Solid State Relays Industrial, 1-Phase ZS, Standard Range Types RA 24.. .. 06/RA 44.. .. 08/RA 48.. .. 12 * * * * * * * AC Solid State Relay Zero switching Direct copper bonding technology Rated operational current: 10, 25, 50 and 90 AACrms Non-repetitive voltage: Up to 1200 Vp Rated operational voltage: Up to 480 VACrms 3 input ranges: 3 to 32 VDC, 10 to 90 VAC/DC and 90 to 280 VAC/DC * Insulation: OPTO (input-output) 4000 VACrms Product Description Ordering Key The zero switching relay with antiparallel thyristor output is the most widely used industrial SSR due to its multiple application possibilities. The relay can be used for resis- Solid State Relay Switching mode Rated operational voltage Rated operational current Control voltage Non-rep. peak voltage tive, inductive and capacitive loads. The zero switching relay switches ON when the sine curve just crosses zero and switches OFF when the current crosses zero. RA 24 10 LA 06 Type Selection Switching mode Rated operational voltage Rated operational current Control voltage Non-rep. voltage A: Zero switching 24: 230 VACrms 44: 400 VACrms 48: 480 VACrms 10: 10 AACrms 25: 25 AACrms 50: 50 AACrms 90: 90 AACrms -D: 3 to 32 VDC LA: 10 to 90 VAC/DC HA: 90 to 280 VAC/DC 06: 650 Vp 08: 850 Vp 12: 1200 Vp Selection Guide Rated opera- Non-rep. tional voltage voltage 230 VACrms 400 VACrms 480 VACrms 2-60 650 Vp 850 Vp 1200 Vp Control voltage Rated operational current 10 AACrms 25 AACrms 50 AACrms 90 AACrms 3 to 32 VDC RA 2410 -D 06 RA 2450 -D 06 RA 2490 -D 06 10 to 90 VAC/DC RA 2410 LA 06 RA 2425 LA 06 RA 2450 LA 06 RA 2490 LA 06 90 to 280 VAC/DC RA 2410 HA 06 RA 2425 HA 06 RA 2450 HA 06 RA 2490 HA 06 3 to 32 VDC RA 4410 -D 08 RA 4425 -D 08 RA 4450 -D 08 RA 4490 -D 08 10 to 90 VAC/DC RA 4410 LA 08 RA 4425 LA 08 RA 4450 LA 08 RA 4490 LA 08 90 to 280 VAC/DC RA 4410 HA 08 RA 4425 HA 08 RA 4450 HA 08 RA 4490 HA 08 3 to 32 VDC RA 4810 -D 12 RA 4825 -D 12 RA 4850 -D 12 RA 4890 -D 12 10 to 90 VAC/DC RA 4810 LA 12 RA 4825 LA 12 RA 4850 LA 12 RA 4890 LA 12 90 to 280 VAC/DC RA 4810 HA 12 RA 4825 HA 12 RA 4850 HA 12 RA 4890 HA 12 RA 2425 -D 06 Specifications are subject to change without notice (30.09.2005) RA 24.. .. 06, RA 44.. .. 08, RA 48.. .. 12 General Specifications Operational voltage range Non-rep. peak voltage Zero voltage turn-on Operational frequency range Power factor Approvals RA 24.. .. 06 RA 44.. .. 08 RA 48.. .. 12 24 to 280 VACrms 650 Vp 20 V 45 to 65 Hz 0.5 @ 230 VACrms UL, CSA 42 to 480 VACrms 850 Vp 40 V 45 to 65 Hz 0.5 @ 400 VACrms UL, CSA 42 to 530 VACrms 1200 Vp 40 V 45 to 65 Hz 0.5 @ 480 VACrms UL, CSA RA .... -D .. RA .... LA .. RA .... HA .. 3 to 32 VDC 3 VDC 1 VDC 32 VDC 1.5 k 1/2 cycle 0.5 ms 1/2 cycle 10 to 90 VAC/DC 10 VAC/DC 1 VAC/DC 90 to 280 VAC/DC 90 VAC/DC 10 VAC/DC 5.4 k 1 cycle 0.5 ms 1/2 cycle 44 k 1 cycle 0.5 ms 1/2 cycle Input Specifications Control voltage range Pick-up voltage Drop-out voltage Reverse voltage Input impedance Response time pick-up Control pulse width Response time drop-out Output Specifications Rated operational current AC 51 AC 53a Minimum operational current Rep. overload current t=1 s Non-rep. surge current t=10 ms Off-state leakage current @ rated voltage and frequency I2t for fusing t=1-10 ms Critical dI/dt On-state voltage drop @ rated current Critical dV/dt commutating Critical dV/dt off-state RA ..10 .. .. RA ..25 .. .. RA ..50 .. .. RA ..90 .. .. 16 Arms 3 Arms 20 mArms 35 Arms 160 Ap 25 Arms 5 Arms 20 mArms 55 Arms 300 Ap 50 Arms 15 Arms 20 mArms 125 Arms 580 Ap 90 Arms 20 Arms 20 mArms 150 Arms 1150 Ap 2.5 mArms 130 A2s 50 A/s 3 mArms 450 A2s 50 A/s 3 mArms 1680 A2s 50 A/s 3 mArms 6600 A2s 100 A/s 1.6 Vrms 500 V/s 500 V/s 1.6 Vrms 500 V/s 500 V/s 1.6 Vrms 500 V/s 500 V/s 1.6 Vrms 500 V/s 500 V/s RA ..10 .. .. RA ..25 .. .. RA ..50 .. .. RA ..90 .. .. -20 to +70C (-4 to +158F) -40 to +100C (-40 to +212F) 125C ( 257F) 2.0 K/W 12.5 K/W -20 to +70C (-4 to +158F) -40 to +100C (-40 to +212F) 125C ( 257F) 1.25 K/W 12 K/W -20 to +70C (-4 to +158F) -40 to +100C (-40 to +212F) 125C ( 257F) 0.65 K/W 12 K/W -20 to +70C (-4 to +158F) -40 to +100C (-40 to +212F) 125C ( 257F) 0.3 K/W 12 K/W Thermal Specifications Operating temperature Storage temperature Junction temperature Rth junction to case Rth junction to ambient Specifications are subject to change without notice (30.09.2005) 2-61 RA 24.. .. 06, RA 44.. .. 08, RA 48.. .. 12 Insulation Accessories Rated insulation voltage Input to output Rated insulation voltage Output to case Insulation resistance Input to output Insulation resistance Ouput to case Insulation capacitance Input to output Insulation capacitance Output to case Protection cover Heatsinks DIN rail adapter Varistors Fuses 4000 VACrms 4000 VACrms For further information refer to "General Accessories". 1010 1010 8 pF 100 pF Functional Diagram Wiring Diagram Mains input/load output Control input Line/load Control input Load output/mains input Dimensions Housing Specifications *** *** *** *** ** ** = 0.4 mm *** = 0.5 mm ** Weight Housing material Base plate 10, 25, 50 A 90 A Potting compound Relay Mounting screws Mounting torque Control terminal Mounting screws Mounting torque Power terminal Mounting screws Mounting torque Approx. 110 g Noryl GFN 1, black Aluminium, nickel-plated Copper, nickel-plated Polyurethane M5 1.5 Nm M3 x 6 0.5 Nm M5 x 6 2.4 Nm All dimensions in mm 2-62 Specifications are subject to change without notice (30.09.2005) RA 24.. .. 06, RA 44.. .. 08, RA 48.. .. 12 Heatsink Dimensions (load current versus ambient temperature) RA ..10 .. .. RA ..25 .. .. Load current [A] Thermal resistance [K/W] Load current [A] Power dissipation [W] Power dissipation [W] Thermal resistance [K/W] 2 1.7 1.4 1 0.71 0.40 32 22.5 2.5 2.1 1.8 1.4 1 0.66 27 18 20 3.1 2.7 2.3 1.9 1.4 1 23 1.2 16 17.5 4. 3.5 3 2.5 2 1.4 20 2.3 1.6 15 15 4.9 4.3 3.7 3.1 2.5 1.9 16 3.6 2.8 2.1 13 12.5 6.2 5.4 4.6 3.9 3.1 2.3 13 5.2 4.3 3.5 2.6 12 10 8.1 7.1 6.1 5.1 4 3 10 6.9 5.9 4.9 4 3 10 7.5 11.3 9.9 8.5 7.1 5.6 4.2 7 10.8 9.5 8.1 6.8 5.4 4.1 7 5 - 15.6 13.3 11.1 8.9 6.7 5 5 - 14.2 12.2 10.2 8.1 6.1 5 2.5 - - - - 18.7 14 2 3 - - - - 14.6 10.9 3 20 30 40 50 60 16 2.7 2.2 1.8 1.3 0.87 0.41 22 25 15 3.1 2.6 2.1 1.7 1.2 0.65 20 14 3.7 3,1 2.6 2 1.5 0.92 13 4.3 3.7 3.1 2.5 1.9 12 5 4.3 3.7 3 11 5.9 5.1 4.4 10 6.9 6 9 7.9 7 TA 70 Ambient temp. [C] 1 - - - - - 20 30 40 50 60 - 1 TA 70 Ambient temp. [C] RA ..90 .. .. RA ..50 .. .. Load current [A] Thermal resistance [K/W] Power dissipation [W] Load current [A] Power dissipation [W] Thermal resistance [K/W] 50 0.92 0.76 0.60 0.45 0.29 - 63 90 0.63 0.53 0.42 0.32 - - 97 45 1.2 0.99 0.80 0.62 0.44 0.26 55 80 0.81 0.69 0.57 0.45 0.33 - 84 40 1.5 1.3 1.1 0.85 0.63 0.42 47 70 1 0.89 0.75 0.61 0.47 0.33 71 35 1.9 1.6 1.4 1.1 0.89 0.63 40 60 1.3 1.2 1 0.83 0.66 0.49 59 30 2.4 2.1 1.8 1.5 1.2 0.91 33 50 1.7 1.5 1.3 1.1 0.85 0.64 47 25 3 2.7 2.3 1.9 1.5 1.1 26 40 2.2 1.9 1.7 1.4 1.1 0.83 36 20 3.9 3.5 3 2.5 2 1.5 20 30 3.1 2.7 2.3 1.9 1.5 1.2 26 15 5.5 4.8 4.1 3.4 2.7 2.1 15 20 4.8 4.2 3.6 3 2.4 1.8 17 10 8.6 7.5 6.4 5.4 4.3 3.2 9 10 10 8.8 7.5 6.3 5 3.8 8 5 17.9 15.6 13.4 11.2 8,9 6.7 4 20 30 40 50 60 20 30 40 50 60 70 TA 70 TA Ambient temp. [C] Ambient temp. [C] Heatsink Selection Carlo Gavazzi Heatsink (see Accessories) No heatsink required RHS 100 Assy RHS 301 Assy RHS 301 F Assy Consult your distributor Thermal resistance Rth s-a > 12.5 3.0 0.8 0.25 < 0.25 Compare the value found in the current versus temperature chart with the standard heatsink values and select the heatsink with the next lower value. K/W K/W K/W K/W K/W Specifications are subject to change without notice (30.09.2005) 2-63 RA 24.. .. 06, RA 44.. .. 08, RA 48.. .. 12 Applications This relay is designed for use in applications in which it is exposed to high surge conditions. Care must be taken to ensure proper heatsinking when the relay is to be used at high sustained currents. Adequate electrical connection between relay terminals and cable must be ensured. Thermal characteristics The thermal design of Solid State Relays is very impor- tant. It is essential that the user makes sure that cooling is adequate and that the maximum junction temperature of the relay is not exceeded. If the heatsink is placed in a small closed room, control panel or the like, the power dissipation can cause the ambient temperature to rise. The heatsink is to be calculated on the basis of the ambient temperature and the increase in temperature. Heat flow Rth j-c Junction temperature Rth c-s Case temperature Thermal resistance: Rth j-c = junction to case 2-64 Direct bonding In the design of the output power semiconductor direct bonding of the copper layer and the ceramic substrate has been applied. This is to ensure uninhibited heat transfer and high thermal fatigue strength. The relay has been designed for applications requiring large numbers of load cycles. Power dissipation The power dissipation for intermittent use is calculated according to the following formula: Irms = ION2 x tON tON + tOFF Ex: RA 24 50 -D 06: Load current = 45 A tON = 30 s t OFF = 15 s Irms = 452 x 30 30 + 15 The rms current will be 36.7 A. Rth s-a Heatsink temperature Ambient temperature ON OFF ton toff Rth c-s = case to heatsink Rth s-a = heatsink to ambient Specifications are subject to change without notice (30.09.2005)