply voltage 1.2 1.32 V
VIN1_CMP_REF5, 6Analog Comparator DAC reference voltage 3.15 3.6 V
IINJPAD Injected input current on any pin during
overload condition
-3.0 3.0 mA
TAAmbient temperature under bias fCPU ≤ 160
MHz
–40 125 °C
TJJunction temperature under bias –40 150 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
3. VDD_HV_FLA must be connected to VDD_HV_A when VDD_HV_A = 3.3V
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be
left floating.
5. VIN1_CMP_REF ≤ VDD_HV_A
6. This supply is shorted VDD_HV_A on lower packages.
NOTE
If VDD_HV_A is in 5V range, it is necessary to use internal
Flash supply 3.3V regulator. VDD_HV_FLA should not be
supplied externally and should only have decoupling capacitor.
Table 7. Recommended operating conditions (VDD_HV_x = 5 V)
Symbol Parameter Conditions 1Min2Max Unit
VDD_HV_A
VDD_HV_B
VDD_HV_C
HV IO supply voltage 4.5 5.5 V
VDD_HV_FLA3HV flash supply voltage 3.15 3.6 V
VDD_HV_ADC1_REF HV ADC1 high reference voltage 3.15 5.5 V
VDD_HV_ADC0
VDD_HV_ADC1
HV ADC supply voltage max(VDD_H
V_A,VDD_H
V_B,VDD_H
V_C) - 0.05
5.5 V
VSS_HV_ADC0
VSS_HV_ADC1
HV ADC supply ground -0.1 0.1 V
VDD_LV4Core supply voltage 1.2 1.32 V
Table continues on the next page...
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
12 NXP Semiconductors
Table 7. Recommended operating conditions (VDD_HV_x = 5 V) (continued)
Symbol Parameter Conditions 1Min2Max Unit
VIN1_CMP_REF5Analog Comparator DAC reference voltage 3.15 5.5 V
IINJPAD Injected input current on any pin during
overload condition
-3.0 3.0 mA
TAAmbient temperature under bias fCPU ≤ 160
MHz
–40 125 °C
TJJunction temperature under bias –40 150 °C
1. All voltages are referred to VSS_HV unless otherwise specified
2. Device will be functional down (and electrical specifications as per various datasheet parameters will be guaranteed) to the
point where one of the LVD/HVD resets the device. When voltage drops outside range for an LVD/HVD, device is reset.
3. When VDD_HV is in 5 V range, VDD_HV_FLA cannot be supplied externally.This pin is decoupled with Cflash_reg.
4. VDD_LV supply pins should never be grounded (through a small impedance). If these are not driven, they should only be
left floating
5. This supply is shorted VDD_HV_A on lower packages.
4.3 Voltage regulator electrical characteristics
The voltage regulator is composed of the following blocks:
Choice of generating supply voltage for the core area.
Control of external NPN ballast transistor
Connecting an external 1.25 V (nominal) supply directly without the NPN ballast
Internal generation of the 3.3 V flash supply when device connected in 5V
applications
External bypass of the 3.3 V flash regulator when device connected in 3.3V
applications
Low voltage detector - low threshold (LVD_IO_A_LO) for VDD_HV_IO_A supply
Low voltage detector - high threshold (LVD_IO_A_Hi) for VDD_HV_IO_A supply
Various low voltage detectors (LVD_LV_x)
High voltage detector (HVD_LV_cold) for 1.2 V digital core supply (VDD_LV)
Power on Reset (POR_LV) for 1.25 V digital core supply (VDD_LV)
Power on Reset (POR_HV) for 3.3 V to 5 V supply (VDD_HV_A)
The following bipolar transistors1 are supported, depending on the device performance
requirements. As a minimum the following must be considered when determining the
most appropriate solution to maintain the device under its maximum power dissipation
capability: current, ambient temperature, mounting pad area, duty cycle and frequency for
Idd, collector voltage, etc
1. BCP56, MCP68 and MJD31are guaranteed ballasts.
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 13
VDD_LP_DEC
CLP/ULPREG
CFLASH_REG
VRC_CTRL
VSS_HV
CFP_REG
VDD_HV_BALLAST
DEVICE
FPREG
VDD_HV_FLA
LPPREG
ULPPREG
Flash
voltage
regulator
CBE_FPREG
DD_LV
V
SS_HV
V
VSS_HV
Figure 2. Voltage regulator capacitance connection
Table 8. Voltage regulator electrical specifications
Symbol Parameter Conditions Min Typ Max Unit
Cfp_reg1External decoupling / stability
capacitor
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1.32 2.223 µF
Combined ESR of external
capacitor
0.001 0.03 Ohm
Clp/ulp_reg External decoupling / stability
capacitor for internal low power
regulators
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
0.8 1 1.4 µF
Combined ESR of external
capacitor
0.001 0.1 Ohm
Cbe_fpreg3Capacitor in parallel to base-
emitter
BCP68 and BCP56 3.3 nF
MJD31 4.7
Cflash_reg4External decoupling / stability
capacitor for internal Flash
regulators
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1.32 2.2 3 µF
Combined ESR of external
capacitor
0.001 0.03 Ohm
Table continues on the next page...
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
14 NXP Semiconductors
Table 8. Voltage regulator electrical specifications (continued)
Symbol Parameter Conditions Min Typ Max Unit
CHV_VDD_A VDD_HV_A supply capacitor Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_VDD_B VDD_HV_B supply capacitor5Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_VDD_C VDD_HV_C supply capacitor5Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_ADC0
CHV_ADC1
HV ADC supply decoupling
capacitances
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
1 µF
CHV_ADR6HV ADC SAR reference supply
decoupling capacitances
Min, max values shall be granted
with respect to tolerance, voltage,
temperature, and aging
variations.
0.47 µF
VDD_HV_BALL
AST7FPREG Ballast collector supply
voltage
When collector of NPN ballast is
directly supplied by an on board
supply source (not shared with
VDD_HV_A supply pin) without
any series resistance, that is,
RC_BALLAST less than 0.01 Ohm.
2.25 5.5 V
RC_BALLAST Series resistor on collector of
FPREG ballast
When VDD_HV_BALLAST is
shorted to VDD_HV_A on the
board
0.1 Ohm
tSU Start-up time after main supply
stabilization
Cfp_reg = 3 μF 74 μs
tramp Load current transient Iload from 15% to 55%
Cfp_reg = 3 µF
1.0 µs
1. Split capacitance on each pair VDD_LV pin should sum up to a total value of Cfp_reg
2. Typical values will vary over temperature, voltage, tolerance, drift, but total variation must not exceed minimum and
maximum values.
3. Ceramic X7R or X5R type with capacitance-temperature characteristics +/-15% of -55 degC to +125degC is
recommended. The tolerance +/-20% is acceptable.
4. It is required to minimize the board parasitic inductance from decoupling capacitor to VDD_HV_FLA pin and the routing
inductance should be less than 1nH.
5. 1. For VDD_HV_A, VDD_HV_B, and VDD_HV_C, 1µf on each side of the chip
a. 0.1 µf close to each VDD/VSS pin pair.
b. 10 µf near for each power supply source
c. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation
mode, this amount of capacitance will need to be subtracted from the total capacitance required by the
regulator for e.g., as specified by CFP_REG parameter.
2. For VDD_LV, 0.1uf close to each VDD/VSS pin pair is required. Depending on the the selected regulation mode, this
amount of capacitance will need to be subtracted from the total capacitance required by the regulator for e.g., as
specified by CFP_REG parameter
6. Only applicable to ADC1
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 15
7. In external ballast configuration the following must be ensured during power-up and power-down (Note: If VDD_HV_BALLAST
is supplied from the same source as VDD_HV_A this condition is implicitly met):
During power-up, VDD_HV_BALLAST must have met the min spec of 2.25V before VDD_HV_A reaches the
POR_HV_RISE min of 2.75V.
During power-down, VDD_HV_BALLAST must not drop below the min spec of 2.25V until VDD_HV_A is below
POR_HV_FALL min of 2.7V.
NOTE
For a typical configuration using an external ballast transistor
with separate supply for VDD_HV_A and the ballast collector,
a bulk storage capacitor (as defined in Table 8) is required on
VDD_HV_A close to the device pins to ensure a stable supply
voltage.
Extra care must be taken if the VDD_HV_A supply is also
being used to power the external ballast transistor or the device
is running in internal regulation mode. In these modes, the
inrush current on device Power Up or on exit from Low Power
Modes is significant and may cause the VDD_HV_A voltage to
drop resulting in an LVD reset event. To avoid this, the board
layout should be optimized to reduce common trace resistance
or additional capacitance at the ballast transistor collector (or
VDD_HV_A pins in the case of internal regulation mode) is
required. NXP recommends that customers simulate the
external voltage supply circuitry.
In all circumstances, the voltage on VDD_HV_A must be
maintained within the specified operating range (see
Recommended operating conditions) to prevent LVD events.
4.4 Voltage monitor electrical characteristics
Table 9. Voltage monitor electrical characteristics
Symbol Parameter State Conditions Configuration Threshold Unit
Powe
r Up 1Mas
k
Opt
Reset Type Min Typ Max V
VPOR_LV LV supply
power on
reset detector
Fall Untrimmed Yes No POR 0.930 0.979 1.028 V
Trimmed 0.959 0.979 0.999 V
Rise Untrimmed 0.980 1.029 1.078 V
Trimmed 1.009 1.029 1.049 V
Table continues on the next page...
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
16 NXP Semiconductors
Table 9. Voltage monitor electrical characteristics (continued)
Symbol Parameter State Conditions Configuration Threshold Unit
Powe
r Up 1Mas
k
Opt
Reset Type Min Typ Max V
VHVD_LV_cold LV supply high
voltage
monitoring,
detecting at
the device pin
Fall Untrimmed No Yes Functional Disabled at Start
Trimmed 1.325 1.345 1.375 V
Rise Untrimmed Disabled at Start
Trimmed 1.345 1.365 1.395 V
VLVD_LV_PD2_hot LV supply low
voltage
monitoring,
detecting in
the PD2 core
(hot) area
Fall Untrimmed Yes No POR 1.080 1.120 1.160 V
Trimmed 1.125 1.143 1.160 V
Rise Untrimmed 1.100 1.140 1.180 V
Trimmed 1.145 1.163 1.180 V
VLVD_LV_PD1_hot LV supply low
voltage
monitoring,
detecting in
the PD1 core
(hot) area
Fall Untrimmed Yes No POR 1.080 1.120 1.160 V
Trimmed 1.114 1.137 1.160 V
Rise Untrimmed 1.100 1.140 1.180 V
Trimmed 1.134 1.157 1.180 V
VLVD_LV_PD0_hot LV supply low
voltage
monitoring,
detecting in
the PD0 core
(hot) area
Fall Untrimmed Yes No POR 1.080 1.120 1.160 V
Trimmed 1.114 1.137 1.160 V
Rise Untrimmed 1.100 1.140 1.180 V
Trimmed 1.134 1.157 1.180 V
VPOR_HV HV supply
power on
reset detector
Fall Untrimmed Yes No POR 2.700 2.850 3.000 V
Rise Untrimmed 2.750 2.900 3.050 V
VLVD_IO_A_LO, 2HV IO_A
supply low
voltage
monitoring -
low range
Fall Untrimmed Yes No POR 2.750 2.923 3.095 V
Trimmed 2.978 3.039 3.100 V
Rise Untrimmed 2.780 2.953 3.125 V
Trimmed 3.008 3.069 3.130 V
VLVD_IO_A_HI2HV IO_A
supply low
voltage
monitoring -
high range
Fall Trimmed No Yes Functional Disabled at Start
4.060 4.151 4.240 V
Rise Trimmed Disabled at Start
4.115 4.201 4.3 V
VLVD_LV_PD2_cold LV supply low
voltage
monitoring,
detecting at
the device pin
Fall Untrimmed No Yes Functional Disabled at Start
Trimmed 1.14 1.158 1.175 V
Rise Untrimmed Disabled at Start
Trimmed 1.16 1.178 1.195 V
1. All monitors that are active at power-up will gate the power up recovery and prevent exit from POWERUP phase until the
minimum level is crossed. These monitors can in some cases be masked during normal device operation, but when active
will always generate a POR reset.
2. There is no voltage monitoring on the VDD_HV_ADC0, VDD_HV_ADC1, VDD_HV_B and VDD_HV_C I/O segments. For applications
requiring monitoring of these segments, either connect these to VDD_HV_A at the PCB level or monitor externally.
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 17
4.5 Supply current characteristics
Current consumption data is given in the following table. These specifications are design
targets and are subject to change per device characterization.
NOTE
The ballast must be chosen in accordance with the ballast
transistor supplier operating conditions and recommendations.
Table 10. Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
IDD_FULL
2, 3
RUN Full Mode
Operating current
LV supply + HV supply + HV Flash supply +
2 x HV ADC supplies
Ta = 85°C
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 160MHz
219 292 mA
Ta = 105°C 230 328 mA
Ta = 125 °C 249 400 mA
IDD_GWY
5, 6
RUN Gateway
Mode Operating
current
LV supply + HV supply + HV Flash supply + 2 x HV
ADC supplies
Ta = 85°C
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 160MHz
183 260 mA
Ta = 105°C 196 294 mA
Ta = 125°C4 215 348 mA
IDD_BODY_1
7, 8
RUN Body Mode
Profile Operating
current
LV supply + HV supply + HV Flash supply + 2 x HV
ADC supplies
Ta = 85 °C
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 120MHz
149 223 mA
Ta = 105 °C 158 270 mA
Ta = 125°C 4 175 310 mA
IDD_BODY_29, 10 RUN Body Mode
Profile Operating
current
LV supply + HV supply + HV Flash supply + 2 x HV
ADC supplies
Ta = 85 °C
VDD_LV = 1.25 V
VDD_HV_A = 5.5V
SYS_CLK = 80MHz
105 174 mA
Table continues on the next page...
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
18 NXP Semiconductors
Table 10. Current consumption characteristics (continued)
Symbol Parameter Conditions1Min Typ Max Unit
Ta = 105 °C 114 206 mA
Ta = 125 °C 4 131 277 mA
IDD_STOP STOP mode
Operating current
Ta = 25 °C
VDD_LV = 1.25 V
11 mA
Ta = 85 °C
VDD_LV = 1.25 V
19.8 105
Ta = 105 °C
VDD_LV = 1.25 V
29 145
Ta = 125 °C 4
VDD_LV = 1.25 V
45 160
IDD_HV_ADC_REF11, 12 ADC REF
Operating current
Ta = 25 °C
2 ADCs operating at 80 MHz
VDD_HV_ADC_REF = 3.6 V
200 400 µA
Ta = 125 °C 4
2 ADCs operating at 80 MHz
VDD_HV_ADC_REF = 5.5 V
200 400
IDD_HV_ADCx12 ADC HV
Operating current
Ta = 25 °C
ADC operating at 80 MHz
VDD_HV_ADC = 3.6 V
1 2 mA
Ta = 125 °C 4
ADC operating at 80 MHz
VDD_HV_ADC = 5.5 V
1.2 2
IDD_HV_FLASH Flash Operating
current during
read access
Ta = 125 °C 4
3.3 V supplies
x MHz frequency
40 45 mA
1. The content of the Conditions column identifies the components that draw the specific current.
2. ALL Modules enabled at maximum frequency: 2 x e200Z4 @160 MHz, e200Z2 at 80 MHz, Platform @160MHz, DMA
(SRAM to SRAM), all SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled), HSM
reading from flash at regular intervals (500 pll clock cycles), ENET0 transmitting, MLB transmitting, FlexRay transmitting,
USB-SPH transmitting (USB-OTG only clocked), 2 x I2C transmitting (rest clocked), 1 x SAI transmitting (rest clocked),
ADC0 converting using BCTU triggers triggered through PIT (other ADC clocked), RTC running, 3 x STM running, 2 x
DSPI transmitting (rest clocked), 2 x SPI transmitting (rest clocked), 4 x CAN state machines working(rest clocked), 9 x
LINFlexD transmitting (rest clocked), 1 x eMIOS clocked (used OPWFMB mode) (Others clock gated), SDHC,3 x CMP
only clocked, FIRC, SIRC, FXOSC, SXOSC, PLL running. All others modules clock gated if not specifically mentioned. I/O
supply current excluded.
3. Recommended Transistors:MJD31 @ 85°C, 105°C and 125°C.
4. Tj=150°C. Assumes Ta=125°C
Assumes maximum θJA. SeeThermal attributes
5. Enabled Modules in Gateway mode: 2 x e200Z4 @160 MHz (Instruction and Data cache enabled), Platform @160MHz,
e200Z2 at 80 MHz(Instruction cache enabled), all SRAMs accessed in parallel, Flash access(prefetch is disabled while
buffers are enabled), HSM reading from flash at regular intervals(500 pll clock cycles), ENET0 transmitting, MLB
transmitting, FlexRay transmitting, USB-SPH Transmitting, USB-OTG clocked, 2 x I2C transmitting, (2 x I2C clock gated),
1 x SAI transmitting (2 x SAI clock gated), ADC0 converting in continuous mode (ADC1 clock gated), PIT clocked, RTC
clocked, 3 x STM clocked, 2 x DSPI transmitting(Other DSPS clock gated), 2 x SPI transmitting(Other SPIs clock gated), 4
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 19
x FlexCAN state machines clocked(other FLEXCAN clock gated), 4 x LINFlexD transmitting (Other clock gated), 1x eMIOS
clocked(used OPWFMB mode) (Others clock gated), FIRC, SIRC, FXOSC, SXOSC, PLL running, BCTU, DMAMUX,
ACMP clock gated. All others modules clock gated if not specifically mentioned. I/O supply current excluded
6. Recommended Transistors:MJD31@85°C, 105°C and 125°C.
7. Enabled Modules in Body mode enabled at maximum frequency: 2 x e200Z4 @120Mhz(Instruction and Data cache
enabled),Platform@120MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled),
HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU
triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others
DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD
transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC,
SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock
gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
8. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, BCP56, BCP68 or MJD31@105°C and MJD31@125°C.
9. Enabled Modules in Body mode enabled at maximum frequency:2 x e200Z4 @80Mhz(Instruction and Data cache
enabled),Platform@80MHz, SRAMs accessed in parallel, Flash access(prefetch is disabled while buffers are enabled),
HSM reading from flash at regular intervals(500 pll clock cycles), DMA (SRAM to SRAM), ADC0 converting using BCTU
triggers which are triggered through PIT(ADC1 clocked), RTC clocked, 3 x STM clocked, 2 x DSPI transmitting(others
DSPIs clocked), 2 x SPI transmitting(others clocked), 4 x FlexCAN state machines working(others clocked), 9xLINFlexD
transmitting (others clocked), 1xeMIOS operational (used OPWFMB mode) (others clocked), FIRC, SIRC, FXOSC,
SXOSC, PLL running, MEMU, FCCU, SIUL, SDHC,CMP clocked, e200Z2, ENET, MLB, SAI, I2C, FlexRay, USB clock
gated. All others modules clock gated if not specifically mentioned I/O supply current excluded
10. Recommended Transistors:BCP56, BCP68 or MJD31@85°C, 105°C and 125°C
11. Internal structures hold the input voltage less than VDD_HV_ADC_REF + 1.0 V on all pads powered by VDDA supplies, if the
maximum injection current specification is met (3 mA for all pins) and VDDA is within the operating voltage specifications.
12. This value is the total current for two ADCs.Each ADC might consume upto 2mA at max.
Table 11. Low Power Unit (LPU) Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
LPU_RUN with 256K RAM,
but only one RAM
being accessed
Ta = 25 °C
SYS_CLK = 16MHz
ADC0 = OFF, SPI0 = OFF, LIN0 = OFF, CAN0 = OFF
8.9 mA
Ta = 25 °C
SYS_CLK = 16MHz
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON
10.2
Ta = 85 °C 12.5 22
Ta = 105 °C 14.5 24
Ta = 125 °C , 2
SYS_CLK = 16MHz
ADC0 = ON, SPI0 = ON, LIN0 = ON, CAN0 = ON
16 26
LPU_STOP with 256K RAM Ta = 25 °C 0.535 mA
Ta = 85 °C 0.72 6
Ta = 105 °C 1 8
Ta = 125 °C 2 1.6 10.6
1. The content of the Conditions column identifies the components that draw the specific current.
2. Assuming Ta=Tj, as the device is in static (fully clock gated) mode. Assumes maximum θJA of 2s2p board. SeeThermal
attributes
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
20 NXP Semiconductors
Table 12. STANDBY Current consumption characteristics
Symbol Parameter Conditions1Min Typ Max Unit
STANDBY0 STANDBY with
8K RAM
Ta = 25 °C 71 µA
Ta = 85 °C 175 800
Ta = 105 °C 338 1725
Ta = 125 °C 750 2775
STANDBY1 STANDBY with
64K RAM
Ta = 25 °C 72 µA
Ta = 85 °C 176 815
Ta = 105 °C 350 1775
Ta = 125 °C 825 3000
STANDBY2 STANDBY with
128K RAM
Ta = 25 °C 75 µA
Ta = 85 °C 182 830
Ta = 105 °C 366 1825
Ta = 125 °C 900 3250
STANDBY3 STANDBY with
256K RAM
Ta = 25 °C 80 µA
Ta = 85 °C 197 860
Ta = 105 °C 400 1875
Ta = 125 °C 975 3500
STANDBY3 FIRC ON Ta = 25 °C 500 µA
1. The content of the Conditions column identifies the components that draw the specific current.
NOTE
For the Precision channel Analog inputs, SIUL2_MSCRn[PUS]
must be configured to 0 before entering STANDBY. An
increase in current would be observed when
SIUL2_MSCRn[PUS] is configured to be 1, irrespective of the
state of IBE or PUE. The current numbers would increase
irrespective of whether the pad is pulled low/high externally.
4.6 Electrostatic discharge (ESD) characteristics
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n + 1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
NOTE
A device will be defined as a failure if after exposure to ESD
pulses the device no longer meets the device specification
requirements. Complete DC parametric and functional testing
shall be performed per applicable device specification at room
General
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 21
temperature followed by hot temperature, unless specified
otherwise in the device specification.
Table 13. ESD ratings
Symbol Parameter Conditions1Class Max value2Unit
VESD(HBM) Electrostatic discharge
(Human Body Model)
TA = 25 °C
conforming to AEC-
Q100-002
H1C 2000 V
VESD(CDM) Electrostatic discharge
(Charged Device Model)
TA = 25 °C
conforming to AEC-
Q100-011
C3A 500
750 (corners)
V
1. All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.
2. Data based on characterization results, not tested in production.
4.7 Electromagnetic Compatibility (EMC) specifications
EMC measurements to IC-level IEC standards are available from NXP on request.
I/O parameters
5.1 AC specifications @ 3.3 V Range
Table 14. Functional Pad AC Specifications @ 3.3 V Range
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load
(pF)
SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
pad_sr_hv
(output)
6/6 1.9/1.5 25 11
2.5/2.5 8.25/7.5 0.8/0.6 3.25/3 50
6.4/5 19.5/19.5 3.5/2.5 12/12 200
2.2/2.5 8/8 0.55/0.5 3.9/3.5 25 10
0.090 1.1 0.035 1.1 asymmetry2
2.9/3.5 12.5/11 1/1 7/6 50
11/8 35/31 7.7/5 25/21 200
8.3/9.6 45/45 4/3.5 25/25 50 01
13.5/15 65/65 6.3/6.2 30/30 200
13/13 75/75 6.8/6 40/40 50 003
21/22 100/100 11/11 51/51 200
pad_i_hv/
pad_sr_hv
2/2 0.5/0.5 0.5 NA
5
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
22 NXP Semiconductors
Table 14. Functional Pad AC Specifications @ 3.3 V Range
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load
(pF)
SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
(input)4
1. As measured from 50% of core side input to Voh/Vol of the output
2. This row specifies the min and max asymmetry between both the prop delay and the edge rates for a given PVT and 25pF
load. Required for the Flexray spec.
3. Slew rate control modes
4. Input slope = 2ns
NOTE
The specification given above is based on simulation data into
an ideal lumped capacitor. Customer should use IBIS models
for their specific board/loading conditions to simulate the
expected signal integrity and edge rates of their system.
NOTE
The specification given above is measured between 20% / 80%.
5.2 DC electrical specifications @ 3.3V Range
Table 15. DC electrical specifications @ 3.3V Range
Symbol Parameter Value Unit
Min Max
VDD LV (core) Supply Voltage 1.08 1.32 V
VDD_HV_x I/O Supply Voltage 3.15 3.63 V
Vih (pad_i_hv) pad_i_hv Input Buffer High Voltage 0.72*VDD_HV_
x
VDD_HV_x +
0.3
V
Vil (pad_i_hv) pad_i_hv Input Buffer Low Voltage VSS_LV - 0.3 0.45*VDD_HV_
x
V
Vhys (pad_i_hv) pad_i_hv Input Buffer Hysteresis 0.11*VDD_HV_
x
V
Vih_hys CMOS Input Buffer High Voltage (with hysteresis
enabled)
0.67*VDD_HV_
x
VDD_HV_x +
0.3
V
Vil_hys CMOS Input Buffer Low Voltage (with hysteresis
enabled)
VSS_LV - 0.3 0.35*VDD_HV_
x
V
Vih CMOS Input Buffer High Voltage (with hysteresis
disabled)
0.57 *
VDD_HV_x
VDD_HV_x +
0.3
V
Vil CMOS Input Buffer Low Voltage (with hysteresis
disabled)
VSS_LV - 0.3 0.4 *
VDD_HV_x
V
Vhys CMOS Input Buffer Hysteresis 0.09 *
VDD_HV_x
V
Table continues on the next page...
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 23
Table 15. DC electrical specifications @ 3.3V Range (continued)
Symbol Parameter Value Unit
Min Max
Pull_IIH (pad_i_hv) Weak Pullup Current Low 15 µA
Pull_IIH (pad_i_hv) Weak Pullup Current High 55 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current2 Low 28 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current1 High 85 µA
Pull_Ioh Weak Pullup Current315 50 µA
Pull_Iol Weak Pulldown Current415 50 µA
Iinact_d Digital Pad Input Leakage Current (weak pull inactive) -2.5 2.5 µA
Voh Output High Voltage50.8 *VDD_HV_x V
Vol Output Low Voltage6
Output Low Voltage7
0.2 *VDD_HV_x
0.1 *VDD_HV_x
V
Ioh_f Full drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 11) 18 70 mA
Iol_f Full drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 11) 21 120 mA
Ioh_h Half drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 10) 9 35 mA
Iol_h Half drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 10) 10.5 60 mA
1. Measured when pad=0.69*VDD_HV_x
2. Measured when pad=0.49*VDD_HV_x
3. Measured when pad = 0 V
4. Measured when pad = VDD_HV_x
5. Measured when pad is sourcing 2 mA
6. Measured when pad is sinking 2 mA
7. Measured when pad is sinking 1.5 mA
8. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.
5.3 AC specifications @ 5 V Range
Table 16. Functional Pad AC Specifications @ 5 V Range
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load (pF) SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
pad_sr_hv
(output)
4.5/4.5 1.3/1.2 25 11
6/6 2.5/2 50
13/13 9/9 200
5.25/5.25 3/2 25 10
9/8 5/4 50
22/22 18/16 200
27/27 13/13 50 012
40/40 24/24 200
40/40 24/24 50 002
Table continues on the next page...
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
24 NXP Semiconductors
Table 16. Functional Pad AC Specifications @ 5 V Range (continued)
Symbol Prop. Delay (ns)1
L>H/H>L
Rise/Fall Edge (ns) Drive Load (pF) SIUL2_MSCRn[SRC 1:0]
Min Max Min Max MSB,LSB
65/65 40/40 200
pad_i_hv/
pad_sr_hv
(input)
1.5/1.5 0.5/0.5 0.5 NA
1. As measured from 50% of core side input to Voh/Vol of the output
2. Slew rate control modes
NOTE
The above specification is based on simulation data into an
ideal lumped capacitor. Customer should use IBIS models for
their specific board/loading conditions to simulate the expected
signal integrity and edge rates of their system.
NOTE
The above specification is measured between 20% / 80%.
5.4 DC electrical specifications @ 5 V Range
Table 17. DC electrical specifications @ 5 V Range
Symbol Parameter Value Unit
Min Max
VDD_LV LV (core) Supply Voltage 1.08 1.32 V
VDD_HV_x I/O Supply Voltage 4.5 5.5 V
Vih (pad_i_hv) pad_i_hv Input Buffer High Voltage 0.7*VDD_HV_x VDD_HV_x +
0.3
V
Vil (pad_i_hv) pad_i_hv Input Buffer Low Voltage VSS_LV- 0.3 0.45*VDD_HV_
x
V
Vhys (pad_i_hv) pad_i_hv Input Buffer Hysteresis 0.09*VDD_HV_
x
V
Vih CMOS Input Buffer High Voltage (with hysteresis
disabled)
0.55 *
VDD_HV_x
VDD_HV_x +
0.3
V
Vil CMOS Input Buffer Low Voltage (with hysteresis
disabled)
VSS_LV - 0.3 0.4 *
VDD_HV_x
V
Vhys CMOS Input Buffer Hysteresis 0.09 *
VDD_HV_x
V
Vih_hys CMOS Input Buffer High Voltage (with hysteresis
enabled)
0.65*
VDD_HV_x
VDD_HV_x +
0.3
V
Table continues on the next page...
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 25
Table 17. DC electrical specifications @ 5 V Range (continued)
Symbol Parameter Value Unit
Min Max
Vil_hys CMOS Input Buffer Low Voltage (with hysteresis
enabled)
VSS_LV - 0.3 0.35*VDD_HV_
x
V
Pull_IIH (pad_i_hv) Weak Pullup Current Low 23 µA
Pull_IIH (pad_i_hv) Weak Pullup Current High 82 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current2 Low 40 µA
Pull_IIL (pad_i_hv) Weak Pulldown Current1 High 130 µA
Pull_Ioh Weak Pullup Current330 80 µA
Pull_Iol Weak Pulldown Current430 80 µA
Iinact_d Digital Pad Input Leakage Current (weak pull inactive) -2.5 2.5 µA
Voh Output High Voltage50.8 *
VDD_HV_x
V
Vol Output Low Voltage6
Output Low Voltage7
0.2 *
VDD_HV_x
0.1*VDD_HV_x
V
Ioh_f Full drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 11) 38 132 mA
Iol_f Full drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 11) 48 220 mA
Ioh_h Half drive Ioh8 (SIUL2_MSCRn[SRC 1:0]= 10) 19 66 mA
Iol_h Half drive Iol8 (SIUL2_MSCRn[SRC 1:0]= 10) 24 110 mA
1. Measured when pad=0.69*VDD_HV_x
2. Measured when pad=0.49*VDD_HV_x
3. Measured when pad = 0 V
4. Measured when pad = VDD_HV_x
5. Measured when pad is sourcing 2 mA
6. Measured when pad is sinking 2 mA
7. Measured when pad is sinking 1.5 mA
8. Ioh/Iol is derived from spice simulations. These values are NOT guaranteed by test.
5.5 Reset pad electrical characteristics
The device implements a dedicated bidirectional RESET pin.
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
26 NXP Semiconductors
VIL
VDD_HV_IOx
device reset forced by PORST
VDDMIN
PORST
VIH
device start-up phase
A
A
A
A
Figure 3. Start-up reset requirements
VPORST
VIL
VIH
VDD_HV_IO
filtered by
hysteresis filtered by
lowpass filter
WFRST
WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
A
Figure 4. Noise filtering on reset signal
Table 18. Functional reset pad electrical specifications
Symbol Parameter Conditions Value Unit
Min Typ Max
VIH Input high level TTL (Schmitt Trigger) 2.0 VDD_HV_A
+0.4
V
VIL Input low level TTL (Schmitt Trigger) –0.4 0.8 V
VHYS Input hysteresis TTL (Schmitt Trigger) 300 mV
Table continues on the next page...
I/O parameters
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 27
Table 18. Functional reset pad electrical specifications (continued)
Symbol Parameter Conditions Value Unit
Min Typ Max
VDD_POR Minimum supply for strong pull-down
activation
1.2 V
IOL_R Strong pull-down current 1Device under power-on reset
VDD_HV_IO= V DD_POR
VOL = 0.35*VDD_HV_IO
0.2 mA
Device under power-on reset
3.0 V < VDD_HV_IO < 5.5 V
VOL = 0.35*VDD_HV_IO
11 mA
WFRST RESET input filtered pulse 500 ns
WNFRST RESET input not filtered pulse 2000 ns
|IWPU| Weak pull-up current absolute value RESET pin VIN = VDD 23 82 µA
1. Strong pull-down is active on PHASE0, PHASE1, PHASE2, and the beginning of PHASE3 for RESET.
5.6 PORST electrical specifications
Table 19. PORST electrical specifications
Symbol Parameter Value Unit
Min Typ Max
WFPORST PORST input filtered pulse 200 ns
WNFPORST PORST input not filtered pulse 1000 ns
VIH Input high level 0.65 x VDD_HV_A V
VIL Input low level 0.35 x VDD_HV_A V
Peripheral operating requirements and behaviours
Analog
6.1.1 ADC electrical specifications
The device provides a 12-bit Successive Approximation Register (SAR) Analog-to-
Digital Converter.
6
6.1
Peripheral operating requirements and behaviours
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
28 NXP Semiconductors
(2
)
(1)
(3
)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer
curve
code out
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 4089 4090 4091 4092 4093 4094 4095
1 LSB ideal =(VrefH-VrefL)/ 4096 =
3.3V/ 4096 = 0.806 mV
Total Unadjusted Error
TUE = +/- 6 LSB = +/- 4.84mV
Figure 5. ADC characteristics and error definitions
Analog
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 29
6.1.1.1 Input equivalent circuit and ADC conversion characteristics
RF
CF
RSRLRSW1
CP2
VDD_IO
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RSSource Impedance
RFFilter Resistance
CFFilter Capacitance
RLCurrent Limiter Resistance
RSW1 Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CPPin Capacitance (two contributions, CP1 and CP2)
CSSampling Capacitance
CP1
RAD
Channel
Selection
VACS
Figure 6. Input equivalent circuit
NOTE
The ADC performance specifications are not guaranteed if two
ADCs simultaneously sample the same shared channel.
Table 20. ADC conversion characteristics (for 12-bit)
Symbol Parameter Conditions Min Typ1Max Unit
fCK ADC Clock frequency (depends on
ADC configuration) (The duty cycle
depends on AD_CK2 frequency)
15.2 80 80 MHz
fsSampling frequency 80 MHz 1.00 MHz
tsample Sample time380 MHz@ 100 ohm source
impedance
250 ns
tconv Conversion time480 MHz 700 ns
ttotal_conv Total Conversion time tsample +
tconv (for standard and extended
channels)
80 MHz 1.55 µs
Total Conversion time tsample +
tconv (for precision channels)
1
CSADC input sampling capacitance 3 5 pF
CP16ADC input pin capacitance 1 5 pF
CP26ADC input pin capacitance 2 0.8 pF
RSW16Internal resistance of analog
source
VREF range = 4.5 to 5.5 V 0.3
VREF range = 3.15 to 3.6 V 875 Ω
Table continues on the next page...
Analog
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
30 NXP Semiconductors
Table 20. ADC conversion characteristics (for 12-bit) (continued)
Symbol Parameter Conditions Min Typ1Max Unit
RAD6Internal resistance of analog
source
825 Ω
INL Integral non-linearity (precise
channel)
–2 2 LSB
INL Integral non-linearity (standard
channel)
–3 3 LSB
DNL Differential non-linearity –1 1 LSB
OFS Offset error –6 6 LSB
GNE Gain error –4 4 LSB
ADC Analog Pad
(pad going to one
ADC)
Max leakage (precision channel) 150 °C 250 nA
Max leakage (standard channel) 150 °C 2500 nA
Max leakage (standard channel) 105 °C TA 5 250 nA
Max positive/negative injection –5 5 mA
TUEprecision channels Total unadjusted error for precision
channels
Without current injection –6 +/-4 6 LSB
With current injection +/-5 LSB
TUEstandard/extended
channels
Total unadjusted error for standard/
extended channels
Without current injection –8 +/-6 8 LSB
With current injection7+/-8 LSB
trecovery STOP mode to Run mode recovery
time
< 1 µs
1. Active ADC input, VinA < [min(ADC_VrefH, ADC_ADV, VDD_HV_IOx)]. VDD_HV_IOx refers to I/O segment supply
voltage. Violation of this condition would lead to degradation of ADC performance. Please refer to Table: 'Absolute
maximum ratings' to avoid damage. Refer to Table: 'Recommended operating conditions (VDD_HV_x = 3.3 V)' for required
relation between IO_supply_A,B,C and ADC_Supply.
2. The internally generated clock (known as AD_clk or ADCK) could be same as the peripheral clock or half of the peripheral
clock based on register configuration in the ADC.
3. During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tsample. After the end of the
sample time tsample, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock tsample depend on programming.
4. This parameter does not include the sample time tsample, but only the time for determining the digital result and the time to
load the result register with the conversion result.
5. Apart from tsample and tconv, few cycles are used up in ADC digital interface and hence the overall throughput from the
ADC is lower.
6. See Figure 2.
7. Current injection condition for ADC channels is defined for an inactive ADC channel (on which conversion is NOT being
performed), and this occurs when voltage on the ADC pin exceeds the I/O supply or ground. However, absolute maximum
voltage spec on pad input (VINA, see Table: Absolute maximum ratings) must be honored to meet TUE spec quoted here
NOTE
The ADC input pins sit across all three I/O segments,
VDD_HV_A, VDD_HV_B and VDD_HV_C.
Analog
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 31
6.1.2 Analog Comparator (CMP) electrical specifications
Table 21. Comparator and 6-bit DAC electrical specifications
Symbol Description Min. Typ. Max. Unit
IDDHS Supply current, High-speed mode (EN=1, PMODE=1) 250 μA
IDDLS Supply current, low-speed mode (EN=1, PMODE=0) 5 11 μA
VAIN Analog input voltage VSS VIN1_CMP_RE
F
V
VAIO Analog input offset voltage 1-42 42 mV
VHAnalog comparator hysteresis 2
CR0[HYSTCTR] = 00
CR0[HYSTCTR] = 01
CR0[HYSTCTR] = 10
CR0[HYSTCTR] = 11
1
20
40
60
25
50
70
105
mV
mV
mV
mV
tDHS Propagation Delay, High Speed Mode (Full Swing) 1, 3 250 ns
tDLS Propagation Delay, Low power Mode (Full Swing) 1, 3 5 21 μs
Analog comparator initialization delay, High speed
mode4 4 μs
Analog comparator initialization delay, Low speed
mode 4 100 μs
IDAC6b 6-bit DAC current adder (when enabled)
3.3V Reference Voltage 6 9 μA
5V Reference Voltage 10 16 μA
INL 6-bit DAC integral non-linearity –0.5 0.5 LSB5
DNL 6-bit DAC differential non-linearity –0.8 0.8 LSB
1. Measured with hysteresis mode of 00
2. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD_HV_A-0.6V
3. Full swing = VIH, VIL
4. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.
5. 1 LSB = Vreference/64
Analog
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
32 NXP Semiconductors
Clocks and PLL interfaces modules
6.2.1 Main oscillator electrical characteristics
This device provides a driver for oscillator in pierce configuration with amplitude
control. Controlling the amplitude allows a more sinusoidal oscillation, reducing in this
way the EMI. Other benefits arises by reducing the power consumption. This Loop
Controlled Pierce (LCP mode) requires good practices to reduce the stray capacitance of
traces between crystal and MCU.
An operation in Full Swing Pierce (FSP mode), implemented by an inverter is also
available in case of parasitic capacitances and cannot be reduced by using crystal with
high equivalent series resistance. For this mode, a special care needs to be taken
regarding the serial resistance used to avoid the crystal overdrive.
Other two modes called External (EXT Wave) and disable (OFF mode) are provided. For
EXT Wave, the drive is disabled and an external source of clock within CMOS level
based in analog oscillator supply can be used. When OFF, EXTAL is pulled down by 240
Kohms resistor and the feedback resistor remains active connecting XTAL through
EXTAL by 1M resistor.
6.2
Clocks and PLL interfaces modules
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 33
Figure 7. Oscillator connections scheme
Table 22. Main oscillator electrical characteristics
Symbol Parameter Mode Conditions Min Typ Max Unit
fXOSCHS Oscillator
frequency
FSP/LCP 8 40 MHz
gmXOSCHS Driver
Transconduct
ance
LCP 23 mA/V
FSP 33
VXOSCHS Oscillation
Amplitude
LCP 8 MHz 1.0 VPP
16 MHz 1.0
40 MHz 0.8
TXOSCHSSU Startup time FSP/LCP 8 MHz 2 ms
16 MHz 1
40 MHz 0.5
Oscillator
Analog Circuit
supply current
FSP 8 MHz 2.2 mA
16 MHz 2.2
40 MHz 3.2
Table continues on the next page...
Clocks and PLL interfaces modules
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
34 NXP Semiconductors
Table 22. Main oscillator electrical characteristics (continued)
Symbol Parameter Mode Conditions Min Typ Max Unit
LCP 8 MHz 141 uA
16 MHz 252
40 MHz 518
VIH Input High
level CMOS
Schmitt trigger
EXT Wave Oscillator
supply=3.3
1.95 V
VIL Input low level
CMOS
Schmitt trigger
EXT Wave Oscillator
supply=3.3
1.25 V
6.2.2 32 kHz Oscillator electrical specifications
Table 23. 32 kHz oscillator electrical specifications
Symbol Parameter Condition Min Typ Max Unit
fosc_lo Oscillator crystal
or resonator
frequency
32 40 KHz
tcst Crystal Start-up
Time1, 22 s
1. This parameter is characterized before qualification rather than 100% tested.
2. Proper PC board layout procedures must be followed to achieve specifications.
6.2.3 16 MHz RC Oscillator electrical specifications
Table 24. 16 MHz RC Oscillator electrical specifications
Symbol Parameter Conditions Value Unit
Min Typ Max
FTarget IRC target frequency 16 MHz
PTA IRC frequency variation after trimming -5 5 %
Tstartup Startup time 1.5 us
TSTJIT Cycle to cycle jitter 1.5 %
TLTJIT Long term jitter 0.2 %
NOTE
The above start up time of 1 us is equivalent to 16 cycles of 16
MHz.
Clocks and PLL interfaces modules
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 35
6.2.4 128 KHz Internal RC oscillator Electrical specifications
Table 25. 128 KHz Internal RC oscillator electrical specifications
Symbol Parameter Condition Min Typ Max Unit
Foscu1Oscillator
frequency
Calibrated 119 128 136.5 KHz
Temperature
dependence
600 ppm/C
Supply
dependence
18 %/V
Supply current Clock running 2.75 µA
Clock stopped 200 nA
1. Vdd=1.2 V, 1.32V, Ta=-40 C, 125 C
6.2.5 PLL electrical specifications
Table 26. PLL electrical specifications
Parameter Min Typ Max Unit Comments
Input Frequency 8 40 MHz
VCO Frequency Range 600 1280 MHz
Duty Cycle at pllclkout 48% 52% This specification is guaranteed
at PLL IP boundary
Period Jitter See Table 27 ps NON SSCG mode
TIE See Table 27 at 960 M Integrated over 1MHz
offset not valid in SSCG mode
Modulation Depth (Center Spread) +/- 0.25% +/- 3.0%
Modulation Frequency 32 KHz
Lock Time 60 µs Calibration mode
Table 27. Jitter calculation
Type of jitter Jitter due to
Supply
Noise (ps)
JSN1
Jitter due to
Fractional Mode
(ps) JSDM2
Jitter due to
Fractional Mode
JSSCG (ps) 3
1 Sigma
Random
Jitter JRJ
(ps) 4
Total Period Jitter (ps)
Period Jitter 60 ps 3% of pllclkout1,2 Modulation depth 0.1% of
pllclkout1,2
+/-(JSN+JSDM+JSSCG+N[4]
×JRJ)
Long Term Jitter
(Integer Mode)
40 +/-(N x JRJ)
Long Term jitter
(Fractional Mode)
100 +/-(N x JRJ)
1. This jitter component is due to self noise generated due to bond wire inductances on different PLL supplies. The jitter value
is valid for inductor value of 5nH or less each on VDD_LV and VSS_LV.
Clocks and PLL interfaces modules
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
36 NXP Semiconductors
2. This jitter component is added when the PLL is working in the fractional mode.
3. This jitter component is added when the PLL is working in the Spread Spectrum Mode. Else it is 0.
4. The value of N is dependent on the accuracy requirement of the application. See Percentage of sample exceeding
specified value of jitter table
Table 28. Percentage of sample exceeding specified value of jitter
N Percentage of samples exceeding specified value of jitter
(%)
1 31.73
2 4.55
3 0.27
4 6.30 × 1e-03
5 5.63 × 1e-05
6 2.00 × 1e-07
7 2.82 × 1e-10
Memory interfaces
6.3.1 Flash memory program and erase specifications
NOTE
All timing, voltage, and current numbers specified in this
section are defined for a single embedded flash memory within
an SoC, and represent average currents for given supplies and
operations.
Table 29 shows the estimated Program/Erase times.
Table 29. Flash memory program and erase specifications
Symbol Characteristic1Typ2Factory
Programming3, 4Field Update Unit
Initial
Max
Initial
Max, Full
Temp
Typical
End of
Life5
Lifetime Max6
20°C ≤TA
≤30°C
-40°C ≤TJ
≤150°C
-40°C ≤TJ
≤150°C
≤ 1,000
cycles
≤ 250,000
cycles
tdwpgm Doubleword (64 bits) program time 43 100 150 55 500 μs
tppgm Page (256 bits) program time 73 200 300 108 500 μs
tqppgm Quad-page (1024 bits) program
time
268 800 1,200 396 2,000 μs
t16kers 16 KB Block erase time 168 290 320 250 1,000 ms
t16kpgm 16 KB Block program time 34 45 50 40 1,000 ms
Table continues on the next page...
6.3
Memory interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 37
Table 29. Flash memory program and erase specifications (continued)
Symbol Characteristic1Typ2Factory
Programming3, 4Field Update Unit
Initial
Max
Initial
Max, Full
Temp
Typical
End of
Life5
Lifetime Max6
20°C ≤TA
≤30°C
-40°C ≤TJ
≤150°C
-40°C ≤TJ
≤150°C
≤ 1,000
cycles
≤ 250,000
cycles
t32kers 32 KB Block erase time 217 360 390 310 1,200 ms
t32kpgm 32 KB Block program time 69 100 110 90 1,200 ms
t64kers 64 KB Block erase time 315 490 590 420 1,600 ms
t64kpgm 64 KB Block program time 138 180 210 170 1,600 ms
t256kers 256 KB Block erase time 884 1,520 2,030 1,080 4,000 ms
t256kpgm 256 KB Block program time 552 720 880 650 4,000 ms
1. Program times are actual hardware programming times and do not include software overhead. Block program times
assume quad-page programming.
2. Typical program and erase times represent the median performance and assume nominal supply values and operation at
25 °C. Typical program and erase times may be used for throughput calculations.
3. Conditions: ≤ 150 cycles, nominal voltage.
4. Plant Programing times provide guidance for timeout limits used in the factory.
5. Typical End of Life program and erase times represent the median performance and assume nominal supply values.
Typical End of Life program and erase values may be used for throughput calculations.
6. Conditions: -40°C ≤ TJ ≤ 150°C, full spec voltage.
6.3.2 Flash memory Array Integrity and Margin Read specifications
Table 30. Flash memory Array Integrity and Margin Read specifications
Symbol Characteristic Min Typical Max Units
tai16kseq Array Integrity time for sequential sequence on 16 KB block. 512 x
Tperiod x
Nread
tai32kseq Array Integrity time for sequential sequence on 32 KB block. 1024 x
Tperiod x
Nread
tai64kseq Array Integrity time for sequential sequence on 64 KB block. 2048 x
Tperiod x
Nread
tai256kseq Array Integrity time for sequential sequence on 256 KB block. 8192 x
Tperiod x
Nread
tmr16kseq Margin Read time for sequential sequence on 16 KB block. 73.81 110.7 μs
tmr32kseq Margin Read time for sequential sequence on 32 KB block. 128.43 192.6 μs
tmr64kseq Margin Read time for sequential sequence on 64 KB block. 237.65 356.5 μs
tmr256kseq Margin Read time for sequential sequence on 256 KB block. 893.01 1,339.5 μs
Memory interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
38 NXP Semiconductors
6.3.3 Flash memory module life specifications
Table 31. Flash memory module life specifications
Symbol Characteristic Conditions Min Typical Units
Array P/E
cycles
Number of program/erase cycles per block
for 16 KB, 32 KB and 64 KB blocks.
250,000 P/E
cycles
Number of program/erase cycles per block
for 256 KB blocks.
1,000 250,000 P/E
cycles
Data
retention
Minimum data retention. Blocks with 0 - 1,000 P/E
cycles.
50 Years
Blocks with 100,000 P/E
cycles.
20 Years
Blocks with 250,000 P/E
cycles.
10 Years
6.3.4 Data retention vs program/erase cycles
Graphically, Data Retention versus Program/Erase Cycles can be represented by the
following figure. The spec window represents qualified limits. The extrapolated dotted
line demonstrates technology capability, however is beyond the qualification limits.
Memory interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 39
6.3.5 Flash memory AC timing specifications
Table 32. Flash memory AC timing specifications
Symbol Characteristic Min Typical Max Units
tpsus Time from setting the MCR-PSUS bit until MCR-DONE bit is set
to a 1.
9.4
plus four
system
clock
periods
11.5
plus four
system
clock
periods
μs
tesus Time from setting the MCR-ESUS bit until MCR-DONE bit is set
to a 1.
16
plus four
system
clock
periods
20.8
plus four
system
clock
periods
μs
tres Time from clearing the MCR-ESUS or PSUS bit with EHV = 1
until DONE goes low.
100 ns
tdone Time from 0 to 1 transition on the MCR-EHV bit initiating a
program/erase until the MCR-DONE bit is cleared.
5 ns
tdones Time from 1 to 0 transition on the MCR-EHV bit aborting a
program/erase until the MCR-DONE bit is set to a 1.
16
plus four
system
clock
periods
20.8
plus four
system
clock
periods
μs
tdrcv Time to recover once exiting low power mode. 16
plus seven
system
clock
periods.
45
plus seven
system
clock
periods
μs
taistart Time from 0 to 1 transition of UT0-AIE initiating a Margin Read
or Array Integrity until the UT0-AID bit is cleared. This time also
applies to the resuming from a suspend or breakpoint by
clearing AISUS or clearing NAIBP
5 ns
taistop Time from 1 to 0 transition of UT0-AIE initiating an Array
Integrity abort until the UT0-AID bit is set. This time also applies
to the UT0-AISUS to UT0-AID setting in the event of a Array
Integrity suspend request.
80
plus fifteen
system
clock
periods
ns
tmrstop Time from 1 to 0 transition of UT0-AIE initiating a Margin Read
abort until the UT0-AID bit is set. This time also applies to the
UT0-AISUS to UT0-AID setting in the event of a Margin Read
suspend request.
10.36
plus four
system
clock
periods
20.42
plus four
system
clock
periods
μs
Memory interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
40 NXP Semiconductors
6.3.6 Flash read wait state and address pipeline control settings
The following table describes the recommended RWSC and APC settings at various
operating frequencies based on specified intrinsic flash access times of the flash module
controller array at 125 °C.
Table 33. Flash Read Wait State and Address Pipeline Control Combinations
Flash frequency RWSC setting APC setting
0 MHz < fFlash <= 33 MHz 0 0
33 MHz < fFlash <= 100 MHz 2 1
100 MHz < fFlash <= 133 MHz 3 1
133 MHz < fFlash <= 160 MHz 4 1
Communication interfaces
6.4.1 DSPI timing
Table 34. DSPI electrical specifications
No Symbol Parameter Conditions High Speed Mode1low Speed mode Unit
Min Max Min Max
1 tSCK DSPI cycle
time
Master 25 50 ns
Slave (MTFE = 0) 40 60
2 tCSC PCS to SCK
delay
16 ns
3 tASC After SCK
delay
16 ns
4 tSDC SCK duty
cycle
tSCK/2 - 10 tSCK/2 + 10 ns
5 tASlave access
time
SS active to SOUT
valid
40 ns
6 tDIS Slave SOUT
disable time SS inactive to SOUT
High-Z or invalid
10 ns
7 tPCSC PCSx to
PCSS time
13 ns
8 tPASC PCSS to
PCSx time
13 ns
9 tSUI Data setup
time for
inputs
Master (MTFE = 0) NA 20 ns
Slave 2 2
Master (MTFE = 1,
CPHA = 0)
15 82
Table continues on the next page...
6.4
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 41
Table 34. DSPI electrical specifications (continued)
No Symbol Parameter Conditions High Speed Mode1low Speed mode Unit
Min Max Min Max
Master (MTFE = 1,
CPHA = 1)
15 20
10 tHI Data hold
time for
inputs
Master (MTFE = 0) NA –5 ns
Slave 4 4
Master (MTFE = 1,
CPHA = 0)
0 112
Master (MTFE = 1,
CPHA = 1)
0 -5
11 tSUO Data valid
(after SCK
edge)
Master (MTFE = 0) NA 4 ns
Slave 15 23
Master (MTFE = 1,
CPHA = 0)
4 162
Master (MTFE = 1,
CPHA = 1)
4 4
12 tHO Data hold
time for
outputs
Master (MTFE = 0) NA –2 ns
Slave 4 6
Master (MTFE = 1,
CPHA = 0)
-2 102
Master (MTFE = 1,
CPHA = 1)
–2 –2
1. Only one {SIN,SOUT and SCK} group per DSPI/SPI will support high frequency mode. See Table 3.
2. SMPL_PTR should be set to 1
NOTE
Restriction For High Speed modes
DSPI2, DSPI3, SPI1 and SPI2 will support 40MHz Master
mode SCK
DSPI2, DSPI3, SPI1 and SPI2 will support 25MHz Slave
SCK frequency
Only one {SIN,SOUT and SCK} group per DSPI/SPI will
support high frequency mode. See Table 36.
For Master mode MTFE will be 1 for high speed mode
For high speed slaves, their master have to be in MTFE=1
mode or should be able to support 15ns tSUO delay
NOTE
For numbers shown in the following figures, see Table 34
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
42 NXP Semiconductors
Table 35. Continuous SCK timing
Spec Characteristics Pad Drive/Load Value
Min Max
tSCK SCK cycle timing strong/50 pF 100 ns -
- PCS valid after SCK strong/50 pF - 15 ns
- PCS valid after SCK strong/50 pF -4 ns -
Table 36. DSPI high speed mode I/Os
DSPI High speed SCK High speed SIN High speed SOUT
DSPI2 GPIO[78] GPIO[76] GPIO[77]
DSPI3 GPIO[100] GPIO[101] GPIO[98]
SPI1 GPIO[173] GPIO[175] GPIO[176]
SPI2 GPIO[79] GPIO[110] GPIO[111]
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
PCSx
SCK Output
4
9
12
1
11
10
4
SCK Output
(CPOL=0)
(CPOL=1)
3
2
Figure 8. DSPI classic SPI timing — master, CPHA = 0
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 43
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
PCSx
9
(CPOL=0)
(CPOL=1)
Figure 9. DSPI classic SPI timing — master, CPHA = 1
Figure 10. DSPI classic SPI timing — slave, CPHA = 0
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
44 NXP Semiconductors
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Figure 11. DSPI classic SPI timing — slave, CPHA = 1
PCSx
3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL=0)
(CPOL=1)
Figure 12. DSPI modified transfer format timing — master, CPHA = 0
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 45
PCSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL=0)
(CPOL=1)
Figure 13. DSPI modified transfer format timing — master, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL=0)
(CPOL=1)
12
Figure 14. DSPI modified transfer format timing – slave, CPHA = 0
Communication interfaces
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
46 NXP Semiconductors
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL=0)
(CPOL=1)
Figure 15. DSPI modified transfer format timing — slave, CPHA = 1
PCSx
78
PCSS
Figure 16. DSPI PCS strobe (PCSS) timing
FlexRay electrical specifications
6.4.2.1 FlexRay timing
This section provides the FlexRay Interface timing characteristics for the input and output
signals. It should be noted that these are recommended numbers as per the FlexRay EPL
v3.0 specification, and subject to change per the final timing analysis of the device.
6.4.2
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 47
6.4.2.2 TxEN
dCCTxENRISE
dCCTxENFALL
20 %
80 %
TxEN
Figure 17. TxEN signal
Table 37. TxEN output characteristics1
Name Description Min Max Unit
dCCTxENRISE25 Rise time of TxEN signal at CC 9 ns
dCCTxENFALL25 Fall time of TxEN signal at CC 9 ns
dCCTxEN01 Sum of delay between Clk to Q of the last FF and the final
output buffer, rising edge
25 ns
dCCTxEN10 Sum of delay between Clk to Q of the last FF and the final
output buffer, falling edge
25 ns
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 °C / 150 °C, TxEN pin load maximum 25 pF
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
48 NXP Semiconductors
dCCTxEN10 dCCTxEN01
TxEN
PE_Clk
Figure 18. TxEN signal propagation delays
6.4.2.3 TxD
dCCTxD50%
TxD
dCCTxDFALL dCCTxDRISE
20 %
50 %
80 %
Figure 19. TxD Signal
Table 38. TxD output characteristics
Name Description1Min Max Unit
dCCTxAsym Asymmetry of sending CC @ 25 pF load (=dCCTxD50% - 100
ns)
–2.45 2.45 ns
dCCTxDRISE25+dCCTx
DFALL25
Sum of Rise and Fall time of TxD signal at the output 92ns
Table continues on the next page...
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 49
Table 38. TxD output characteristics (continued)
Name Description1Min Max Unit
dCCTxD01 Sum of delay between Clk to Q of the last FF and the final
output buffer, rising edge
25 ns
dCCTxD10 Sum of delay between Clk to Q of the last FF and the final
output buffer, falling edge
25 ns
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 °C / 150 °C, TxD pin load maximum 25 pF.
2. For 3.3 V ± 10% operation, this specification is 10 ns.
dCCTxD10 dCCTxD01
TxD
PE_Clk*
*FlexRay Protocol Engine Clock
Figure 20. TxD Signal propagation delays
6.4.2.4 RxD Table 39. RxD input characteristic
Name Description1Min Max Unit
C_CCRxD Input capacitance on
RxD pin
7 pF
uCCLogic_1 Threshold for detecting
logic high
35 70 %
uCCLogic_0 Threshold for detecting
logic low
30 65 %
dCCRxD01 Sum of delay from
actual input to the D
input of the first FF,
rising edge
10 ns
dCCRxD10 Sum of delay from
actual input to the D
input of the first FF,
falling edge
10 ns
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
50 NXP Semiconductors
1. All parameters specified for VDD_HV_IOx = 3.3 V -5%, +±10%, TJ = –40 oC / 150 oC.
6.4.3 uSDHC specifications
Table 40. uSDHC switching specifications
Num Symbol Description Min. Max. Unit
Card input clock
SD1 fpp Clock frequency (Identification mode) 0 400 kHz
fpp Clock frequency (SD\SDIO full speed) 0 25 MHz
fpp Clock frequency (SD\SDIO high speed) 0 40 MHz
fpp Clock frequency (MMC full speed) 0 20 MHz
fOD Clock frequency (MMC full speed) 0 40 MHz
SD2 tWL Clock low time 7 ns
SD3 tWH Clock high time 7 ns
SD4 tTLH Clock rise time 3 ns
SD5 tTHL Clock fall time 3 ns
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD6 tOD SDHC output delay (output valid) -5 6.5 ns
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)
SD7 tISU SDHC input setup time 5 ns
SD8 tIH SDHC input hold time 0 ns
SD2SD3 SD1
SD6
SD8
SD7
SDHC_CLK
Output SDHC_CMD
Output SDHC_DAT[3:0]
Input SDHC_CMD
Input SDHC_DAT[3:0]
Figure 21. uSDHC timing
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 51
6.4.4 Ethernet switching specifications
The following timing specs are defined at the chip I/O pin and must be translated
appropriately to arrive at timing specs/constraints for the physical interface.
6.4.4.1 MII signal switching specifications
The following timing specs meet the requirements for MII style interfaces for a range of
transceiver devices.
NOTE
ENET0 supports the following xMII interfaces: MII, MII_Lite
and RMII. ENET1 supports the following xMII interfaces:
MII_Lite.
NOTE
It is only possible to use ENET0 and ENET1 simultaneously
when both are configured for MII_Lite.
NOTE
In certain pinout configurations ENET1 MII-Lite signals can be
across multiple VDD_HV_A/B/C domains. If these
configuration are used, VDD_HV IO domains need to be at the
same voltage (for example: 3.3V)
Table 41. MII signal switching specifications
Symbol Description Min. Max. Unit
RXCLK frequency 25 MHz
MII1 RXCLK pulse width high 35% 65% RXCLK
period
MII2 RXCLK pulse width low 35% 65% RXCLK
period
MII3 RXD[3:0], RXDV, RXER to RXCLK setup 5 ns
MII4 RXCLK to RXD[3:0], RXDV, RXER hold 5 ns
TXCLK frequency 25 MHz
MII5 TXCLK pulse width high 35% 65% TXCLK
period
MII6 TXCLK pulse width low 35% 65% TXCLK
period
MII7 TXCLK to TXD[3:0], TXEN, TXER invalid 2 ns
MII8 TXCLK to TXD[3:0], TXEN, TXER valid 25 ns
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
52 NXP Semiconductors
MII7MII8
Valid data
Valid data
Valid data
MII6 MII5
TXCLK (input)
TXD[n:0]
TXEN
TXER
Figure 22. RMII/MII transmit signal timing diagram
MII2 MII1
MII4MII3
Valid data
Valid data
Valid data
RXCLK (input)
RXD[n:0]
RXDV
RXER
Figure 23. RMII/MII receive signal timing diagram
6.4.4.2 RMII signal switching specifications
The following timing specs meet the requirements for RMII style interfaces for a range of
transceiver devices.
Table 42. RMII signal switching specifications
Num Description Min. Max. Unit
EXTAL frequency (RMII input clock RMII_CLK) 50 MHz
RMII1 RMII_CLK pulse width high 35% 65% RMII_CLK
period
RMII2 RMII_CLK pulse width low 35% 65% RMII_CLK
period
RMII3 RXD[1:0], CRS_DV, RXER to RMII_CLK setup 4 ns
RMII4 RMII_CLK to RXD[1:0], CRS_DV, RXER hold 2 ns
RMII7 RMII_CLK to TXD[1:0], TXEN invalid 4 ns
RMII8 RMII_CLK to TXD[1:0], TXEN valid 15 ns
FlexRay electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 53
Connecting two MPC5748G MCUs via ENET without a PHY
To connect two MPC5748G MCUs for an application together through ENET without a
PHY, the following steps should be followed:
1. MCU #1 ENET_0 should be connected to MCU #2 ENET_0
2. MCU #1 ENET_1 should be connected to MCU #2 ENET_1
This ensures conformity to ENET set-up and hold times. Note that the MPC5748G
datasheet quotes worst case set-up and hold times when connecting MCU #1 ENET_0 to
MCU #2 ENET_1.
MediaLB (MLB) electrical specifications
6.4.5.1 MLB 3-pin interface DC characteristics
The section lists the MLB 3-pin interface electrical characteristics.
Table 43. MediaLB 3-Pin Interface Electrical DC Specifications
Parameter Symbol Test Conditions Min Max Unit
Maximum input voltage 3.6 V
Low level input threshold VIL 0.7 V
High level input threshold VIH See Note11.8 V
Low level output threshold VOL IOL = –6 mA 0.4 V
High level output threshold VOH IOH = –6 mA 2.0 V
Input leakage current IL 0 < Vin < VDD ±10 μA
1. Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be evaluated
and assumed by the customer.
6.4.5.2 MLB 3-pin interface electrical specifications
This section describes the timing electrical information of the MLB module.
6.4.5
MediaLB (MLB) electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
54 NXP Semiconductors
Figure 24. MediaLB 3-Pin Timing
Ground = 0.0 V; Load Capacitance = 60 pF, input transition= 1 ns ; MediaLB speed =
256/512 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold
as listed below; unless otherwise noted.
Table 44. MLB 3-Pin 256/512 Fs Timing Parameters
Parameter Symbol Min Max Unit Comment
MLBCLK operating frequency fmck 11.264 25.6 MHz 256xFs at 44.0 kHz,
512xFs at 50.0 kHz
MLBCLK rise time tmckr 3 ns VIL to VIH
MLBCLK fall time tmckf 3 ns VIH to VIL
MLBCLK low time1tmckl 30
14
ns 256xFs
512xFs
MLBCLK high time tmckh 30
14
ns 256xFs
512xFs
MLBSIG/MLBDAT receiver input setup to
MLBCLK falling
tdsmcf 1 ns
MLBSIG/MLBDAT receiver input hold from
MLBCLK low
tdhmcf tmcfdz ns
MLBSIG/MLBDAT output valid from
MLBCLK low
tmcfdz 0 tmckl ns 2
Bus output hold from MLBCLK low tmdzh 4 ns 2
1. MLBCLK low/high time includes the pluse width variation.
2. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the
maximum load capacitance listed.
MediaLB (MLB) electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 55
Ground = 0.0 V; Load Capacitance = 40 pF, input transition= 1 ns; MediaLB speed =
1024 Fs; Fs = 48 kHz; all timing parameters specified from the valid voltage threshold as
listed below; unless otherwise noted.
Table 45. MLB 3-Pin 1024 Fs Timing Parameters
Parameter Symbol Min Max Unit Comment
MLBCLK Operating Frequency1fmck 45.056
-
-
51.2
MHz
MHz
1024 x fs at 44.0 kHz
1024 x fs at 50.0 kHz
MLBCLK rise time fmckr 1 ns VIL to VIH
MLBCLK fall time fmckf 1 ns VIH to VIL
MLBCLK low time tmckl 6.1 ns 2
MLBCLK high time tmckh 9.3 ns 2
MLBSIG/MLBDAT receiver input
setup to MLBCLK falling
tdsmcf 1 ns
MLBSIG/MLBDAT receiver input hold
from MLBCLK low
tdhmcf tmcfdz ns
MLBSIG/MLBDAT output valid from
MLBCLK low
tmcfdz 0 tmckl ns 3
Bus Hold from MLBCLK low tmdzh 2 ns 3
1. The controller can shut off MLBCLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a
runt pulse can occur on MLBCLK.
2. MLBCLK low/high time includes the pluse width variation.
3. The MediaLB driver can release the MLBDAT/MLBSIG line as soon as MLBCLK is low; however, the logic state of the final
driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the
maximum load capacitance listed.
USB electrical specifications
6.4.6.1 USB electrical specifications
The USB electricals for the USB On-the-Go module conform to the standards
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date
standards, visit http://www.usb.org.
6.4.6.2 ULPI timing specifications
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin
Interface. Control and data timing requirements for the ULPI pins are given in the
following table. These timings apply to synchronous mode only. All timings are
measured with respect to the clock as seen at the USB_CLKIN pin.
6.4.6
USB electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
56 NXP Semiconductors
Table 46. ULPI timing specifications
Num Description Min. Typ. Max. Unit
USB_CLKIN
operating
frequency
60 MHz
USB_CLKIN duty
cycle
50 %
U1 USB_CLKIN clock
period
16.67 ns
U2 Input setup (control
and data)
5 ns
U3 Input hold (control
and data)
1 ns
U4 Output valid
(control and data)
9.5 ns
U5 Output hold (control
and data)
1 ns
U1
U2 U3
U4 U5
USB_CLKIN
ULPI_DIR/ULPI_NXT
(control input)
ULPI_DATAn (input)
ULPI_STP
(control output)
ULPI_DATAn (output)
Figure 25. ULPI timing diagram
USB electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 57
6.4.7 SAI electrical specifications
All timing requirements are specified relative to the clock period or to the minimum
allowed clock period of a device
Table 47. Master mode SAI Timing
no Parameter Value Unit
Min Max
Operating Voltage 2.7 3.6 V
S1 SAI_MCLK cycle time 40 - ns
S2 SAI_MCLK pulse width high/low 45% 55% MCLK
period
S3 SAI_BCLK cycle time 80 - BCLK
period
S4 SAI_BCLK pulse width high/low 45% 55% ns
S5 SAI_BCLK to SAI_FS output valid - 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 - ns
S7 SAI_BCLK to SAI_TXD valid - 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 - ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 28 - ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 - ns
USB electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
58 NXP Semiconductors
Figure 26. Master mode SAI Timing
Table 48. Slave mode SAI Timing
No Parameter Value Unit
Min Max
Operating Voltage 2.7 3.6 V
S11 SAI_BCLK cycle time (input) 80 - ns
S12 SAI_BCLK pulse width high/low (input) 45% 55% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 - ns
S14 SAI_FS input hold after SAI_BCLK 2 - ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid - 28 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 - ns
S17 SAI_RXD setup before SAI_BCLK 10 - ns
S18 SAI_RXD hold after SAI_BCLK 2 - ns
USB electrical specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 59
Figure 27. Slave mode SAI Timing
Debug specifications
6.5.1 JTAG interface timing
Table 49. JTAG pin AC electrical characteristics 1
# Symbol Characteristic Min Max Unit
1 tJCYC TCK Cycle Time 262.5 ns
2 tJDC TCK Clock Pulse Width 40 60 %
3 tTCKRISE TCK Rise and Fall Times (40% - 70%) 3 ns
4 tTMSS, tTDIS TMS, TDI Data Setup Time 5 ns
5 tTMSH, tTDIH TMS, TDI Data Hold Time 5 ns
6 tTDOV TCK Low to TDO Data Valid 203ns
7 tTDOI TCK Low to TDO Data Invalid 0 ns
8 tTDOHZ TCK Low to TDO High Impedance 15 ns
11 tBSDV TCK Falling Edge to Output Valid 6004ns
12 tBSDVZ TCK Falling Edge to Output Valid out of High
Impedance
600 ns
13 tBSDHZ TCK Falling Edge to Output High Impedance 600 ns
14 tBSDST Boundary Scan Input Valid to TCK Rising Edge 15 ns
15 tBSDHT TCK Rising Edge to Boundary Scan Input Invalid 15 ns
1. These specifications apply to JTAG boundary scan only.
2. This timing applies to TDI, TDO, TMS pins, however, actual frequency is limited by pad type for EXTEST instructions.
Refer to pad specification for allowed transition frequency
3. Timing includes TCK pad delay, clock tree delay, logic delay and TDO output pad delay.
4. Applies to all pins, limited by pad slew rate. Refer to IO delay and transition specification and add 20 ns for JTAG delay.
6.5
Debug specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
60 NXP Semiconductors
TCK
1
2
2
3
3
Figure 28. JTAG test clock input timing
TCK
4
5
6
78
TMS, TDI
TDO
Figure 29. JTAG test access port timing
Debug specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 61
TCK
Output
Signals
Input
Signals
Output
Signals
11
12
13
14
15
Figure 30. JTAG boundary scan timing
6.5.2 Nexus timing
Table 50. Nexus debug port timing 1
No. Symbol Parameter Condition
s
Min Max Unit
1 tMCYC MCKO Cycle Time 15.6 ns
2 tMDC MCKO Duty Cycle 40 60 %
3 tMDOV MCKO Low to MDO, MSEO, EVTO Data Valid2 –0.1 0.25 tMCYC
4 tEVTIPW EVTI Pulse Width 4 tTCYC
5 tEVTOPW EVTO Pulse Width 1 tMCYC
6 tTCYC TCK Cycle Time3 62.5 ns
7 tTDC TCK Duty Cycle 40 60 %
8 tNTDIS,
tNTMSS
TDI, TMS Data Setup Time 8 ns
Table continues on the next page...
Debug specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
62 NXP Semiconductors
Table 50. Nexus debug port timing 1 (continued)
No. Symbol Parameter Condition
s
Min Max Unit
9 tNTDIH,
tNTMSH
TDI, TMS Data Hold Time 5 ns
10 tJOV TCK Low to TDO/RDY Data Valid 0 25 ns
1. JTAG specifications in this table apply when used for debug functionality. All Nexus timing relative to MCKO is measured
from 50% of MCKO and 50% of the respective signal.
2. For all Nexus modes except DDR mode, MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
3. The system clock frequency needs to be four times faster than the TCK frequency.
1
2
MCKO
MDO
MSEO
EVTO
Output Data Valid
3
5
Figure 31. Nexus output timing
EVTI 4
Figure 32. Nexus EVTI Input Pulse Width
Debug specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 63
TDO/RDY
8
9
TMS, TDI
10
TCK
6
7
Figure 33. Nexus TDI, TMS, TDO timing
6.5.3 WKPU/NMI timing
Table 51. WKPU/NMI glitch filter
No. Symbol Parameter Min Typ Max Unit
1 WFNMI NMI pulse width that is rejected 20 ns
2 WNFNMID NMI pulse width that is passed 400 ns
Debug specifications
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
64 NXP Semiconductors
6.5.4 External interrupt timing (IRQ pin)
Table 52. External interrupt timing specifications
No. Symbol Parameter Conditions Min Max Unit
1 tIPWL IRQ pulse width low 3 tCYC
2 tIPWH IRQ pulse width high 3 tCYC
3 tICYC IRQ edge to edge time 6 tCYC
These values applies when IRQ pins are configured for rising edge or falling edge events,
but not both.
IRQ
1
2
3
Figure 34. External interrupt timing
Thermal attributes
7.1 Thermal attributes
Board
type Symbol Description 176LQFP Unit Notes
Single-layer
(1s)
RθJA Thermal resistance, junction to ambient (natural
convection)
45.5 °C/W 1, 2
Four-layer
(2s2p)
RθJA Thermal resistance, junction to ambient (natural
convection)
23.1 °C/W 1, 2, 3
Single-layer
(1s)
RθJMA Thermal resistance, junction to ambient (200 ft./min.
air speed)
34.8 °C/W 1,3
Four-layer
(2s2p)
RθJMA Thermal resistance, junction to ambient (200 ft./min.
air speed)
16 °C/W 1,3
RθJB Thermal resistance, junction to board 9.4 °C/W 4
RθJCtop Thermal resistance, junction to case top 9.5 °C/W 5
RθJCbotttom Thermal resistance, junction to case bottom 0.2 °C/W 6
Table continues on the next page...
7
Thermal attributes
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 65
Board
type Symbol Description 176LQFP Unit Notes
ΨJT Thermal characterization parameter, junction to
package top
0.2 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
3. Per JEDEC JESD51-6 with the board horizontal.
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal resistance between the die and the solder pad on the bottom of the package based on simulation without any
interface resistance.
7. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
Board
type Symbol Description 324
MAPBGA Unit Notes
Single-
layer (1s)
RθJA Thermal resistance, junction to ambient (natural
convection)
25.5 °C/W 1, 2
Four-layer
(2s2p)
RθJA Thermal resistance, junction to ambient (natural
convection)
19.0 °C/W 1,23
Single-
layer (1s)
RθJMA Thermal resistance, junction to ambient (200 ft./
min. air speed)
18.1 °C/W 1, 3
Four-layer
(2s2p)
RθJMA Thermal resistance, junction to ambient (200 ft./
min. air speed)
14.8 °C/W 1,3
RθJB Thermal resistance, junction to board 10.4 °C/W 4
RθJC Thermal resistance, junction to case 8.4 °C/W 5
ΨJT Thermal characterization parameter, junction to
package top natural convection)
0.45 °C/W 6
ΨJB Thermal characterization parameter, junction to
package top natural convection)
2.65 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.,
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JB.
Thermal attributes
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
66 NXP Semiconductors
Board
type Symbol Description 256
MAPBGA Unit Notes
Single-
layer (1s)
RθJA Thermal resistance, junction to ambient (natural
convection)
39.5 °C/W 1, 2
Four-layer
(2s2p)
RθJA Thermal resistance, junction to ambient (natural
convection)
22.9 °C/W 1,23
Single-
layer (1s)
RθJMA Thermal resistance, junction to ambient (200 ft./
min. air speed)
28.5 °C/W 1,3
Four-layer
(2s2p)
RθJMA Thermal resistance, junction to ambient (200 ft./
min. air speed)
18.3 °C/W 1,3
RθJB Thermal resistance, junction to board 9.5 °C/W 4
RθJC Thermal resistance, junction to case 5.8 °C/W 5
ΨJT Thermal characterization parameter, junction to
package top outside center (natural convection)
0.2 °C/W 6
ΨJB Thermal characterization parameter, junction to
package bottom outside center (natural
convection)
6.4 °C/W 7
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board
thermal resistance.,
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.
3. Per JEDEC JESD51-6 with the board horizontal
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured
on the top surface of the board near the package.
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883
Method 1012.1).
6. Thermal characterization parameter indicating the temperature difference between package top and the junction
temperature per JEDEC JESD51-2.
7. Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is
written as Psi-JB.
Dimensions
8.1 Obtaining package dimensions
Package dimensions are provided in package drawing.
To find a package drawing, go to www.nxp.com and perform a keyword search for the
drawing’s document number:
Package NXP Document Number
176-pin LQFP-EP 98ASA00673D
256 MAPBGA 98ASA00346D
324 MAPBGA 98ASA10582D
8
Dimensions
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 67
Pinouts
9.1 Package pinouts and signal descriptions
For package pinouts and signal descriptions, refer to the Reference Manual.
10 Reset sequence
This section describes different reset sequences and details the duration for which the
device remains in reset condition in each of those conditions.
10.1 Reset sequence duration
Table 53 specifies the minimum and the maximum reset sequence duration for the five
different reset sequences described in Reset sequence description.
Table 53. RESET sequences
No. Symbol Parameter TReset Unit
Min Typ 1Max
1 TDRB Destructive Reset Sequence, BIST enabled 5.730 7.796 ms
2 TDR Destructive Reset Sequence, BIST disabled 0.111 0.182 ms
3 TERLB External Reset Sequence Long, Unsecure Boot 5.729 7.793 ms
4 TFRL Functional Reset Sequence Long, Unsecure Boot 0.110 0.179 ms
5 TFRS Functional Reset Sequence Short, Unsecure Boot 0.007 0.009 ms
1. The Typ value is applicable only if the reset sequence duration is not prolonged by an extended assertion of RESET_B by
an external reset generator.
9
Pinouts
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
68 NXP Semiconductors
10.2 BAF execution duration
Following table specifies the typical BAF execution time in case BAF boot header is
present at first location (Typical) and last location (worst case). Total Boot time is the
sum of reset sequence duration and BAF execution time.
Table 54. BAF execution duration
BAF execution
duration
Min Typ Max Unit
BAF execution time
(boot header at first
location)
- 200 - μs
BAF execution time
(boot header at last
location)
- 320 - μs
10.3 Reset sequence description
The figures in this section show the internal states of the device during the five different
reset sequences. The dotted lines in the figures indicate the starting point and the end
point for which the duration is specified in Table 53.
With the beginning of DRUN mode, the first instruction is fetched and executed. At this
point, application execution starts and the internal reset sequence is finished.
The following figures show the internal states of the device during the execution of the
reset sequence and the possible states of the RESET_B signal pin.
NOTE
RESET_B is a bidirectional pin. The voltage level on this pin
can either be driven low by an external reset generator or by the
device internal reset circuitry. A high level on this pin can only
be generated by an external pullup resistor which is strong
enough to overdrive the weak internal pulldown resistor. The
rising edge on RESET_B in the following figures indicates the
time when the device stops driving it low. The reset sequence
durations given in Table 53 are applicable only if the internal
reset sequence is not prolonged by an external reset generator
keeping RESET_B asserted low beyond the last Phase3.
Reset sequence
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 69
PHASE0 PHASE1,2 PHASE3 PHASE1,2 PHASE3 DRUNBIST
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Establish Flash Device Self MBIST LBIST
Application
IRC and
PWR
Init Test
Setup
Config
Flash
Init Device
Config Ex ecut ion
TDRB, min <TRESET <TDRB, max
BAF+
Figure 35. Destructive reset sequence, BIST enabled
PHASE0 PHASE1,2 PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Establish Flash Device Application
IRC and
PWR
Init Config Execution
TDR, min <TRESET <TDR, max
BAF+
Figure 36. Destructive reset sequence, BIST disabled
PHASE1,2 PHASE3 PHASE1,2 PHASE3 DRUNBIST
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Flash Device Self MBIST LBIST Application
Init Test
Setup
Config
Flash
Init Device
Config Ex ecut ion
TERLB, min <TRESET <TERLB, max
BAF+
Figure 37. External reset sequence long, BIST enabled
PHASE1,2 PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Application
Flash
Init Device
Config Ex ecut ion
TFRL, min <TRESET <TFRL, max
BAF+
Figure 38. Functional reset sequence long
Reset sequence
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
70 NXP Semiconductors
PHASE3 DRUN
Reset Sequence Trigger
Reset Sequence Start Condition
RESET_B
Application
Execution
TFRS, min <TRESET <TFRS, max
BAF+
Figure 39. Functional reset sequence short
The reset sequences shown in Figure 38 and Figure 39 are triggered by functional reset
events. RESET_B is driven low during these two reset sequences only if the
corresponding functional reset source (which triggered the reset sequence) was enabled to
drive RESET_B low for the duration of the internal reset sequence. See the RGM_FBRE
register in the device reference manual for more information.
11 Revision History
The following table provides a revision history for this document.
Table 55. Revision History
Rev. No. Date Substantial Changes
1 14 March 2013 Initial Release
1.1 16 May 2013 Updated Pinouts section
2 22 May 2014 Removed Category (SR, CC, P, T, D, B) column from all the table of the Datasheet
Revised the feature list.
Revised Introduction section to remove classification information.
Updated optional information in the ordering information figure.
Revised Absolute maximum rating section:
Removed category column from table
Added footnote at Ta
Revised Recommended operating conditions section
Added notes
Updated table: Recommended operating conditions (VDD_HV_x = 3.3 V)
Updated table: Recommended operating conditions (VDD_HV_x = 5 V)
Revised Voltage regulator electrical characteristics
Updated text describing bipolar transistors
Updated figure: Voltage regulator capacitance connection
Updated table: Voltage regulator electrical specifications
Removed Brownout information
Revised Voltage monitor electrical characteristics table
Revised Supply current characteristics section
Updated table: Current consumption characteristics
Updated table: Low Power Unit (LPU) Current consumption characteristics
STANDBY Current consumption characteristics
Table continues on the next page...
Revision History
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 71
Table 55. Revision History (continued)
Rev. No. Date Substantial Changes
Revised Electromagnetic Interference (EMI) characteristics section
Revised DC electrical specifications @ 3.3V Range table for naming convections.
Revised DC electrical specifications @ 5 V Range table for naming conventions
Deleted MLB 6-pin Electrical Specifications
Removed PORST characteristics from Functional reset pad electrical characteristics
table
Added section PORST electrical characteristics
Revised Input impedance and ADC accuracy section to remove SNR, THD, SINAD,
ENOB,
Revised 32 kHz oscillator electrical specifications table to remove 'Vpp' row.
Updated 16 MHz RC Oscillator electrical specifications table for statuptime, cycle to
cycle jitter, and lonf term jitter
Updated 128 KHz Internal RC oscillator electrical specifications table.
Updated PLL electrical specifications table
Added Jitter Calculation table
Added Percentage of Sample exceeding specified value of jitter table
Revised Memory interfaces section
Revised Communication interfaces section
Updated note
Added Continuous SCK timing table
Added DSPI high speed mode I/Os table
Updated input transition value in section MLB 3-pin interface electrical specifications
Deleted MLB 6-pin interface DC characteristics section
Deleted MLB 6-pin interface AC characteristics section
Updated JTAG pin AC electrical characteristics table
Revised table under Thermal attributes section
Updated Obtaining package dimensions section for Freescale Document numbers
3 12 May 2015 Editorial updates throughout the sections
Renamed '176 LQFP' package to '176 LQFP-EP'
Added following sections:
Block diagram
Family comparison
Ordering Information
In table: Absolute maximum ratings as follows:
Removed row for symbol: 'VSS_HV'
Added symbol: 'VDD_LV'
Updated 'Max' column for symbol 'VINA'
Added footnote to 'Conditions' column
Removed footnote from 'Max' column
In section: Recommended operating conditions
Added opening text: ''The following table describes the operating conditions ... "
Added note: "VDD_HV_A, VDD_HV_B and VDD_HV_C are all ... "
In table: Recommended operating conditions (VDD_HV_x = 3.3 V)
Added footnote to 'Conditions' cloumn
Updated footnote for 'Min' column
Removed footnote from symbols 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C'
Removed row for symbol: 'VSS_HV'
Updated 'Parameter' column for symbol 'VDD_HV_FLA', 'VDD_HV_ADC1_REF',
'VDD_LV'
Updated 'Min' column for symbol 'VDD_HV_ADC0' and 'VDD_HV_ADC1'
Updated 'Parameter' 'Min' 'Max' column for symbol 'VSS_HV_ADC0' and
'VSS_HV_ADC1'
Added footnote to symbol 'VDD_LV '
Removed footnote from symbol 'VIN1_CMP_REF'
Table continues on the next page...
Revision History
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
72 NXP Semiconductors
Table 55. Revision History (continued)
Rev. No. Date Substantial Changes
Removed row for symbol 'VSS_LV'
Removed footnote from 'Max' column of symbols 'VDD_HV_ADC0' and
'VDD_HV_ADC1'
In section: Recommended operating conditions
In table: Recommended operating conditions (VDD_HV_x = 5 V)
Added footnote to 'Conditions' cloumn
Updated footnote for 'Min' column
Removed footnote from symbols 'VDD_HV_A', 'VDD_HV_B', and 'VDD_HV_C'
Removed row for symbol: 'VSS_HV'
Updated 'Parameter' column for symbol 'VDD_HV_ADC1_REF'
'VDD_HV_ADC1_REF', 'VDD_LV'
Updated 'Min' columnn of symbol 'VDD_HV_ADC0' and 'VDD_HV_ADC1'
Updated 'Parameter', 'Min' 'Max' column for symbol 'VSS_HV_ADC0' and
'VSS_HV_ADC1'
Added footnote to symbol 'VDD_LV'
Removed row for symbol 'VSS_LV'
Added row for symbol 'VIN1_CMP_REF' and corresponding footnotes to the
symbol
In section: Voltage regulator electrical characteristics
In table: Voltage regulator electrical specifications
Added note to symbol 'Cbe_fpreg'
In section: Voltage monitor electrical characteristics
In table: Voltage monitor electrical characteristics
Updated column 'Parameter', 'Min' and 'Max' (of fall/rise trimmed condition)
for symbol 'VHVD_LV_cold' and 'VLVD_IO_A_HI'
Updated column 'Parameter', 'Min' and 'Typ' (of fall/rise trimmed condition)
for symbol) 'VLVD_LV_PD2_hot', 'VLVD_LV_PD2_cold LV'
Updated column 'Parameter' for symbol 'VLVD_LV_PD0_hot'
Updated column 'Typ' and 'Max' (of fall/rise trimmed condition) for symbol)
'VLVD_FLASH'
Updated footnote on symbol 'VLVD_IO_A_LO' and 'VLVD_IO_A_HI'
In section: Supply current characteristics
In table: Current consumption characteristics
Updated column 'Typ' for symbol 'IDD_FULL' for temperature 85, 105, 125
Updated column 'Typ' for symbol 'IDD_GWY' for temperature 85, 105, 125 and
column 'Max' for temperature 105
Updated column 'Typ' for symbol 'IDD_BODY1' for temperature 85, 105, 125
Updated column 'Typ' for symbol 'IDD_BODY2' for temperature 85, 105, 125
and 'Max' for temperature 125
Added 'Typ' value for temperature 25 for symbol 'IDD_STOP'
Updated column 'Typ' and 'Max' for symbol 'IDD_STOP' for temperature 85,
105, 125
In table: Low Power Unit (LPU) Current consumption characteristics
Updated column 'Typ' for symbol 'LPU_RUN' for tempeature 25 and 125
Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol
'LPU_RUN'
Updated column 'Typ' for symbol 'LPU_STOP' for tempeature 25 and 125
Added 'Typ' and 'Max' value for temperature 85 and 105 for symbol
'LPU_STOP'
In table: STANDBY Current consumption characteristics
Updated to have one STANDBY
In section: I/O parameters
Table continues on the next page...
Revision History
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 73
Table 55. Revision History (continued)
Rev. No. Date Substantial Changes
In table: Functional Pad AC Specifications @ 3.3 V Range
Updated values for symbol 'pad_sr_hv (output)'
In table: DC electrical specifications @ 3.3V Range
Updtaed values for VDD_HV_x, Vih, Vhys
Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys
In table: Functional Pad AC Specifications @ 5 V Range
Updated values for symbol 'pad_sr_hv (output)'
In table DC electrical specifications @ 5 V Range
Added Vih (pad_i_hv), Vil (pad_i_hv), Vhys (pad_i_hv), Vih_hys, Vil_hys
In section: PORST electrical specifications
In table: PORST electrical specifications
Updated 'Min' value for WNFPORST
Corrected 'Unit' for VIH and VIL
In section: Peripheral operating requirements and behaviours
Revised table: ADC conversion characteristics (for 12-bit) and ADC conversion
characteristics (for 10-bit)
In section: Analogue Comparator (CMP) electrical specifications
In table: Comparator and 6-bit DAC electrical specifications
Updated 'Max' value of IDDLS
Updated 'Min' and 'Max' for VAIO and DNL
Updated 'Descripton' 'Min' 'Max' od VH
Updated row for tDHS
Added row for tDLS
Removed row for VCMPOh and VCMPOl
In section: Clocks and PLL interfaces modules
Revised table: Main oscillator electrical characteristics
In table: 16 MHz RC Oscillator electrical specifications
Updated 'Max' of Tstartup
In table: 128 KHz Internal RC oscillator electrical specifications
Removed Uncaliberated 'Condition' for Fosc
Updated 'Min' and 'Max' of Caliberated Fosc
Updated 'Temperature dependence' and 'Supply dependence'
In table: PLL electrical specifications
Removed Input Clock Low Level, Input Clock High Level, Power
consumption, Regulator Maximum Output Current, Analog Supply, Digital
Supply (VDD_LV), Modulation Depth (Down Spread), PLL reset assertion
time, and Power Consumption
Removed 'Typ' value of Duty Cycle at pllclkout
Removed 'Min' from calibration mode of Lock Time
In table: Jitter calculation
Added 1 Sigma Random Jitter value for Long term jitter
In section Flash read wait state and address pipeline control settings
Revised table: Flash Read Wait State and Address Pipeline Control
Removed section: On-chip peripherals
Added section: 'Reset sequence'
Rev4 Feb 10 2017 Added VDD_HV_BALLAST footnote in Voltage regulator electrical characteristics
Added Note to clarify In-Rush current and pin capacitance in Voltage regulator electrical
characteristics
Updated SIUL2_MSCRn[SRC 1:0]=11@25pF max value; SIUL2_MSCRn[SRC
1:0]=11@50pF min value; SIUL2_MSCRn[SRC 1:0]=10@25pF min and max values in
AC specifications @ 3.3 V Range
Table continues on the next page...
Revision History
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
74 NXP Semiconductors
Table 55. Revision History (continued)
Rev. No. Date Substantial Changes
Updated VIH min and VIL max values in Main oscillator electrical characteristics
Replaced ipp_sre[1:0] by SIUL2_MSCRn[SRC 1:0] in AC specifications @ 3.3 V Range,
DC electrical specifications @ 3.3V Range
Functional reset sequence short, unsecure boot corrected Reset sequence duration
Added NVM memory map and RAM memory map Family comparison
Added BAF execution duration section BAF execution duration
Supply names (VDD_LV, VSS_LV replace dvss, avss, dvdd, avdd) corrected in Jitter
calculation table PLL electrical specifications
Updated Ordering information: Fab and Mask version indicator
Updated tpsus typical and max values Flash memory AC timing specifications
Added Notes on IBIS models use in AC specifications @3.3 V Range AC specifications
@ 3.3 V Range
Updated Vol value in DC electrical specifications @ 3.3V Range DC electrical
specifications @ 3.3V Range
Added Notes on IBIS models in Functional Pad AC Specifications @ 5 V Range AC
specifications @ 5 V Range
Updated Vol values in DC electrical specifications @5V Range DC electrical
specifications @ 5 V Range
Updated IDD Current values Supply current characteristics
Updated STANDBY current consumption with FIRC ON Supply current characteristics
Thermal numbers update for 256MAPBGA Thermal attributes
POR_HV Trim values removed Voltage monitor electrical characteristics
ADC analog pad leakage for 105 C added ADC electrical specifications
IDD STANDBY0, 1, 2 and 3 added Supply current characteristics
Rev5 July 31 2017 Updated Standby2 value to 125 C in Standby current consumption characteristics
Corrected typo in Note from "case" to "cause" Voltage regulator electrical characteristics
Updated propagation delay from 14 to 21 in ACMP electrical specifications
Rev6 Nov 23 2018 Added text "Connecting two MPC5748G MCUs.......connecting MCU #1 ENET_0 to
MCU #2 ENET_1" under "RMII signal switching specifications" section in Ethernet
switching specifications.
Removed the footnote "Max power supply ramp rate is 500 V / ms" from Table 17 and
Table 15.
Changed "VDD_HV_A" to "VDD_HV_IO" and changed the condition from "VDD_HV_A=
VDD_POR" to "3.0 V < VDD_HV_IO < 5.5 V" in Table 18.
Added footnote to VDD_LV in Table 5.
Corrected the number of SMPU descriptors from 32 to 16 in Features and table
"MPC5748G Family Comparison" in Family comparison.
Updated the second bullet point from "If VDD_HV_A is in 3.3V range......should be
shorted to VDD_HV_A" to "If VDD_HV_A is in 5.0V range.......should be shorted to
VDD_HV_A " in Recommended operating conditions.
Added footnote in "High Speed Mode" column and for Parameter "DSPI cycle time"
changed the Condition from "Master (MTFE=0)" to "Master" in DSPI timing.
Added 32 and 64 KB flash blocks in Table 3.
Added note "For the Precision channel Analog inputs...pulled low/high externally" in
Supply current characteristics.
Changed Powerup to POR under the column "Reset Type" in table Voltage monitor
electrical characteristics in Voltage monitor electrical characteristics.
Revision History
MPC5748G Microcontroller Data Sheet, Rev. 6, 11/2018
NXP Semiconductors 75
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support
Information in this document is provided solely to enable system and software implementers to use
NXP products. There are no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits based on the information in this document. NXP reserves the right to
make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any
particular purpose, nor does NXP assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data sheets
and/or specifications can and do vary in different applications, and actual performance may vary over
time. All operating parameters, including “typicals,” must be validated for each customer application
by customerʼs technical experts. NXP does not convey any license under its patent rights nor the
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be
found at the following address: nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to unidentified
vulnerabilities. Customers are responsible for the design and operation of their applications and
products to reduce the effect of these vulnerabilities on customer's applications and products, and
NXP accepts no liability for any vulnerability that is discovered. Customers should implement
appropriate design and operating safeguards to minimize the risks associated with their applications
and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, and UMEMS
are trademarks of NXP B.V. All other product or service names are the property of their respective
owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink,
CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,
ULINKpro, μVision, Versatile are trademarks or registered trademarks of Arm Limited (or its
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of
patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and the
Power and Power.org logos and related marks are trademarks and service marks licensed by
Power.org.
© 2013–2018 NXP B.V.
Document Number MPC5748G
Revision 6, 11/2018