DS1643/DS1643P Nonvolatile Timekeeping RAMs www.maxim-ic.com FEATURES PIN CONFIGURATIONS Integrated NV SRAM, Real-Time Clock, Crystal, Power-Fail Control Circuit and Lithium Energy Source Clock Registers are Accessed Identically to the Static RAM. These Registers Reside in the Eight Top RAM Locations. Totally Nonvolatile with Over 10 Years of Operation in the Absence of Power Access Times of 70ns and 100ns BCD-Coded Year, Month, Date, Day, Hours, Minutes, and Seconds with Leap Year Compensation Valid Up to 2100 Power-Fail Write Protection Allows for 10% VCC Power Supply Tolerance Lithium Energy Source is Electrically Disconnected to Retain Freshness Until Power is Applied for the First Time DS1643 Only (DIP Module) Standard JEDEC Byte-Wide 8K x 8 RAM Pinout UL Recognized DS1643P Only (PowerCap Module Board) Surface Mountable Package for Direct Connection to PowerCap Containing Battery and Crystal Replaceable Battery (PowerCap) Power-Fail Output Pin-for-Pin Compatible with Other Densities of DS164XP Timekeeping RAM TOP VIEW VCC WE CE2 A8 A9 A11 OE A10 CE DQ7 DQ6 DQ1 1 28 27 2 DS1643 26 3 4 25 5 24 6 23 7 22 8 21 9 20 10 19 11 18 12 17 DQ2 13 16 DQ4 GND 14 15 DQ3 N.C. A12 A7 A6 A5 A4 A3 A2 A1 A0 DQ0 DQ5 Encapsulated DIP (700-mil Extended) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 N.C. N.C. N.C. PFO VCC WE OE CE DQ7 DQ6 DQ5 DQ4 DQ3 DQ2 DQ1 DQ0 GND DS1643P X1 GND VBAT X2 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 N.C. N.C. N.C. N.C. A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 PowerCap Module Board (Uses DS9034PCX PowerCap) ORDERING INFORMATION PART DS1643-70+ DS1643-70 DS1643+100 DS1643-100 DS1643P-70+ DS1643P-70 DS1643P+100 DS1643P-100 VOLTAGE RANGE (V) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 TEMP RANGE PIN-PACKAGE TOP MARK 0C to +70C 0C to +70C 0C to +70C 0C to +70C 0C to +70C 0C to +70C 0C to +70C 0C to +70C 28 EDIP (0.740a) 28 EDIP (0.740a) 28 EDIP (0.740a) 28 EDIP (0.740a) 34-PowerCap* 34-PowerCap* 34-PowerCap* 34-PowerCap* DS1643+70 DS1643-70 DS1643+100 DS1643-100 DS1643P+70 DS1643P-70 DS1643P+100 DS1643P-100 *DS9034-PCX, DS9034I-PCX, DS9034-PCX+ required (must be ordered separately). A "+" indicates a lead-free product. The top mark will include a "+" symbol on lead-free devices. 1 of 16 REV: 042705 DS1643/DS1643P PIN DESCRIPTION PDIP 1 2 3 4 5 6 7 8 9 10 21 23 24 25 11 12 13 15 16 17 18 19 20 22 26 27 28 PIN PowerCap 1, 2, 3, 31-34 30 25 24 23 22 21 20 19 18 28 29 27 26 16 15 14 13 12 11 10 9 8 7 -- 6 5 NAME N.C. A12 A7 A6 A5 A4 A3 A2 A1 A0 A10 A11 A9 A8 DQ0 DQ1 DQ2 DQ3 DQ4 DQ5 DQ6 DQ7 CE OE CE2 WE VCC -- 4 PFO 14 17 GND X1, X2, VBAT -- FUNCTION No Connection Address Inputs Data Input/Output Active-Low Chip-Enable Input Active-Low Output-Enable Input Chip-Enable 2 Input (Active High) Active-Low Write-Enable Input Power-Supply Input Active-Low Power-Fail Output. This open-drain pin requires a pullup resistor for proper operation. Ground Crystal Connection, Battery Connection 2 of 16 DS1643/DS1643P DESCRIPTION The DS1643 is an 8K x 8 nonvolatile static RAM with a full function Real Time Clock (RTC) that are both accessible in a byte-wide format. The nonvolatile timekeeping RAM is functionally equivalent to any JEDEC standard 8K x 8 SRAM. The device can also be easily substituted in ROM, EPROM and EEPROM sockets providing read/write nonvolatility and the addition of the real time clock function. The real time clock information resides in the eight uppermost RAM locations. The RTC registers contain year, month, date, day, hours, minutes, and seconds data in 24-hour BCD format. Corrections for the day of the month and leap year are made automatically. The RTC clock registers are double-buffered to avoid access of incorrect data that can occur during clock update cycles. The double-buffered system also prevents time loss as the timekeeping countdown continues unabated by access to time register data. The DS1643 also contains its own power-fail circuitry, which deselects the device when the VCC supply is in an out of tolerance condition. This feature prevents loss of data from unpredictable system operation brought on by low VCC as errant access and update cycles are avoided. PACKAGES The DS1643 is available in two packages: 28-pin DIP module and 34-pin PowerCap(R) module. The 28pin DIP style module integrates the crystal, lithium energy source, and silicon all in one package. The 34pin PowerCap Module Board is designed with contacts for connection to a separate PowerCap (DS9034PCX) that contains the crystal and battery. This design allows the PowerCap to be mounted on top of the DS1643P after the completion of the surface mount process. Mounting the PowerCap after the surface mount process prevents damage to the crystal and battery due to high temperatures required for solder reflow. The PowerCap is keyed to prevent reverse insertion. The PowerCap Module Board and PowerCap are ordered separately and shipped in separate containers. The part number for the PowerCap is DS9034PCX. CLOCK OPERATIONS--READING THE CLOCK While the double-buffered register structure reduces the chance of reading incorrect data, internal updates to the DS1643 clock registers should be halted before clock data is read to prevent reading of data in transition. However, halting the internal clock register updating process does not affect clock accuracy. Updating is halted when a one is written into the read bit, the seventh most significant bit in the control register. As long as a 1 remains in that position, updating is halted. After a halt is issued, the registers reflect the count, that is day, date, and time that was current at the moment the halt command was issued. However, the internal clock registers of the double-buffered system continue to update so that the clock accuracy is not affected by the access of data. All of the DS1643 registers are updated simultaneously after the clock status is reset. Updating is within a second after the read bit is written to 0. PowerCap is a registered trademark of Dallas Semiconductor. 3 of 16 DS1643/DS1643P Figure 1. Block Diagram DS1643/ DS1643P Table 1. Truth Table VCC CE 5V 10% <4.5V > VBAT 4.5V) the DS1643 can be accessed as described above with read or write cycles. However, when VCC is below the power-fail point VPF (point at which write protection occurs) the internal clock registers and RAM are blocked from access. This is accomplished internally by inhibiting access via the CE signal. At this time the power-on reset output signal ( RST ) will be driven active low and will remain active until VCC returns to nominal levels. When VCC falls below the level of the internal battery supply, power input is switched from the VCC pin to the internal battery and clock activity, RAM, and clock data are maintained from the battery until VCC is returned to nominal level. The RST signal is an open drain output and requires a pull up. Except for the RST , all control, data, and address signals must be powered down when VCC is powered down. BATTERY LONGEVITY The DS1643 has a lithium power source that is designed to provide energy for clock activity, and clock and RAM data retention when the VCC supply is not present. The capability of this internal power supply is sufficient to power the DS1643 continuously for the life of the equipment in which it is installed. For specification purposes, the life expectancy is 10 years at 25C with the internal clock oscillator running in the absence of VCC power. Each DS1643 is shipped from Dallas Semiconductor with its lithium energy source disconnected, guaranteeing full energy capacity. When VCC is first applied at a level greater than VPF, the lithium energy source is enabled for battery backup operation. Actual life expectancy of the Ds1643 will be much longer than 10 years since no lithium battery energy is consumed when VCC is present. 6 of 16 DS1643/DS1643P ABSOLUTE MAXIMUM RATINGS Voltage Range on Any Pin Relative to Ground.....................................................-0.3V to +7.0V Operating Temperature Range......................................................0C to +70C, Noncondensing Storage Temperature Range......................................................-40C to +85C, Noncondensing Soldering Temperature....................................See IPC/JEDEC J-STD-020A Specification (Note 7) This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability. RECOMMENDED DC OPERATING CONDITIONS (TA = 0C to +70C) PARAMETER Supply Voltage SYMBOL VCC MIN 4.5 Logic 1 Voltage All Inputs VIH Logic 0 Voltage All Inputs VIL TYP 5.0 MAX 5.5 UNITS V NOTES 2.2 VCC + 0.3 V -0.3 +0.8 V TYP MAX UNITS NOTES ICC 15 50 mA 2, 3 ICC1 1 3 mA 2, 3 ICC2 1 3 mA 2, 3 DC ELECTRICAL CHARACTERISTICS (VCC = 5.0V 10%, TA = 0C to +70C.) PARAMETER Active Supply Current TTL Standby Current ( CE = VIH, CE2 = VIL) CMOS Standby Current ( CE = VCC - 0.2V, CE2 = GND + 0.2V) SYMBOL MIN Input Leakage Current (Any Input) IIL -1 +1 mA Output Leakage Current (Any Output) IOL -1 +1 mA Output Logic 1 Voltage (IOUT = -1.0mA) VOH 2.4 Output Logic 0 Voltage (IOUT = +2.1mA) VOL Write Protection Voltage VPF 7 of 16 1 0.4 4.25 4.37 4.50 1 V 1 DS1643/DS1643P AC CHARACTERISTICS--READ CYCLE (VCC = 5.0V 10%, TA = 0C to +70C.) PARAMETER Read Cycle Time Address Access Time CE and CE2 to DQ Low-Z CE Access Time CE2 Access Time CE and CE2 Data Off Time OE to DQ Low-Z OE Access Time OE Data Off Time Output Hold from Address SYMBOL tRC tAA tCEL tCEA tCE2A tCEZ tOEL tOEA tOEZ tOH 70ns ACCESS MIN MAX 70 70 5 70 80 25 5 35 25 5 READ CYCLE TIMING DIAGRAM 8 of 16 100ns ACCESS MIN MAX 100 100 5 100 105 35 5 55 35 5 UNITS NOTES ns ns ns ns ns ns ns ns ns ns 4 4 4 4 4 4 4 4 4 4 DS1643/DS1643P AC CHARACTERISTICS--WRITE CYCLE (VCC = 5.0V 10%, TA = 0C to +70C.) PARAMETER Write Cycle Time Address Setup Time WE Pulse Width CE Pulse Width CE2 Pulse Width Data Setup Time Data Hold Time Address Hold Time WE Data Off Time Write Recovery Time SYMBOL tWC tAS tWEW tCEW tCE2W tDS tDH tAH tWEZ tWR 70ns ACCESS MIN MAX 70 0 50 60 65 30 0 5 25 5 9 of 16 100ns ACCESS MIN MAX 100 0 70 75 85 40 0 5 35 5 UNITS NOTES ns ns ns ns ns ns ns ns ns ns 4 4 4 4 4 4 4 4 4 4 DS1643/DS1643P WRITE CYCLE TIMING DIAGRAM--WE CONTROLLED WRITE CYCLE TIMING DIAGRAM-- CE , CE2 CONTROLLED 10 of 16 DS1643/DS1643P POWER-UP/DOWN AC CHARACTERISTICS (VCC = 5.0V 10%, TA = 0C to +70C.) PARAMETER CE or WE at VIH, CE2 at VIL, Before Power-down VCC Fall Time: VPF(MAX) to VPF(MIN) VCC Fall Time: VPF(MIN) to VBAT VCC Rise Time: VPF(MIN) to VPF(MAX) Power-Up Recover Time Expected Data Retention Time (Oscillator On) SYMBOL MIN TYP MAX tPD 0 ms tF tFB tR tREC 300 10 0 ms ms ms ms tDR 10 35 UNITS NOTES years 5, 6 MAX UNITS NOTES 7 10 pF pF POWER-UP/POWER-DOWN TIMING CAPACITANCE (TA = +25C) PARAMETER Capacitance on All Pins Capacitance on All Output Pins SYMBOL CIN CO 11 of 16 MIN TYP DS1643/DS1643P AC TEST CONDITIONS Output Load: 100pF + 1TTL Gate Input Pulse Levels: 0 to 3.0V Timing Measurement Reference Levels: Input: 1.5V Output: 1.5V Input Pulse Rise and Fall Times: 5ns NOTES: 1) Voltages are referenced to ground. 2) Typical values are at +25C and nominal supplies. 3) Outputs are open. 4) The CE2 control signal functions exactly the same as the CE signal except that the logic levels for active and inactive levels are opposite. 5) Data retention time is at 25C. 6) Each DS1643 has a built-in switch that disconnects the lithium source until VCC is first applied by the user. The expected tDR is defined for DIP modules as a cumulative time in the absence of VCC starting from the time power is first applied by the user. 7) Real-Time Clock Modules (DIP) can be successfully processed through conventional wave-soldering techniques as long as temperatures as long as temperature exposure to the lithium energy source contained within does not exceed +85C. Post-solder cleaning with water washing techniques is acceptable, provided that ultrasonic vibration is not used. In addition, for the PowerCap: a. Dallas Semiconductor recommends that PowerCap Module bases experience one pass through solder reflow oriented with the label side up ("live-bug"). b. Hand soldering and touch-up: Do not touch or apply the soldering iron to leads for more than 3 seconds. To solder, apply flux to the pad, heat the lead frame pad and apply solder. To remove the part, apply flux, heat the lead frame pad until the solder reflow and use a solder wick to remove solder. 12 of 16 DS1643/DS1643P PACKAGE INFORMATION (The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/DallasPackInfo.) DS1643 28-PIN PACKAGE PKG DIM A IN. MM B IN. MM C IN. MM D IN. MM E IN. MM F IN. MM G IN. MM H IN. MM J IN. MM K IN. MM 13 of 16 28-PIN MIN MAX 1.470 1.490 37.34 37.85 0.675 0.740 17.75 18.80 0.315 0.335 8.51 9.02 0.075 0.105 1.91 2.67 0.015 0.030 0.38 0.76 0.140 0.180 3.56 4.57 0.090 0.110 2.29 2.79 0.590 0.630 14.99 16.00 0.010 0.018 0.25 0.45 0.015 0.025 0.43 0.58 DS1643/DS1643P DS1643P PKG DIM A B C D E F G MIN 0.920 0.980 0.052 0.048 0.015 0.025 INCHES NOM 0.925 0.985 0.055 0.050 0.020 0.027 MAX 0.930 0.990 0.080 0.058 0.052 0.025 0.030 NOTE: DALLAS SEMICONDUCTOR RECOMMENDS THAT POWERCAP MODULE BASES EXPERIENCE ONE PASS THROUGH SOLDER REFLOW ORIENTED WITH THE LABEL SIDE UP ("LIVE-BUG"). HAND SOLDERING AND TOUCH-UP: DO NOT TOUCH OR APPLY THE SOLDERING IRON TO LEADS FOR MORE THAN 3 SECONDS. TO SOLDER, APPLY FLUX TO THE PAD, HEAT THE LEAD FRAME PAD AND APPLY SOLDER. TO REMOVE THE PART, APPLY FLUX, HEAT THE LEAD FRAME PAD UNTIL THE SOLDER REFLOWS AND USE A SOLDER WICK TO REMOVE SOLDER. 14 of 16 DS1643/DS1643P DS1643P WITH DS9034PCX ATTACHED PKG DIM A B C D E F G 15 of 16 MIN 0.920 0.955 0.240 0.052 0.048 0.015 0.020 INCHES NOM 0.925 0.960 0.245 0.055 0.050 0.020 0.025 MAX 0.930 0.965 0.250 0.058 0.052 0.025 0.030 DS1643/DS1643P RECOMMENDED POWERCAP MODULE LAND PATTERN PKG DIM A B C D E MIN - INCHES NOM 1.050 0.826 0.050 0.030 0.112 MAX - 16 of 16 Maxim/Dallas Semiconductor cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim/Dallas Semiconductor product. No circuit patent licenses are implied. Maxim/Dallas Semiconductor reserves the right to change the circuitry and specifications without notice at any time. Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 (c) 2005 Maxim Integrated Products * Printed USA The Maxim logo is a registered trademark of Maxim Integrated Products, Inc. The Dallas logo is a registered trademark of Dallas Semiconductor Corporation. ENGLISH * ???? * ??? * ??? WHAT'S NEW PRODUCTSSOLUTIONS DESIGN APPNOTES SUPPORT BUY COMPANYMEMBERS DS1643 Part Number Table Notes: 1. See the DS1643 QuickView Data Sheet for further information on this product family or download the DS1643 full data sheet (PDF, 320kB). 2. Other options and links for purchasing parts are listed at: http://www.maxim-ic.com/sales. 3. Didn't Find What You Need? Ask our applications engineers. Expert assistance in finding parts, usually within one business day. 4. Part number suffixes: T or T&R = tape and reel; + = RoHS/lead-free; # = RoHS/lead-exempt. More: See full data sheet or Part Naming Conventions. 5. * Some packages have variations, listed on the drawing. "PkgCode/Variation" tells which variation the product uses. Part Number Free Sample Buy Temp Package: TYPE PINS SIZE Direct DRAWING CODE/VAR * RoHS/Lead-Free? Materials Analysis DS1643-85+ MOD;28 pin;600 Dwg: 56-G0002-001A (PDF) Use pkgcode/variation: MDF28+2* 0C to +70C RoHS/Lead-Free: Yes Materials Analysis DS1643-100 MOD;28 pin;600 Dwg: 56-G0002-001A (PDF) Use pkgcode/variation: MDF28-2* 0C to +70C RoHS/Lead-Free: No Materials Analysis DS1643-100+ MOD;28 pin;600 Dwg: 56-G0002-001A (PDF) Use pkgcode/variation: MDF28+2* 0C to +70C RoHS/Lead-Free: Yes Materials Analysis Didn't Find What You Need? CONTACT US: SEND US AN EMAIL Copyright 2007 by Maxim Integrated Products, Dallas Semiconductor * Legal Notices * Privacy Policy