AVAILABLE
Functional Diagrams
Pin Configurations appear at end of data sheet.
Functional Diagrams continued at end of data sheet.
UCSP is a trademark of Maxim Integrated Products, Inc.
For pricing, delivery, and ordering information, please contact Maxim Direct
at 1-888-629-4642, or visit Maxim’s website at www.maximintegrated.com.
General Description
The MAX3000E/MAX3001E/MAX3002–MAX3012
8-channel level translators provide the level shifting nec-
essary to allow data transfer in a multivoltage system.
Externally applied voltages, VCC and VL, set the logic lev-
els on either side of the device. Logic signals present on
the VLside of the device appear as a higher voltage logic
signal on the VCC side of the device, and vice-versa.
The MAX3000E/MAX3001E/MAX3002/MAX3003 use an
architecture specifically designed to be bidirectional
without the use of a directional pin.
The MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012
feature an EN input that, when low, reduces the VCC and
VLsupply currents to < 2µA. The MAX3000E/MAX3001E
also have ±15kV ESD protection on the I/O VCC side for
greater protection in applications that route signals
externally. The MAX3000E operates at a guaranteed data
rate of 230kbps. The MAX3001E operates at a guaranteed
data rate of 4Mbps. The MAX3002–MAX3012 operate at a
guaranteed data rate of 20Mbps over the entire specified
operating voltage range.
The MAX3000E/MAX3001E/MAX3002–MAX3012 accept
VLvoltages from +1.2V to +5.5V and VCC voltages from
+1.65V to +5.5V, making them ideal for data transfer
between low-voltage ASICs/PLDs and higher voltage
systems. The MAX3000E/MAX3001E/MAX3002–
MAX3012 are available in 20-bump UCSP™, 20-pin
TQFN (5mm x 5mm), and 20-pin TSSOP packages.
Applications
CMOS Logic-Level Translation
Cellphones
SPI™ and MICROWIRE™ Level Translation
Low-Voltage ASIC Level Translation
Smart Card Readers
Cellphone Cradles
Portable POS Systems
Portable Communication Devices
Low-Cost Serial Interfaces
GPS
Telecommunications Equipment
Features
Guaranteed Data Rate Options
230kbps (MAX3000E)
4Mbps (MAX3001E)
20Mbps (MAX3002–MAX3012)
Bidirectional Level Translation Without Using a
Directional Pin (MAX3000E/MAX3001E/MAX3002/
MAX3003)
Unidirectional Level Translation
(MAX3004–MAX3012)
Operation Down to +1.2V on VL
±15kV ESD Protection on I/O VCC Lines
(MAX3000E/MAX3001E)
Ultra-Low 0.1µA Supply Current in Shutdown
Low Quiescent Current (< 10µA)
UCSP, TQFN, and TSSOP Packages
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
MAX3000E
MAX3001E
MAX3002–
MAX3012
+1.8V +3.3V
+1.8V
SYSTEM
CONTROLLER
+3.3V
SYSTEM
DATA DATA
GND
VLVCC
I/O VCC_
I/O VL_
EN
Typical Operating Circuit
UCSP is a trademark of Maxim Integrated Products, Inc.
SPI is a trademark of Motorola, Inc.
MICROWIRE is a trademark of National Semiconductor.
Pin Configurations and Functional Diagrams appear at end
of data sheet.
Note: All devices operate over the -40°C to +85°C operating
temperature range.
Ordering Information continued at end of data sheet.
PART TEMP RANGE PIN-PACKAGE
MAX3000EEUP -40°C to +85°C 20 TSSOP
MAX3000EEBP-T -40°C to +85°C 4 x 5 UCSP
Ordering Information
19-2672; Rev 5; 8/08
MAX3000E/MAX3001E/
MAX3002–MAX3012
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
ABSOLUTE MAXIMUM RATINGS
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to
absolute maximum rating conditions for extended periods may affect device reliability.
(All voltages referenced to GND.)
VCC ...........................................................................-0.3V to +6V
VL...........................................................................................-0.3V to +6V
I/O VCC_......................................................-0.3V to (VCC + 0.3V)
I/O VL_ ...........................................................-0.3V to (VL+ 0.3V)
EN, EN A/B ...............................................................-0.3V to +6V
Short-Circuit Duration I/O VL_, I/O VCC_ to GND .......Continuous
Continuous Power Dissipation (TA= +70°C)
20-Pin TSSOP (derate 7.0mW/°C above +70°C) .........559mW
20-Bump UCSP (derate 10mW/°C above +70°C) .......800mW
20-Pin 5mm x 5mm TQFN
(derate 20.0mW/°C above +70°C) .....................................1667mW
Operating Temperature Ranges
MAX3001EAUP..............................................-40°C to +125°C
MAX300_EE_P .................................................-40°C to +85°C
MAX30_ _E_P ..................................................-40°C to +85°C
Junction Temperature......................................................+150°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
ELECTRICAL CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = VLor 0
(MAX3003), TA= TMIN to TMAX. Typical values are at VCC = +1.65V, VL= +1.2V, and TA= +25°C.) (Notes 1, 2)
PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
POWER SUPPLIES
VL Supply Range VL1.2
VCC
V
VCC Supply Range VCC
1.65 5.50
V
I/O V
CC_ = 0, I/O V
L _ = 0
or I/O V
CC_ = VCC, I/O V
L _ = VL,
MAX3000E/MAX3002–MAX3012
0.1 10
Supply Current from VCC IQVCC
I/O V
CC_ = 0, I/O V
L _ = 0
or I/O V
CC_ = VCC, I/O V
L _ = VL,
MAX3001E
0.1 50
µA
I/O V
CC_ = 0, I/O V
L _ = 0
or I/O V
CC_ = VCC, I/O V
L _ = VL,
MAX3000E/MAX3002–MAX3012
0.1 10
Supply Current from VLIQVL
I/O V
CC_ = 0, I/O V
L _ = 0
or I/O V
CC_ = VCC, I/O V
L _ = VL,
MAX3001E
0.1 50
µA
TA = +25°C, EN = 0,
MAX3000E/MAX3001E/MAX3002/
MAX3004–MAX3012
0.1 2
VCC Shutdown Supply Current
ISHDN-VCC
TA = +25°C, EN A/B = 0,
MAX3003 0.1 2
µA
TA = +25°C, EN = 0,
MAX3000E/MAX3001E/MAX3002/
MAX3004–MAX3012
0.1 2
VL Shutdown Supply Current
ISHDN-VL
TA = +25°C, EN A/B = 0,
MAX3003 0.1 2
µA
2
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
ELECTRICAL CHARACTERISTICS (continued)
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = VLor 0
(MAX3003), TA= TMIN to TMAX. Typical values are at VCC = +1.65V, VL= +1.2V, and TA= +25°C.) (Notes 1, 2)
PARAMETER
SYMBOL
CONDITIONS
MIN TYP MAX UNITS
TA = +25°C, EN = 0,
MAX3000E/MAX3001E/MAX3002/
MAX3004–MAX3012
0.1 2
I/O VCC _ Three-State Output
Leakage Current
TA = +25°C, EN A/B = 0,
MAX3003 0.1 2
µA
I/O V
L _ Three-State Output
Leakage Current EN A/B = 0, MAX3003 0.1 2 µA
I/O V
L _ Pulldown Resistance
During Shutdown
EN = 0,
MAX3000E/MAX3001E/MAX3002/
MAX3004–MAX3012
4.59 8.30
kΩ
E N or EN A/B Inp ut Leakag e C ur rent
TA = +25°C1µA
LOGIC-LEVEL THRESHOLDS
I/O VL _ Input-Voltage High
Threshold VIHL
2/3 x VL
V
I/O VL _ Input-Voltage Low
Threshold VILL 1/3 x VLV
I/O VCC _ Input-Voltage High
Threshold VIHC
2/3 x VCC
V
I/O VCC _ Input-Voltage Low
Threshold VILC
1/3 x VCC
V
EN, EN A/B Input-Voltage High
Threshold VIH
VL - 0.4
V
EN, EN A/B Input-Voltage Low
Threshold VIL 0.4 V
I/O VL _ Output-Voltage High VOHL I/O VL _ source current = 20µA, I/O VCC _
VCC - 0.4V VL - 0.4 V
I/O VL _ Output-Voltage Low VOLL I/O VL _ sink current = 20µA,
I/O VCC _ 0.4V 0.4 V
I/O VCC _ Output-Voltage High VOHC I/O VCC_ source current = 20µA, I/O VL _
VL - 0.4V VCC - 0.4 V
I/O VCC _ Output-Voltage Low VOLC I/O VCC sink current = 20µA,
I/O VL _ 0.4V 0.4 V
ESD PROTECTION
I/O VCC _Human Body Model,
MAX3000E/MAX3001E
±15
kV
Maxim Integrated
3
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
TIMING CHARACTERISTICS
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = VLor 0
(MAX3003), TA= TMIN to TMAX. Typical values are at VCC = +1.65V, VL= +1.2V, and TA= +25°C.) (Notes 1, 2)
PARAMETER
SYM B O L
CONDITIONS
MIN TYP MAX UNITS
RS = 50Ω , C
VCC = 50p F, M AX 3000E ,
Fi g ur es 1a, 1b
400 800 1200
RS = 50Ω , C
VCC = 50p F, M AX 3001E ,
Fi g ur es 1a, 1b 25 50
I/O VCC_ Rise Time tRVCC
RS = 50Ω , C
VCC = 50p F,
M AX 3002–M AX 3012, Fi g ur es 1a, 1b 15
ns
RS = 50Ω , C
VCC = 50p F, M AX 3000E ,
Fi g ur es 1a, 1b
400 800 1200
RS = 50Ω , C
VCC = 50p F, M AX 3001E ,
Fi g ur es 1a, 1b 25 50
I/O VCC_ Fall Time tFVCC
RS = 50Ω , C
VCC = 50p F,
M AX 3002–M AX 3012, Fi g ur es 1a, 1b 15
ns
RS = 50Ω , C
VL = 50p F, M AX 3000E ,
Fi g ur es 2a, 2b
400 800 1200
RS = 50Ω , C
VL = 50p F, M AX 3001E ,
Fi g ur es 2a, 2b 25 50
I/O VL _ Rise Time tRVL
RS = 50Ω , C
VL = 15p F,
M AX 3002–M AX 3012, Fi g ur es 2a, 2b 15
ns
RS = 50Ω , C
VL = 50p F, M AX 3000E ,
Fi g ur es 2a, 2b
400 800 1200
RS = 50Ω , C
VL = 50p F, M AX 3001E ,
Fi g ur es 2a, 2b 25 65
I/O VL _ Fall Time tFVL
RS = 50Ω , C
VL = 15p F,
M AX 3002–M AX 3012, Fi g ur es 2a, 2b 15
ns
RS = 50Ω , C
VCC = 50p F, M AX 3000E ,
Fi g ur es 1a, 1b
1000
RS = 50Ω , C
VCC = 50p F, M AX 3001E ,
Fi g ur es 1a, 1b 50
Propagation Delay
(Driving I/O VL _)
I/OVL-VCC
RS = 50Ω , C
VCC = 50p F,
M AX 3002–M AX 3012, Fi g ur es 1a, 1b 20
ns
RS = 50Ω , C
VL = 50p F, M AX 3000E ,
Fi g ur es 2a, 2b
1000
RS = 50Ω , C
VL = 50p F, M AX 3001E ,
Fi g ur es 2a, 2b 50
Propagation Delay
(Driving I/O VCC_)
I/OVCC-VL
RS = 50Ω , C
VL = 15p F,
M AX 3002–M AX 3012, Fi g ur es 2a, 2b 20
ns
Note 1: All units are 100% production tested at TA= +25°C. Limits over the operating temperature range are guaranteed by design
and not production tested.
Note 2: For normal operation, ensure that VL< VCC. During power-up, VL> VCC does not damage the device.
4
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
TIMING CHARACTERISTICS (continued)
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX3000E/MAX3001E/MAX3002/MAX3004–MAX3012), EN A/B = VLor 0
(MAX3003), TA= TMIN to TMAX. Typical values are at VCC = +1.65V, VL= +1.2V, and TA= +25°C.) (Notes 1, 2)
PARAMETER
SYM B O L
CONDITIONS
MIN TYP MAX UNITS
RS = 50Ω , C
VCC = 50p F, C
VL = 50p F,
M AX 3000E
500
RS = 50Ω , C
VCC = 50p F, C
VL = 50p F,
M AX 3001E 10
Channel-to-Channel Skew tSKEW
RS = 50Ω , C
VCC = 50p F, C
VL = 15p F,
M AX 3002–M AX 3012 5
ns
RS
= 50Ω , C
V C C = 50p F, C
V L = 50p F,
ΔTA = + 20°C , MAX3000E (N ote 3)
800
RS = 50Ω , C
VCC = 50p F, C
VL = 50p F,
ΔTA = + 20°C , M AX 3001E ( N ote 3) 30
Part-to-Part Skew
tPPSKEW
RS = 50Ω , C
VCC = 50p F, C
VL = 15p F,
ΔTA = + 20°C , M AX 3002–M AX 3012 ( N ote 3) 10
ns
Propagation Delay from
I/O VL _ to I/O VCC_ after EN
tEN-VCC
C
VCC = 50p F, M AX 3000E /M AX 3001E ,
M AX 3002–M AX 3012, Fi g ur e 3 s
C
VL = 50p F, M AX 3000E /M AX 3001E /
M AX 3002/M AX 3004–M AX 3012, Fi g ur e 4 2
Propagation Delay from
I/O VCC_ to I/O VL _ after EN tEN-VL
C
VL = 15p F, M AX 3003, Fi g ur e 4 2
µs
RS = 50Ω , C
VCC = 50p F, C
VL = 50p F,
M AX 3000E
230 kbps
RS = 50Ω , C
VCC = 50p F, C
VL = 50p F,
M AX 3001E 4
Maximum Data Rate
RS = 50Ω , C
VCC = 50p F, C
VL = 15p F,
M AX 3002–M AX 3012 20
Mbps
Note 3: VCC from device 1 must equal VCC of device 2; VLfrom device 1 must equal VLof device 2.
Maxim Integrated
5
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
TIMING CHARACTERISTICS—MAX3002–MAX3012
(VCC = +1.65V to +5.5V, VL= +1.2V to VCC, EN = VL(MAX3002/MAX3004–MAX3012), EN A/B = VLor 0 (MAX3003), TA= TMIN to
TMAX.) (Notes 1, 2)
PARAMETER
SYM B O L
CONDITIONS
MIN TYP MAX UNITS
+1.2V VL VCC +3.3V
I/O VCC_ Rise Time tRVCC 15 ns
I/O VCC_ Fall Time tFVCC 15 ns
I/O VL _ Rise Time tRVL 15 ns
I/O VL _ Fall Time tFVL 15 ns
I/OVL-VCC
Driving I/O VL _15
Propagation Delay
I/OVCC-VL
Driving I/O VCC_15
ns
Channel-to-Channel Skew tSKEW Each translator equally loaded 5ns
Maximum Data Rate 20
Mbps
+2.5V VL VCC +3.3V
I/O VCC_ Rise Time tRVCC
8.5
ns
I/O VCC_ Fall Time tFVCC
8.5
ns
I/O VL _ Rise Time tRVL
8.5
ns
I/O VL _ Fall Time tFVL
8.5
ns
I/OVL-VCC
Driving I/O VL _
8.5
Propagation Delay
I/OVCC-VL
Driving I/O VCC_
8.5
ns
Channel-to-Channel Skew tSKEW Each translator equally loaded 10 ns
Maximum Data Rate 35
Mbps
+1.8V VL VCC +2.5V
I/O VCC_ Rise Time tRVCC 10 ns
I/O VCC_ Fall Time tFVCC 10 ns
I/O VL _ Rise Time tRVL 10 ns
I/O VL _ Fall Time tFVL 10 ns
I/OVL-VCC
Driving I/O VL _15
Propagation Delay
I/OVCC-VL
Driving I/O VCC_10
ns
Channel-to-Channel Skew tSKEW Each translator equally loaded 5 ns
Maximum Data Rate 30
Mbps
6
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Typical Operating Characteristics
(TA = +25°C, unless otherwise noted.)
2000
1500
1000
500
0
-40 10-15 356085
MAX3000E/01E/02-12 toc03
TEMPERATURE (°C)
VL SUPPLY CURRENT (μA)
VL SUPPLY CURRENT vs. TEMPERATURE
(DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
DATA RATE = 20Mbps
DATA RATE = 4Mbps
DATA RATE = 230kbps
0
2000
6000
4000
8000
10,000
1.5 2.5 3.02.0 3.5 4.0 4.5 5.0 5.5
MAX3000E/01E/02-12 toc02
SUPPLY VOLTAGE (V)
VCC SUPPLY CURRENT (μA)
VCC SUPPLY CURRENT vs. SUPPLY VOLTAGE
(DRIVING I/O VL, VL = 1.8V)
DATA RATE = 230kbps
DATA RATE = 4Mbps
DATA RATE = 20Mbps
0
100
200
300
400
500
600
1.5 2.52.0 3.0 3.5 4.0 4.5 5.0 5.5
VL SUPPLY CURRENT vs. SUPPLY VOLTAGE
(DRIVING I/O VL, VL = 1.8V)
MAX3000E/01E/02-12 toc01
SUPPLY VOLTAGE (V)
VL SUPPLY CURRENT (μA)
DATA RATE = 20Mbps
DATA RATE = 4Mbps
DATA RATE = 230kbps
0
500
1500
1000
2000
2500
-40 10-15 35 60 85
MAX3000E/01E/02-12 toc04
TEMPERATURE (°C)
VCC SUPPLY CURRENT (μA)
VCC SUPPLY CURRENT vs. TEMPERATURE
(DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
DATA RATE = 20Mbps
DATA RATE = 4Mbps
DATA RATE = 230kbps
0
20
40
60
80
100
10 40 5020 30 60 70 80 90 100
MAX3000E/01E/02-12 toc05
CAPACITIVE LOAD (pF)
VL SUPPLY CURRENT (μA)
VL SUPPLY CURRENT vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
DATA RATE = 20Mbps
DATA RATE = 4Mbps
DATA RATE = 230kbps
0
2000
1000
4000
3000
6000
5000
7000
10 30 4020 50 60 70 80 90 100
MAX3000E/01E/02-12 toc06
CAPACITIVE LOAD (pF)
VCC SUPPLY CURRENT (μA)
VCC SUPPLY CURRENT vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
DATA RATE = 20Mbps
DATA RATE = 4Mbps
DATA RATE = 230kbps
MAX3000E/01E/02-12 toc07
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
9080706050403020
500
1000
1500
2000
0
10 100
tHL
MAX3000E
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
DATA RATE = 230kbps
tLH
Maxim Integrated
7
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
0
10
20
30
40
50
60
10 3020 40 50 60 70 80 90 100
MAX3000E/01E/02-12 toc08
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX3001E
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
tHL
tLH
DATA RATE = 4Mbps
8
6
4
2
0
10 3020 40 50
MAX3000E/01E/02-12 toc09
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX3002–MAX3012
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
tLH
tHL
DATA RATE = 20Mbps
0
500
1000
1500
2000
10 20 60 80 100
MAX3000E/01E/02-12 toc10
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX3000E
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
30 40 50 70 90
tLH
tHL
DATA RATE = 230kbps
0
10
20
30
40
50
60
10 3020 40 50 60 70 80 90 100
MAX3000E/01E/02-12 toc11
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX3001E
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
tHL
tLH
DATA RATE = 4Mbps
4
3
2
1
0
10 2015 25 30
MAX3000E/01E/02-12 toc12
CAPACITIVE LOAD (pF)
RISE/FALL TIME (ns)
MAX3002–MAX3012
RISE/FALL TIME vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
tLH
tHL
DATA RATE = 20Mbps
0
100
200
300
400
500
10 40 5020 30 60 70 80 90 100
MAX3000E/01E/02-12 toc13
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
DATA RATE = 230kbps
tPHL
tPLH
MAX3000E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
8
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Typical Operating Characteristics (continued)
(TA = +25°C, unless otherwise noted.)
0
100
200
300
400
500
600
10 3020 40 50 60 70 80 90 100
MAX3000E/01E/02-12 toc16
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
MAX3000E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
tPHL
tPLH
DATA RATE = 230kbps
0
3
9
6
12
15
MAX3000E/01E/02-12 toc17
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
10 3020 40 50
MAX3001E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
tPLH
tPHL
DATA RATE = 4Mbps
0
1
3
2
4
5
MAX3000E/01E/02-12 toc18
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
10 2015 25 30
MAX3002–MAX3012
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VL (DRIVING I/O VCC, VCC = 3.3V, VL = 1.8V)
tPLH
tPHL
DATA RATE = 20Mbps
1μs/div
MAX3000E RAIL-TO-RAIL DRIVING
(DRIVING I/O VL, VCC = 3.3V, VL = 1.8V,
CVCC = 50pF, DATA RATE = 230kbps)
GND
I/O VL_
1V/div
GND
MAX3000E/01E/02-12 toc19
I/O VCC_
2V/div
40ns/div
MAX3001E RAIL-TO-RAIL DRIVING
(DRIVING I/O VL, VCC = 3.3V, VL = 1.8V,
CVCC = 50pF, DATA RATE = 4Mbps)
GND
I/O VL_
1V/div
GND
MAX3000E/01E/02-12 toc20
I/O VCC_
2V/div
10ns/div
MAX3002–MAX3012 RAIL-TO-RAIL DRIVING
(DRIVING I/O VL, VCC = 3.3V, VL = 1.8V,
CVCC = 50pF, DATA RATE = 20Mbps)
GND
I/O VL_
1V/div
GND
MAX3000E/01E/02-12 toc21
I/O VCC_
2V/div
0
10
5
20
15
25
30
10 3020 40 50
MAX3000E/01E/02-12 toc14
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
MAX3001E
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
tPHL
tPLH
DATA RATE = 4Mbps
0
4
2
8
6
10
12
10 2015 25 30
MAX3000E/01E/02-12 toc15
CAPACITIVE LOAD (pF)
PROPAGATION DELAY (ns)
MAX3002–MAX3012
PROPAGATION DELAY vs. CAPACITIVE LOAD ON
I/O VCC (DRIVING I/O VL, VCC = 3.3V, VL = 1.8V)
tPHL
tPLH
DATA RATE = 20Mbps
Maxim Integrated
9
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Pin Description
PIN
TSSOP
UCSP TQFN
NAME FUNCTION
1 B1 19 I/O VL1 Input/Output 1, Referenced to VL
2A120 V
LLogic Input Voltage, +1.2V VL VCC. Bypass VL to GND with a 0.1µF capacitor.
3 A2 1 I/O VL2 Input/Output 2, Referenced to VL
4 B2 2 I/O VL3 Input/Output 3, Referenced to VL
5 A3 3 I/O VL4 Input/Output 4, Referenced to VL
6 B3 4 I/O VL5 Input/Output 5, Referenced to VL
7 A4 5 I/O VL6 Input/Output 6, Referenced to VL
8 B4 6 I/O VL7 Input/Output 7, Referenced to VL
9 A5 7 I/O VL8 Input/Output 8, Referenced to VL
10 B5 8 EN
Enable Input. If EN is pulled low, I/O VCC1 to I/O VCC8 are in three-state, while I/O VL1
to I/O VL8 have internal 6kΩ pulldown resistors. Drive EN high (VL) for normal
operation.
11 C5 9 GND Ground
12 D5 10
I/O VCC8
Input/Output 8, Referenced to VCC
13 C4 11
I/O VCC7
Input/Output 7, Referenced to VCC
14 D4 12
I/O VCC6
Input/Output 6, Referenced to VCC
15 C3 13
I/O VCC5
Input/Output 5, Referenced to VCC
16 D3 14
I/O VCC4
Input/Output 4, Referenced to VCC
17 C2 15
I/O VCC3
Input/Output 3, Referenced to VCC
18 D2 16
I/O VCC2
Input/Output 2, Referenced to VCC
19 D1 17 VCC
VCC Input Voltage, +1.65V VCC +5.5V. Bypass VCC to GND with a 0.1µF capacitor.
20 C1 18
I/O VCC1
Input/Output 1, Referenced to VCC
EP EP Exposed Pad. Connect to GND.
MAX3000E/MAX3001E/MAX3002
10
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Pin Description (continued)
PIN
TSSOP
UCSP TQFN
NAME FUNCTION
1B119
I/O VL1A
Input/Output 1A, Referenced to VL
2A120 V
LLogic Input Voltage, +1.2V VL VCC. Bypass VL to GND with a 0.1µF capacitor.
3A21
I/O VL2A
Input/Output 2A, Referenced to VL
4B22
I/O VL3A
Input/Output 3A, Referenced to VL
5A33
I/O VL4A
Input/Output 4A, Referenced to VL
6B34
I/O VL1B
Input/Output 1B, Referenced to VL
7A45
I/O VL2B
Input/Output 2B, Referenced to VL
8B46
I/O VL3B
Input/Output 3B, Referenced to VL
9A57
I/O VL4B
Input/Output 4B, Referenced to VL
10 B5 8 EN A/B
Enable Input. If EN A/B is pulled low, channels 1B through 4B are active, and channels
1A through 4A are in three-state. If EN A/B is driven high to VL, channels 1A through 4A
are active, and channels 1B through 4B are in three-state.
11 C5 9 GND Ground
12 D5 10
I/O VCC4B
Input/Output 4B, Referenced to VCC
13 C4 11
I/O VCC3B
Input/Output 3B, Referenced to VCC
14 D4 12
I/O VCC2B
Input/Output 2B, Referenced to VCC
15 C3 13
I/O VCC1B
Input/Output 1B, Referenced to VCC
16 D3 14
I/O VCC4A
Input/Output 4A, Referenced to VCC
17 C2 15
I/O VCC3A
Input/Output 3A, Referenced to VCC
18 D2 16
I/O VCC2A
Input/Output 2A, Referenced to VCC
19 D1 17 VCC
VCC Input Voltage, +1.65V VCC +5.5V. Bypass VCC to GND with a 0.1µF capacitor.
20 C1 18
I/O VCC1A
Input/Output 1A, Referenced to VCC
EP EP Exposed Pad. Connect to GND.
MAX3003
Maxim Integrated
11
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Pin Description (continued)
NAME FUNCTION (Note 1)
VCC VCC Input Voltage, +1.65V < VCC < +5.5V. Bypass VCC to GND with a 0.1µF capacitor.
VLLogic Input Voltage, +1.2V VL VCC. Bypass VL to GND with a 0.1µF capacitor.
GND Ground
EN
(MAX3004)
Enable Input. If EN is pulled low, OVCC1–OVCC8 are in three-state, while IVL1–IVL8 have 6kΩ pulldown
resistors. Drive EN high (VL) for normal operation.
EN
(MAX3005)
Enable Input. If EN is pulled low, IVCC1 and OVCC2–OVCC8 are in three-state, while OVL1 and IVL2–IVL8 have
6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3006)
Enable Input. If EN is pulled low, IVCC1, IVCC2, and OVCC3–OVCC8 are in three-state, while OVL1, OVL2, and
IVL3–IVL8 have 6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3007)
Enable Input. If EN is pulled low, IVCC1, IVCC2, IVCC3, and OVCC4–OVCC8 are in three-state, while OVL1,
OVL2, OVL3, and IVL4–IVL8 have 6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3008)
Enable Input. If EN is pulled low, IVCC1–IVCC4 and OVCC5–OVCC8 are in three-state, while OVL1–OVL4 and
IVL5–IVL8 have 6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3009)
Enable Input. If EN is pulled low, IVCC1–IVCC5, OVCC6, OVCC7, and OVCC8 are in three-state, while
OVL1–OVL5, IVL6, IVL7, and IVL8 have 6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3010)
Enable Input. If EN is pulled low, IVCC1–IVCC6, OVCC7, and OVCC8 are in three-state, while OVL1–OVL6, IVL7,
and IVL8 have 6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3011)
Enable Input. If EN is pulled low, IVCC1–IVCC7 and OVCC8 are in three-state, while OVL1–OVL7 and IVL8 have
6kΩ pulldown resistors. Drive EN high (VL) for normal operation.
EN
(MAX3012)
Enable Input. If EN is pulled low, IVCC1–IVCC8 are in three-state, while OVL1–OVL8 have 6kΩ pulldown
resistors. Drive EN high (VL) for normal operation.
IVL1–IVL8 Inputs Referenced to VL, Numbers 1 to 8
OVL1–OVL8 Outputs Referenced to VL, Numbers 1 to 8
IVCC1–IVCC8 Inputs Referenced to VCC, Numbers 1 to 8
OVCC1–OVCC8
Outputs Referenced to VCC, Numbers 1 to 8
MAX3004–MAX3012
Note 1: For specific pin numbers, see the
Pin Configurations
.
12
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
______________________________________________Test Circuits/Timing Diagrams
MAX3000E/MAX3001E/
MAX3002/MAX3003
SOURCE RS
I/O VL
EN
VLVCC
I/O VCC
CVCC
I/OVL-VCC
I/OVL-VCC
I/O VCC
I/O VL
90%
50%
10%
90%
50%
10%
tRISE/FALL 3ns
tFVCC tRVCC
SOURCE
RS
I/O VL
EN
VLVCC
I/O VCC
CVL
MAX3000E/MAX3001E/
MAX3002/MAX3003
I/OVCC-VL
I/OVCC-VL
I/O VL
I/O VCC
90%
50%
10%
90%
50%
10%
tRISE/FALL 3ns
tFVL tRVL
Figure 1a. Driving I/O VLFigure 1b. Timing for Driving I/O VL
Figure 2a. Driving I/O VCC Figure 2b. Timing for Driving I/O VCC
Maxim Integrated
13
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
_________________________________Test Circuits/Timing Diagrams (continued)
SOURCE
EN
I/O VCC
I/O VL
CVCC
VL
EN
I/O VL
I/O VCC
t'EN-VCC
VL
VL
VCC
0
0
SOURCE
EN
I/O VCC
I/O VL
CVCC
VL
EN
I/O VL
I/O VCC
VCC
2
t"EN-VCC
VL
VL
VCC
0
0
0
tEN-VCC IS WHICHEVER IS LARGER BETWEEN t'EN-VCC AND t"EN-VCC
MAX3000E/MAX3001E/
MAX3002/MAX3003
MAX3000E/MAX3001E/
MAX3002/MAX3003
VCC
2
Figure 3. Propagation Delay from I/O VLto I/O VCC After EN
SOURCE
EN
I/O VCC
I/O VL
CVL VCC
EN
I/O VL
I/O VCC
t'EN-VL
VL
VL
VCC
0
0
0
SOURCE
EN
I/O VCC
I/O VL
CVL VCC
EN
I/O VL
I/O VCC
t"EN-VL
VL
VL
VCC
0
0
0
tEN-VL IS WHICHEVER IS LARGER BETWEEN t'EN-VL AND t"EN-VL
MAX3000E/MAX3001E/
MAX3002/MAX3003
MAX3000E/MAX3001E/
MAX3002/MAX3003
VL
2
VL
2
Figure 4. Propagation Delay from I/O VCC to I/O VLAfter EN
14
Maxim Integrated
Detailed Description
The MAX3000E/MAX3001E/MAX3002–MAX3012 logic-
level translators provide the level shifting necessary to
allow data transfer in a multivoltage system. Externally
applied voltages, VCC and VL, set the logic levels on
either side of the device. Logic signals present on the
VLside of the device appear as a higher voltage logic
signal on the VCC side of the device, and vice-versa.
The MAX3000E/MAX3001E/MAX3002/MAX3003 are
bidirectional level translators allowing data translation in
either direction (VLVCC) on any single data line.
These devices use an architecture specifically
designed to be bidirectional without the use of a direc-
tion pin. The MAX3004–MAX3012 unidirectional level
translators level shift data in one direction (VL VCC or
VCC VL) on any single data line. The
MAX3000E/MAX3001E/ MAX3002–MAX3012 accept VL
from +1.2V to +5.5V. All devices have VCC ranging
from +1.65V to +5.5V, making them ideal for data trans-
fer between low-voltage ASICs/PLDs and higher volt-
age systems.
The MAX3000E/MAX3001E/MAX3002/MAX3004–
MAX3012 feature an output enable mode that reduces
VCC supply current to less than 2µA, and VLsupply
current to less than 2µA when in shutdown. The
MAX3000E/MAX3001E have ±15kV ESD protection on
the VCC side for greater protection in applications that
route signals externally. The MAX3000E operates at a
guaranteed data rate of 230kbps; the MAX3001E oper-
ates at a guaranteed data rate of 4Mbps and the
MAX3002–MAX3012 are guaranteed with a data rate of
20Mbps of operation over the entire specified operating
voltage range.
Level Translation
For proper operation, ensure that +1.65V VCC +5.5V,
+1.2V VL+5.5V, and VLVCC. During power-up
sequencing, VLVCC does not damage the device.
During power-supply sequencing, when VCC is floating
and VLis powering up, up to 10mA current can be
sourced to each load on the VL side, yet the device does
not latch up.
The maximum data rate also depends heavily on the
load capacitance (see the
Typical Operating
Characteristics
), output impedance of the driver, and
the operational voltage range (see the
Timing
Characteristics
table).
Input Driver Requirements
The MAX3001E/MAX3002–MAX3012 architecture is
based on a one-shot accelerator output stage. See
Figure 5. Accelerator output stages are always in three-
state except when there is a transition on any of the
translators on the input side, either I/O VLor I/O VCC.
When there is such a transition, the accelerator stages
become active, charging (discharging) the capacitances
at the I/Os. Due to its bidirectional nature, both stages
become active during the one-shot pulse. This can lead
to some current feeding into the external source that is
driving the translator. However, this behavior helps to
speed up the transition on the driven side.
For proper full-speed operation, the output current
of a device that drives the inputs of the MAX3000E/
MAX3001E/MAX3002–MAX3012 should meet the fol-
lowing requirements:
MAX3000E (230kbps):
i > 1mA, Rdrv < 1kΩ
MAX3001E (4Mbps):
i > 107x V x (C + 10pF)
MAX3002–MAX3012 (20Mbps):
i > 108x V x (C + 10pF)
where i is the driver output current, V is the logic-supply
voltage (i.e., VLor VCC) and C is the parasitic capaci-
tance of the signal line.
Enable Output Mode (EN, EN A/B)
The MAX3000E/MAX3001E/MAX3002 and the MAX3004–
MAX3012 feature an EN input, and the MAX3003 has an
EN A/B input. Pull EN low to set the MAX3000E/
MAX3001E/MAX3002/MAX3004–MAX3012s’ I/O VCC1
through I/O VCC8 in three-state output mode, while I/O
VL1 through I/O VL8 have internal 6kΩpulldown resistors.
Drive EN to logic-high (VL) for normal operation. The
MAX3003 is intended for bus multiplexing or bus switch-
ing applications. Drive EN A/B low to place channels 1B
through 4B in active mode, while channels 1A through
4A are in three-state mode. Drive EN A/B to logic-high
(VL) to enable channels 1A through 4A, while channels
1B through 4B remain in three-state mode.
±15kV ESD Protection
As with all Maxim devices, ESD-protection structures
are incorporated on all pins to protect against electro-
static discharges encountered during handling and
assembly. The I/O VCC lines have extra protection
against static discharge. Maxim’s engineers have
developed state-of-the-art structures to protect these
pins against ESD of ±15kV without damage. The ESD
structures withstand high ESD in all states: normal
operation, three-state output mode, and powered
down. After an ESD event, Maxim’s E versions keep
working without latchup, whereas competing products
can latch and must be powered down to remove
latchup.
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Maxim Integrated
15
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
ESD protection can be tested in various ways. The
I/O VCC lines of the MAX3000E/MAX3001E are char-
acterized for protection to ±15kV using the Human
Body Model.
ESD Test Conditions
ESD performance depends on a variety of conditions.
Contact Maxim for a reliability report that documents
test setup, test methodology, and test results.
Human Body Model
Figure 7a shows the Human Body Model and Figure 7b
shows the current waveform it generates when dis-
charged into a low impedance. This model consists of a
100pF capacitor charged to the ESD voltage of interest,
which is then discharged into the test device through a
1.5kΩresistor.
Machine Model
The Machine Model for ESD tests all pins using a
200pF storage capacitor and zero discharge resis-
tance. Its objective is to emulate the stress caused by
contact that occurs with handling and assembly during
manufacturing. Of course, all pins require this protec-
tion during manufacturing, not just inputs and outputs.
Therefore, after PCB assembly, the Machine Model is
less relevant to I/O ports.
P
ONE-SHOT
VCC
VL
I/O VLI/O VCC
6kΩ
6kΩ
I/O VCC_ TO I/O VL_ PATH
I/O VL_ TO I/O VCC_ PATH
N
ONE-SHOT
P
ONE-SHOT
N
ONE-SHOT
Figure 5. MAX3001E/MAX3002–MAX3012 Simplified Functional Diagram (1 I/O Line)
0
VTH_IN / 6kΩ
-(VS - VTH_IN) / 6kΩ
IIN
VTH_IN
VS
VIN
WHERE VS = VCC OR VL
Figure 6. Typical IIN vs. VIN
16
Maxim Integrated
Applications Information
Power-Supply Decoupling
To reduce ripple and the chance of transmitting incor-
rect data, bypass VLand VCC to ground with a 0.1µF
capacitor. To ensure full ±15kV ESD protection, bypass
VCC to ground with a 1µF capacitor. Place all capaci-
tors as close to the power-supply inputs as possible.
I2C Level Translation
For I2C level translation for I2C applications, please refer
to the MAX3372E–MAX3379E/MAX3390E–MAX3393E
datasheet.
Unidirectional vs. Bidirectional Level
Translator
The MAX3000E/MAX3001E/MAX3002/MAX3003 bidi-
rectional translators can operate as a unidirectional
device to translate signals without inversion. The
MAX3004–MAX3012 unidirecitional level translators,
level-shift data in one direction (VLVCC or VCC VL)
on any single data line (see the
Ordering Information
.)
These devices provide the smallest solution (UCSP
package) for unidirectional level translation without
inversion.
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Maxim Integrated
17
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
HIGH-
VOLTAGE
DC
SOURCE
DEVICE
UNDER
TEST
RC 1MΩRD 1500Ω
CHARGE-CURRENT-
LIMIT RESISTOR
DISCHARGE
RESISTANCE
STORAGE
CAPACITOR
CS
100pF
Figure 7a. Human Body ESD Test Model
100%
90%
36.8%
tRL
tDL
TIME
CURRENT WAVEFORM
PEAK-TO-PEAK RINGING
(NOT DRAWN TO SCALE)
10%
0
0
AMPERES
IPIr
Figure 7b. Human Body Current Waveform
PART EN EN A/B Tx/Rx* DATA RATE ESD PROTECTION
(kV)
MAX3000E 8/8 230kbps ± 15
MAX3001E 8/8 4Mbps ± 15
MAX3002 8/8 ** ± 2
MAX3003 8/8 ** ± 2
MAX3004 8/0 ** ± 2
MAX3005 7/1 ** ± 2
MAX3006 6/2 ** ± 2
MAX3007 5/3 ** ± 2
MAX3008 4/4 ** ± 2
MAX3009 3/5 ** ± 2
MAX3010 2/6 ** ± 2
MAX3011 1/7 ** ± 2
MAX3012 0/8 ** ± 2
Selector Guide
*
Tx
=
VL
VCC; Rx= VCC
VL
**
See Table 1.
VL VCC (V)
MAX3002–MAX3012
GUARANTEED DATA RATE
(Mbps)
1.2 5.5 40
1.2 3.3 20
2.5 3.3 35
1.8 2.5 30
1.2 2.5 20
1.2 1.8 20
Table 1. Data Rate
18
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
MAX3000E/
MAX3001E/MAX3002
VLVCC
EN
I/O VL1
I/O VL2
I/O VL3
I/O VL4
I/O VL5
I/O VL6
I/O VL7
I/O VL8I/O VCC8
I/O VCC7
I/O VCC6
I/O VCC5
I/O VCC4
I/O VCC3
I/O VCC2
I/O VCC1
GND
MAX3000E/MAX3001E/MAX3002 Functional Diagram
Maxim Integrated
19
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
MAX3003
VLVCC
EN A/B
I/O VL1A
I/O VL2A
I/O VL3A
I/O VL4A
I/O VL1B
I/O VL2B
I/O VL3B
I/O VL4B I/O VCC4B
I/O VCC3B
I/O VCC2B
I/O VCC1B
I/O VCC4A
I/O VCC3A
I/O VCC2A
I/O VCC1A
GND
MAX3003 Functional Diagram
20
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
MAX3000E/MAX3001E/MAX3002
MAX3004–MAX3012
20 UCSP (Bottom View)
MAX3003
20 UCSP (Bottom View)
I/O VCC2VCC I/O VCC4I/O V
CC6
I/O VCC3I/O VCC1I/O V
CC5I/O V
CC7
I/O VL3I/O VL1I/O V
L5I/O V
L7
I/O VL2VLI/O VL4I/O V
L6
I/O VCC8
GND
EN
I/O VL8
1
B
A
C
D
2345
I/O VCC4AVCC I/O VCC2B I/O VCC4B
I/O VCC1BI/O VCC1A I/O VCC3B GND
I/O VL1BI/O VL1A I/O VL3B EN A/B
I/O VL4AVLI/O VL2B I/O VL4B
I/O VCC2A
I/O VCC3A
I/O VL3A
I/O VL2A
1
B
A
C
D
3452
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
I/O VL1
I/O VL2
I/O VL3
I/O VL4
I/O VL5
I/O VL6
I/O VL7
I/O VL8
EN
TOP VIEW
12
11
9
10
I/O VCC8
I/O VCC7
I/O VCC6
I/O VCC5
I/O VCC4
I/O VCC3
I/O VCC2
VCC
I/O VCC1
GND
MAX3000E/MAX3001E/MAX3002
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
I/O VL1A
I/O VL2A
I/O VL3A
I/O VL4A
I/O VL1B
I/O VL2B
I/O VL3B
I/O VL4B
EN A/B
12
11
9
10
I/O VCC4B
I/O VCC3B
I/O VCC2B
I/O VCC1B
I/O VCC4A
I/O VCC3A
I/O VCC2A
VCC
I/O VCC1A
GND
MAX3003
TSSOP
20
19
18
17
VL
I/O VL1A
I/O VCC1A
VCC
16 I/O VCC2A
13
12
11
14
15
I/O VCC2B
*EXPOSED PADDLE
I/O VCC1B
I/O VCC4A
I/O VCC3A
I/O VCC3B
4
3
2
1
I/O VL1B
I/O VL4A
I/O VL3A
I/O VL2A
5I/O VL2B
6
7
8
9
I/O VL3B
I/O VL4B
EN A/B
I/O VCC4B 10
GND
TOP VIEW
5mm 5mm THIN QFN
MAX3003
20
19
18
17
VL
I/O VL1
I/O VCC1
VCC
16 I/O VCC2
13
12
11
14
15
I/O VCC6
*EXPOSED PADDLE
I/O VCC5
I/O VCC4
I/O VCC3
I/O VCC7
4
3
2
1
I/O VL5
I/O VL4
I/O VL3
I/O VL2
5I/O VL6
6
7
8
9
I/O VL7
I/O VL8
EN
GND
10I/O VCC8
5mm 5mm THIN QFN
MAX3000E/
MAX3001E/
MAX3002
Pin Configurations
Maxim Integrated
21
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
I VL1
I VL2
I VL3
I VL4
I VL5
I VL6
I VL7
I VL8
EN
TOP VIEW
12
11
9
10
O VCC8
O VCC7
O VCC6
O VCC5
O VCC4
O VCC3
O VCC2
VCC
O VCC1
GND
MAX3004
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
I VL2
I VL3
I VL4
I VL5
I VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
O VCC6
O VCC5
O VCC4
O VCC3
O VCC2
VCC
I VCC1
GND
MAX3005
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
I VL3
I VL4
I VL5
I VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
O VCC6
O VCC5
O VCC4
O VCC3
I VCC2
VCC
I VCC1
GND
MAX3006
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
I VL4
I VL5
I VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
O VCC6
O VCC5
O VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3007
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
O VL4
I VL5
I VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
O VCC6
O VCC5
I VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3008
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
O VL4
O VL5
I VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
O VCC6
I VCC5
I VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3009
TSSOP
Pin Configurations (continued)
22
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
O VL4
O VL5
O VL6
I VL7
I VL8
EN
12
11
9
10
O VCC8
O VCC7
I VCC6
I VCC5
I VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3010
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
O VL4
O VL5
O VL6
O VL7
I VL8
EN
12
11
9
10
O VCC8
I VCC7
I VCC6
I VCC5
I VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3011
TSSOP
20
19
18
17
16
15
14
13
1
2
3
4
5
6
7
8
VL
O VL1
O VL2
O VL3
O VL4
O VL5
O VL6
O VL7
O VL8
EN
12
11
9
10
I VCC8
I VCC7
I VCC6
I VCC5
I VCC4
I VCC3
I VCC2
VCC
I VCC1
GND
MAX3012
TSSOP
TOP VIEW
Pin Configurations (continued)
Ordering Information (continued)
*
Future product—contact factory for availability.
-T = Tape-and-reel package.
PART TEMP RANGE PIN-PACKAGE
MAX3001EEUP -40°C to +85°C 20 TSSOP
MAX3001EEBP-T*
-40°C to +85°C 4 x 5 UCSP
MAX3001EETP -40°C to +85°C 20 TQFN
MAX3001EAUP
-40°C to +125°C
20 TSSOP
MAX3002EUP -40°C to +85°C 20 TSSOP
MAX3002EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3002ETP -40°C to +85°C 20 TQFN
MAX3003EUP -40°C to +85°C 20 TSSOP
MAX3003EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3003ETP -40°C to +85°C 20 TQFN
MAX3004EUP -40°C to +85°C 20 TSSOP
MAX3004EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3005EUP -40°C to +85°C 20 TSSOP
MAX3005EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3006EUP -40°C to +85°C 20 TSSOP
MAX3006EBP-T* -40°C to +85°C 4 x 5 UCSP
PART TEMP RANGE PIN-PACKAGE
MAX3007EUP -40°C to +85°C 20 TSSOP
MAX3007EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3008EUP -40°C to +85°C 20 TSSOP
MAX3008EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3009EUP -40°C to +85°C 20 TSSOP
MAX3009EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3010EUP -40°C to +85°C 20 TSSOP
MAX3010EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3011EUP -40°C to +85°C 20 TSSOP
MAX3011EBP-T* -40°C to +85°C 4 x 5 UCSP
MAX3012EUP -40°C to +85°C 20 TSSOP
MAX3012EBP-T* -40°C to +85°C 4 x 5 UCSP
Chip Information
TRANSISTOR COUNT: 1184
PROCESS: BiCMOS
Maxim Integrated
23
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
PACKAGE TYPE PACKAGE CODE DOCUMENT NO.
20 TSSOP U20-3 21-0066
20 TQFN T2055-4 21-0140
4 x 5 UCSP B20-1 21-0095
Package Information
For the latest package outline information and land patterns, go to www.maxim-ic.com/packages.
24
Maxim Integrated
+1.2V to +5.5V, ±15kV ESD-Protected, 0.1µA,
35Mbps, 8-Channel Level Translators
Revision History
REVISION
NUMBER
REVISION
DATE DESCRIPTION PAGES
CHANGED
4 12/06 Added TQFN packages 1, 2, 3, 10, 11, 15,
16, 21, 23–26
5 8/08 Changed pin description and package drawing 1, 10, 11, 23
25
Maxim Integrated 160 Rio Robles, San Jose, CA 95134 USA 1-408-601-1000
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied.
Maxim reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical
Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.
© 2008 Maxim Integrated The Maxim logo and Maxim Integrated are trademarks of Maxim Integrated Products, Inc.