TSM111 TRIPLE VOLTAGE AND CURRENT SUPERVISOR OVERVOLTAGE PROTECTION FOR 3.3V, 5V AND 12V WITHOUT EXTERNAL COMPONENTS OVERCURRENT PROTECTION FOR 3.3V, 5V AND 12V WITH INTERNAL THRESHOLD VOLTAGE N DIP20 (Plastic Package) POWER GOOD CIRCUITRY GENERATES POWER GOOD SIGNAL REMOTE ON/OFF FUNCTION PROGRAMMABLE TIMING FOR POWER GOOD SIGNAL D SO20 (Plastic Micropackage) 14.5V TO 36V SUPPLY VOLTAGE RANGE TWO 1.6% VOLTAGE REFERENCES FOR MAIN AND AUXILIARY CONVERTER REGULATION LOOPS ORDER CODE Package DESCRIPTION The TSM111 integrated circuit incorporates all sensing circuit to control a triple output power supply. It includes voltage references , comparators and matched resistors bridge for overcurrent and overvoltage detection without the need of any external components. Timing generator with external capacitors, control turn On and Off delays. It provides an integrated and cost effective solution for simultaneous multiple voltage control. APPLICATION This circuit is designed to be used in SMPS for Desktop PC, to supervise currents and voltages of all outputs and generate power good information to the system while managing all timing during transitory operation. The IC also manages the standby mode of SMPS while the PC is in sleep mode. January 2003 Part Number Temperature Range TSM111C Example : TSM111CD 0, +70C N D * * N = Dual in Line Package (DIP) D = Small Outline Package (SO) - also available in Tape & Reel (DT) PIN CONNECTIONS (top view) Vs33 1 20 Is33 Vs5 2 19 Is5 Vs12 3 18 Is12 ADJ 4 17 Tsur Vcc 5 16 GND PWM 6 15 FbMAIN REM 7 14 VrefMAIN Trem 8 13 VrefAUX PG 9 12 FbAUX 10 11 UV Tpor 1/17 TSM111 SCHEMATIC DIAGRAM ABSOLUTE MAXIMUM RATINGS Symbol Parameter 1) VCC DC Supply Voltage pin 5 Iout Output Current Power Good and PWM Pd Power Dissipation Tstg Storage Temperature Range Electrostatic Discharge ESD Iin Vter Input Current Value Unit 44 V 30 mA 1 W -55 to +150 2 C kV 50 mA Minimum voltage on all pins with respect to ground terminal -0.3 V I1 Maximum continuous current in all pins (except pin 5) 10 mA I2 Max peak current in all pins for latch-up free operation 200 mA Value Unit V 1. All voltages values, except differential voltage are with respect to network ground terminal. OPERATING CONDITIONS Symbol Parameter VCC DC Supply Voltage pin 5 1) 15 to 36 Toper Operating Free Air Temperature Range 0 to +70 C 30 mA Ik Operating Cathode Current, Vrefaux and Vrefmain 1. The DC supply voltage must be higher than the maximum voltage applied on the 3.3, 5, 12V inputs (Is3.3, Is5, Is12) plus 2V. For example, if 13.2Vis present on the Is12 input, the minimum required value on V CC is 15.2V. 2/17 TSM111 ELECTRICAL CHARACTERISTICS VCC = 16V, Tamb = 0C to 70C (typical values given for 25C) Symbol Parameter Test Condition Min. Typ. Max. Unit ICC Total Supply Current 5 10 mA Vcs1 Current Sense Threshold Voltage 3.3V 46.5 50 53.5 mV Vcs2 Current Sense Threshold Voltage 5V 46.5 50 53.5 mV Vcs3 Current Sense Threshold Voltage 12V 60.5 65 69.5 mV VCC -2 V PG low Vvs1 Current Sense Input Common Mode Voltage Range Overvoltage Sense 3.3V 3.8 4 4.2 V Vvs2 Overvoltage Sense 5V 5.8 6.1 6.4 V Vvs3 Overvoltage Sense 12V 13.4 14.2 15 V 1.22 1.26 1.3 V 2.4 2.5 2.6 V Viscm VAdj Vsur Tsur Vsurend Vpull see note 2 Threshold Voltage, 3.3V OVP Projection ADJ Input pin 4 Thereshold Voltage (Tsur input) Tsur Timing with Determined External Components 0 33k to VCC, 4.7F to ground 21 Tsur Input Clamp Voltage Input Pulled Down Voltage for V33, V5 and V12 7 Isink = 100A, REMOTE high ms 8 V 0.4 V Unit VOLTAGE REFERENCE, AUXILIARY CONVERTER (Fbaux) Symbol Parameter Test Condition Reference Voltage Ir = 0.5mA, Tamb = 25C Iaux Current Stability Ir = 0.5mA to 10mA Taux Temperature Stability Vrefaux Regliaux Line Regulation 15 < VCC < 36V Ioutaux Output Sinking Current Capability Vout > 2V Min. Typ. Max. 2.46 2.5 2.54 V 20 mV 17 mV 1 mV/V 15 25 mA Min. Typ. Max. 2.46 2.5 2.54 V 20 mV 17 mV VOLTAGE REFERENCE, MAIN CONVERTER (Fbmain) Symbol Parameter Test Condition Reference Voltage Ir = 0.5mA, Tamb = 25C Imain Current Stability Ir = 0.5mA to 10mA Tmain Temperature Stability Vrefmain Reglimain Line Regulation 15 < VCC < 36V Ioutmain Output Sinking Current Capability Vout > 2V Resp Resm Absolute Precision of the Internal Resistor Connected to Vrefmain (39k, 10k, 5.4k) Matching of the Internal Resistors Connected to Vrefmain (39k, 10k, 5.4k) 15 Unit 1 mV/V 25 mA 15 % 1 % 3/17 TSM111 POWER GOOD SECTION Symbol Parameter Test Condition Vvs4 tr Turn on Delay for Power Good, Cpor = 2.2F Tpor Delay Charging Current Tpor Delay Threshold Voltage Under Voltage Comparator Hysteresis Hysteresis on Tpor Voltage Detect Level UV Input pin 11 Load Resistor on Vdetect UV Input pin 11 Undervoltage Sense 5V PG Output Rise Time tf Vol2 Ioh2 CL = 100pF PG Output Fall Time Power Good Output Saturation Level Ic = 15mA Power Good Leakage Current Collector Vout = 5V Tpor Ic Vth Vhdet Vhpor Vdet Rdet Ic = 20A typ., Vth = 2V typ. Min. Typ. Max. 100 300 500 12 1.8 20 200 20 2 40 250 28 2.2 80 A V mV mV 1.22 1.26 1.3 V 20 4.1 CL = 100pF 4.3 1 Unit ms k 4.5 V s 300 0.4 ns V 1 A Max. Unit 1.8 1 1.3 V mA V 1 A 5.25 V REMOTE On/Off Symbol Vrem Iil Vol1 Ioh1 Vih1 Trem1 Trem2 4/17 Parameter Test Condition Remote On/Off Input Threshold Level Remote Input Low Driving Current Remote Ouput (PWM) Saturation Level Ic = 0.5mA Remote Output (PWM) Collector Vout = 5V Leakage Current Remote Input Voltage Level Pin 7 open Timing On to Off in to On/Off out, Cext = 100,F Timing Off to On in to On/Off out, Cext = 100nF Min. Typ. 1 4.2 4 8 14 ms 16 24 34 ms TSM111 PIN DESCRIPTION Name Pin Type Function Vcc 5 supply Positive supply voltage. The DC supply voltage must be higher than the maximum voltage applied on the 3.3, 5, 12V inputs (Is3.3, Is5, Is12) plus 2V. For example, if 13.2V is present on the Is12 input, the minimum required value on VCC is 15.2V Vrefmain 14 analog input Fbmain 15 analog output Vrefaux 13 analog input Fbaux 12 analog output IS33 20 analog input 3.3V overcurrent control sense input. V33 1 analog input 3.3V overvoltage control sense input. IS5 19 analog input 5V overcurrent control sense input. V5 2 analog input 5V overvoltage control sense input. IS12 18 analog input 12V overcurrent control sense input. V12 3 analog input 12V overvoltage control sense input. Adj 4 ana input Tsur 17 program. analog input Rem 7 logic input Trem 8 program. analog input Connected to external capacitor to determine Trem (remote control delay) timing. Trem (on to off) is 8ms typ. Trem (off to on) is 24ms typ. Crem = 0.1F PWM 6 logic output Output signal to control the primary side of the main SMPS through an opto-coupler. When PWM is low, the main SMPS is operational. Tpor 10 program. analog input Connected to external capacitor for Power-on-reset timing. Cpor = 2.2F UV 11 analog input Undervoltage detection, control and detect main AC voltage failure. PG 9 logic input GND 16 supply Reference comparison input for main converter regulation loop. 2.5V 1.6% Output for main converter regulation loop (optocoupler) Reference comparison input for auxiliary converter regulation loop. 2.5V 1.6% Output for auxiliary converter regulation loop (optocoupler) Adjustment pin for 3.3V OVP. This pin is to be used for an OVP other than 3.3V (eg for C power supply = 2.7V). When not in use, this pin should be grounded. When in use, VS33 should not be connected. Overcurrent blank-out time 20 to 30ms settable through external RC. The voltage at this pin is clamped at typically 5V. Trip voltage = 1.25V. Remote On/Off logic input for C, turn off PWM after Trem delay. Rem = 0 means that the main SMPS is operational. Power Good logic output, 0 or 5V. Power Good high (=1) means that the power is good for operation. Ground or Negative supply voltage. 5/17 TSM111 APPLICATION DIAGRAM 6/17 TSM111 TIMING DIAGRAM : remote control 7/17 TSM111 TIMING DIAGRAM : overvoltage or overcurrent shut-down 8/17 TSM111 AN EXAMPLE OF 90W MICRO ATX POWER SUPPLY USING L5991A, VIPER20 AND TSM111 Protection against accidental short circuits and fault conditions is mandatory in PC power supplies. These protection circuits can be realized by using many discrete components which occupy a lot of PCB space, design time in fine tuning the circuit and also add to assembling costs. ST's single chip TSM111 IC provides complete protection circuits design easier, with fewer number of components. TSM111 is an ideal supervisor IC for PC power supplies. The salient features and benefits of this device are listed below : a) Over voltage protection for 3.3V, 5V and 12V without external component. b) Over current protection for 3.3V, 5V and 12V. c) Generates Power Good signal. d) Programmable timing for Power Good signal. e) Wide range supply operating voltage up to 36V (44V AMR). f) Stable internal voltage reference. g) Two 1.6% voltage reference for Main and Auxiliary regulation. h) Few external components. i) Circuit occupies little space on PCB. j) Easy implementation of the circuit. FEATURE DESCRIPTIONS a) Over voltage protection can be implemented without any additional components. Overvoltage sense levels for 3.3V, 5V, 12V are 4V, 6.1V, 14.2V respectively. With very little tolerances, better protection is achieved. b) Over current protection can be implemented with very small value sense resistors. As the current sense threshold levels are set very low, regulation is not affected. The current sense threshold levels for 3.3V, 5V, 12V are 50mV, 50mV and 65mV respectively. c) The power good signal (pin9) is asserted to indicate the 5V and 3.3V is above the under voltage threshold level. PG pin goes high when the above condition is reached. Pull up resistor R27 (3.1K) is connected to 5V STDBY supply from this pin. d) The timing of the power good signal can be controlled by adjusting the value of the charging capacitor on pin 10. With 2.2F/16V capacitor on pin 10, 400msec turn on delay is achieved. e) The power supply can be operated from 14.5V to 36V. The VCC must always be higher than the supply voltage on the 12V input pin by 2V .i.e. if 14V is appearing 12V input pin the Vcc must be > 16V. f) Two internal high precision TL431 shunt regulators are built-in. It provides stable reference voltages with a voltage precision of 1.6%. 9/17 TSM111 with cathode connected to the IC pin 6 and anode to 5V (from STDBY supply). In normal operation the voltage on pin 6 is (opto cathode) is around 3.7 V. On the primary side the opto transistor collector is pulled through a resistor to Vref. It is required to invert the signal before connecting to the feedback compensation pin 6 of L5991A for reverse logic. i.e during normal operation the compensation pin is not affected and during fault condition the pin is pulled Low. Slight delay (R34,C32) is introduced on the primary side to avoid fault turn on condition. SUPERVISORY CIRCUIT OPERATION The system power ON/OFF logic is generated by the PC, which is "Low" in system "On" condition and "High" when the system is "Off". This is connected to remote pin 7. The IC's internal logic circuit generates a control signal on pin 6. In normal operation, when there is no over voltage or over current at the three inputs, the voltage on pin 6 follows the Remote pin 7 voltage, i.e. if the remote pin 7 is low the pin 6 is also low or vice versa. When fault is detected on the inputs, control pin 6 goes "High". This control pin 6 output can be used to turn off the Mains Power Supply during fault condition. An optocoupler is connected directly, Note : Once the fault condition is removed, it is required to reset the Remote pin to make the system function again. BILL OF MATERIAL The following are the bill of material for the 90W SMPS : No Part Number Qt Manufacturers Remarks / Descriptions 1 1 1 1 1 ST ST ST ST ST Advanced PWM Controller Aux controller PWM+Mos Triple Voltage and Current Supervisor -12V Post Regulator Programmable Voltage Reference 1 1 ST ST TO220 6A, 800V Mos TO220 22mohm 33V Mos 1 3 ST ST 1 ST 1 1 1 ST - 1A, 40V or BYV10-60 or BYW100-200 1A, 100V or 200V, BYW100-100 2x10A, 40V or STPS2045CT or STPS30L40CT 2x5A, 40V 3Amp 400VAC Bridge Rectifier or higher 1 1 1 1 1 1 1 BI Tech. ** BI Tech. BI Tech. BI Tech. BI Tech. BI Tech. - 1 - 1 Molex 1 1 1 3 1 1 Siemens Toshiba - ICs 1 L5991A 2 VIPer20 DIP 3 TSM111 4 LM7912CV 5 TL431 MOSFETS 6 STP6NB80 7 STP3020L Rectifiers 8 BYV10-40 9 BYW100-200 10 STPS20L40CT 11 STSPS10L40CT 12 KAL04 13 1N4148 Transformers / Inductors 12 HM00-98 150 13 HM00-98151 14 HM00-98 148 15 HM50-150K 16 HM11-51502 17 HM28-32022 18 10uH Connectors 19 AC input conn 20-pin conn: 20 39-02-2200 21 Fann connector 22 Fuse 3.5A 23 NTC 24 TLP621 Optocoupler 25 AC switch 26 115V-23oV selector 10/17 Aux Transformer Main Transformer Coupled inductors 15uH inductors - output filter 2.2uH inductors - output filter Common Mode choke - AC input filter 10uH inductors - output filter 20 pin output connector with terminals Molex 39-00-0038 2.2 ohm 100% transfer ratio TSM111 ... continued BILL OF MATERIAL No Part Number Qt Capacitors No Part Number Qt Resistors 27 47UF/25V 1 52 20K 1 28 3.9NF 1 53 47K,3W 1 29 .47UF/16V 1 54 100K,1/2W 2 30 1NF 2 55 5.1K 1 31 100UF/25 1 56 3 MOHM 1 32 .22UF/250V A.C 2 57 1OR 2 33 1000UF/10V 2 58 10 MOHM 1 34 3300UF/10 1 59 4.7K 5 35 470UF/16V 2 60 68K 1 36 2.2NF 2 61 680R 1 37 2.2UF/16 1 62 39K 1 38 470UF/25V 1 63 3.1K 1 39 4.7NF 4 64 470K 1 40 47UF/16V 1 65 100R 1 41 100UF/25V 3 66 10K 4 42 100UF/25V 1 67 3.3K 1 43 47NF 3 68 5 MOHM 1 44 220UF/200V 2 69 1K 1 45 1000UF/25V 1 70 330R 1 46 2.2UF 1 71 10,1/4W 2 47 1.5NF 1 72 470R 1 48 10NF 1 73 0.68 2 49 .1UF 1 74 6.8K 2 50 3.3NF 1 51 56NF 1 ** BI Technolo les Pte Lte Phone No: 65 249-1115 Fax No: 65 445-1983 Attn: Kelvin Lim, Sales Dept 11/17 PS ON/OFF PW OK CON3 CN3 11 12 13 14 15 16 17 18 19 20 1 2 3 4 5 6 7 8 9 10 TSM111 R29 10 9 12 C37 47nF 13 R39 5mohm20 R23 680 10uF/35V 1 2 5 R24 1 R13 COMP 6 VFB PGND SS F1 3.5A 1 2 S1 CN1 SW SPST CON1 A.C INPUT 100V~ 240V A.C 1nF 12/17 3 IC3 L5991A 5 7 L5991 ISEN IC3 11 3.3nF 13 1nF RCT 8 10 OUT DIS Vc Vcc 9 C7 3 4.7K C11 2 470K C16 4.7nF R9 DC NTC .22uF/250V A.C 2.2ohm R28 C31 DC-LIM VREF 4.7K .47uF/16V OPT OPT 15 3.9nF R16 R 3 .22uF/250V A.C 14 R LF01 4 + C2 VAR C1 C14 R4 10 BRIDGE R 47uF/25V 8.2K R15 5.1K C13 R5 10 47uF/25V D5 1N4148 12 10 SGND + 3 4 2 osc 1 Vcc 1N4148 4 comp VIPER20 GND 6 7 8 DRAIN (out) D1 R3 100 20V R6 470 C10 4.7nF R10 R9 47 D4 OPT 5 C9 S2 SW SPST 1 2 3 AUX TRANS D5 .22 R7A1 R7 D 1K 100K,1/2W TLP621 IC1 5 220uF/200V R12 R11 100K,1/2W 8 9 7 330 T2 OPT 220uF/200V 1 R44 R8 6.8K R2 6.8K C6 C8 C5 56nF .1uF + C32 R20 220uF/16V 4.7K R7A STBY + IC2 2 6 D8100uF/25 BYW100-200 Q1 STP6NB80 16 C4 + 10K C3 + X D6 10K TL431 C17 C30 4.7nF TLP621 R34 4 BYT11-800 GND ANALOG C35 D7 470uF/16 BYW100-200 TLP621 3 R10 4.7nF 47K IC10 470nF R D2 4 4.7K + 470uF/16V L3 10uH IC5 C12 R45 PWM 2.2uF/16 10K R43 C20 4.7K 6 C28 100uF/25V IC4 OPT C18 ADJ TSM111 SUPERVISOR IC6 17 D14 OPT C55 1 2 3 4 6 17V UV 5 C34 MAINS TRANS D3 16 2 10 12 10 11 8 7 D11 D12 C21 STP1060CT C26 STPS2045CT 2.2nF 2.2nF R18 R17 10 12 T1 Vcc 1N4148 D16 BYW100-200 BYW100-200 D13 BYW100-200 BYW100-200 9 1 11 D15 Gnd + + 19 D14 D12 20K R17A 3.5mohm 1000uF/10V L2 COUPLED INDUCTOR IS33 1 3 2 1000uF/25V 100uF/25V R IS5 12V + 18 C22 STP3020 3300uF/10 Tsur 3.3V 1000uF/10V Q3 C24 C40 VS33 5V + R19 10mohm 4 VS5 IN C23 IS12 L6 INDUCTOR 3 VS12 OUT 14 L4 2.2uH 470uF/25V VrefMAIN 2 C19 15 C25 470uF/16V L7912 100nF FbMAIN 1K C29 GND R26 39K 47nF R 100uF/25V IC7 8 VrefAUX C C51 Trem R C38 2.2uF 33K REM 3.3K Tpor R38 1K PG -12V R42 FbAUX 2 1 680,1/2W 5V STDBY 3.1K R22 F 4.7KC41 R27 10K 7 R47 1.5nF Q2 NPN1 TSM111 EVALUATION BOARD - TECHNICAL NOTE Components calculations TSM111 is a Housekeeping IC which is best used in PC Switch Mode Power Supplies for secondary 3.3V, 5V, and 12V power lines protection. TSM111 integrates all the necessary functions for a secure and reliable overcurrent and overvoltage protection, as well as a logic interface for proper communication with the motherboard and adjustable timing circuitry for optimized sequencing management. Moreover, TSM111 integrates two precise shunt voltage references for direct optocoupler drive. TSM111, integrating the equivalent of more than 25 discrete components, saves a lot of design time and fine tuning, as well as PCB area, and increases the reliability of the whole application. The overvoltage protection is not to be adjusted. Internal voltage thresholds are given by Vvs1, Vvs2, Vvs3 for respective protection of the 3.3V, 5V, 12V power lines. The overcurrent protection is given by the choice of the Sense resistors R1, R2, R3 (respectively for each power line 3.3V, 5V, 12V). Internal precise voltage thresholds define the tripping voltage drops for each line following equations 1, 2 & 3 : Vcs1 = R1 x I33 eq1 Vcs2 = R2 x I5 eq2 Vcs3 = R3 x I12 eq3 where I33, I5, and I12 are the tripping currents. The system will latch (Fault output will be active high) if the overcurrent lasts more than the authorized surge delay Tsur given by equations 4 & 5 : Icharge = Vcc / R4 eq4 Tsur = (C1 x Vsur) / Icharge eq5 Note that eq4 is an approximation of a capacitive charge where Vcc (16V min) is large versus the threshold voltage Vsur (2.5V). R4=33k, C1=4.7F => Tsur=21ms Thanks to the Tsur adjustment, the normal surge currents which occur during power up (capacitive oads charging) are blanked for a time depending on each application. How to use the TSM111 Evaluation Board ? This evaluation board allows to adapt the TSM111 housekeeping chip to an already existing PC Power Supply by simply choosing proper values for it's external components, and making the adequate connections to the I/O of the evaluation board. The Electrical Schematic of the TSM111 evaluation board is shown on figure 1. It includes the TSM111 as well as the minimum component number required to make the TSM111 fit in a PC SMPS application. EVALUATION BOARD - ELECTRICAL SCHEMATIC VrefAux R10 J18 OptMain 1 2 1 2 VrefMain 1 In12V 1 C4 R3 In3.3V J14 Gnd 1 2 C1 U2 78L05 2 C7 + Vin Vout 5Vstby 3 C6 1 Out3.3V 1 PG 1 2 J11 PG From c 1 2 J12 Rem 12 R11 FbAux 15 14 13 3 1INV Fbmain VrefMain Vs12 I Csur GND 1 2 1 J13 Vcc 5 Fault VCC TRem VrefAux PWM R6 1 2 TSM111 8 6 2 18 U1 Tsur Adj Rsur J2 Fault UV 17 Vcc R4 4 11 5Vstby Vs5 Is12 UV Vdet Out5V 5Vstby Vs33 Is5 D1 1 2 1 rs5V rs3.3V J8 Out12V J9 Out5V J10 Out3.3V Out12V rs12V R2 R1 Is33 J1 Vdet RoptMain R8 In5V 1 C5 R7 OptMain 20 J7 IN12V J6 In5V J5 In3.3V 1 2 Roptaux R9 Gnd J15 VrefMain Optaux 16 J16 VrefAux 1 2 1 19 J3 Optaux PG Tpor Rem 9 10 7 D6 D5 R5 R rem C2 Crem C3 Cpor 1 SW12 3 4 BP Rem 5Vstby 1 2 J20 13/17 TSM111 When the system has latched (either after overcurrent or overvoltage condition), the system needs to be reset via the Remote input. The C2 capacitor determines two different timings to the Fault output : C2=100nF => Trem1(ON to OFF)=8ms C2=100nF => Trem2(OFF to ON)=24ms R5 is a pull down resistor on the remote pin of TSM111. Note that an integrated pull up resistor of 100k is to be taken into account in the choice of R5, knowing that the threshold voltage of the input comparator is 1.4V. Therefore, R5 should be lower than 38.8k. R5 = 1k is a good value. The evaluation board integrates the possibility to make the Remote signal either manual, or electronic thanks to the ORing diodes D5 and D6 (and the pull down resistor R5), and the Push Button (SW1). These diodes can of course be replaced by straps according to the evaluation requirements (manual or electronic). The Tpor delay time allows the PG output (Power Good) to rise to high level when the 5V power line internal supervision circuitry has stayed above the undervoltage 4.3V threshold for more than Tpor time following the approximated equation 6 : C3 x Vth = Ic x Tpor eq6 where Vth is 2V and Ic is 20A. C3=2.2F => Tpor=300ms When the 5V power line passes under the 4.3V undervoltage threshold, the Power Good signal (PG) falls immediately to low level. The Power Good output can also be triggered by the Vdet input of the board. This input should be connected to a power line representative of the AC mains power situation. As an example, an additional winding on the auxiliary power supply offer an early warning of power down from the mains power point of view. The UV threshold is internally fixed to Vdet=1.26V. Therefore, it is necessary to add a zener diode D1. D1=15Vzener => Vdet=16.26V Note that a 20k serial pull down resistor is integrated. Therefore, only a low power zener is needed. The Fault output needs a pull up resistor R6. The Power Good output needs a pull up resistor R11. Both signals are pulled up to the 5Vstandby power supply which can be generated from the evaluation board thanks to a 78L05 5V regulator. This regulator needs a C6 bypass capacitor. 14/17 The C7 bypass capacitor smoothens the VCC pin of TSM111. The Adj (Adjust) pin should be connected to ground. Adjust allows to tune a new overvoltage protection value (ex 2.7V instead of 3.3V). Example of component lists Table 1 gives an example of component list Name Type Value Comment U1 IC TSM111 DIP20 U2 IC 78L05 TO92 R1 R 1/4W R 1/2W R 1W 10m 5m 2.5m 5A 10A 20A R2 R 1/4W R 1/2W R 1W 10m 5m 2.5m 5A 10A 20A R3 R 1/4W R 1/2W R 1W 65m 13m 6.5m 1A 5A 10A R4 R 1/4W 33K R5 R 1/4W 1K R6 R 1/4W 47K R7 R 1/4W depends on opto used R8 R 1/4W 10k comp. network to be fine tuned R9 R 1/4W depends on opto used R10 R 1/4W 10k comp. network to be fine tuned R11 R 1/4W 47K D1 Z 1/4W 15V D5 D 1/4W 1N4148 D6 D 1/4W 1N4148 C1 C Electro 4.7F C2 C Plastic 100nF C3 C Electro 2.2F C4 C Plastic 10NF comp. network to be fine tuned C5 C Plastic 10NF comp. network to be fine tuned C6 C Plastic 100nF C7 C Electro 10F TSM111 Figure 2a Figure 2b 15/17 TSM111 PACKAGE MECHANICAL DATA 20 PINS - PLASTIC DIP Millimeters Inches Dim. Min. a1 B b b1 D E e e3 F I L Z 16/17 Typ. 0.254 1.39 Max. Min. 1.65 0.010 0.055 0.45 0.25 Typ. Max. 0.065 0.018 0.010 25.4 8.5 2.54 22.86 1.000 0.335 0.100 0.900 7.1 3.93 3.3 0.280 0.155 0.130 1.34 0.053 TSM111 PACKAGE MECHANICAL DATA 20 PINS - PLASTIC MICROPACKAGE (SO) Millimeters Inches Dim. Min. A a1 a2 b b1 C c1 D E e e3 F L M S Typ. Max. Min. 2.65 0.3 2.45 0.49 0.32 0.1 0.35 0.23 Typ. 0.104 0.012 0.096 0.019 0.013 0.004 0.014 0.009 0.5 Max. 0.020 45 (typ.) 12.6 10 13.0 10.65 0.496 0.394 1.27 11.43 7.4 0.5 0.512 0.419 0.050 0.450 7.6 1.27 0.75 0.291 0.020 0.299 0.050 0.030 8 (max.) Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics (c) 2003 STMicroelectronics - All Rights Reserved STMicroelectronics GROUP OF COMPANIES Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom http://www.st.com 17/17