5–1
FEATURES
CTR Minimum at I
F
= 1 mA
H11B1, 500%
H11B2, 200%
H11B3, 100%
Isolation T est V oltage, 5300 V AC
RMS
Coupling Capacitance, 0.5 pF
Underwriters Lab File #E52744
VDE Approval #0884 (Available with
Option 1)
DESCRIPTION
The H11B1/H11B2/H11B3 are industry standard
optocouplers, consisting of a Gallium Arsenide
infrared LED and a silicon phototdarlington. These
optocouplers are constructed with a high voltage
insulation, double molded packaging process
which offers 7.5 KV withstand test capability.
Maximum Ratings
Emitter
Reverse Voltage.................................................3 V
Continuous Forward Current.........................60 mA
Power Dissipation at 25
°
C .........................100 mW
Derate Linearly from 25
°
C....................1.33 mW/
°
C
Detector
Collector-Emitter Breakdown Voltage, BV
CEO
..25 V
Emitter-Collector Breakdown Voltage BV
ECO
.....7 V
Collector-Base Breakdown Voltage, BV
CBO
.....30 V
Collector-Current (Continuous) ...................100 mA
Power Dissipation at 25
°
C .........................150 mW
Derate Linearly from 25
°
C......................2.0 mW/
°
C
Package
Isolation Test Voltage (between
emitter and detector refer
to standard climate 23
°
C/50%RH,
DIN 50014)....................................5300 VAC
RMS
Creepage............................................... min. 7 mm
Clearance............................................... min. 7 mm
Comparative Tracking Index per
DIN IEC 112/VDE 0303, part 1......................175
Isolation Resistance
V
IO
=500 V, T
A
=25
°
C
...................................
10
12
V
IO
=500 V, T
A
=100
°
C
.................................
10
11
Total Package Dissipation at 25
°
C
(LED plus Detector)................................260 mW
Derate Linearly from 25
°
C......................3.5 mW/
°
C
Storage Temperature.................... -55
°
C to +150
°
C
Operating Temperature................–55
°
C to +100
°
C
Lead Soldering Time at 260
°
C.................... 10 sec.
V
DE
Characteristics
(T
A
=25
°
C)
Sym Min. Typ. Max. Unit Condition
Emitter
Forward Voltage
H11B1, B2
H11B3 V
F
V
F
1.1
1.1 1.5
1.5 V
VI
F
=10 mA
I
F
=50 mA
Reverse Current I
R
10
µ
AV
R
=3V
Junction Capacitance C
J
50 pF V
F
=0 V, f=1 mHz
Detector
BV
CEO
30 V I
C
=1.0 mA, I
F
=0 mA
BV
ECO
7VI
E
=100
µ
A, I
F
=0 mA
BV
CBO
30 V I
C
=100
µ
A, I
F
=0 mA
I
CEO
100 nA V
CE
=10 V, I
F
=0 mA
Package
V
CEsat
1.0 I
C
=1 mA, I
C
=1 mA
DC Current Transfer Ratio
H11B1
H11B2
H11B3
CTR
CTR
CTR
500
200
100
%
%
%
V
CE
=5 V, I
F
=1 mA
V
CE
=5 V, I
F
=1 mA
V
CE
=5 V, I
F
=1 mA
Capacitance Input
to Output C
IO
0.5 pF
Switching Times ton
toff 5
30
µ
s
µ
sI
F
=5 mA
V
CE
=10 V
R
L
=100
Dimensions in inches (mm)
1
2
3
6
5
4
Base
Collector
Emitter
Anode
Cathode
NC
.010 (.25)
.014 (.35)
.110 (2.79
)
.150 (3.81
)
.130 (3.30)
.150 (3.81)
.020 (.051) min.
.300 (7.62)
typ.
.031 (0.80)
.035 (0.90)
.100 (2.54) typ.
.039
(1.00)
min.
.018 (0.45)
.022 (0.55)
.
248 (6.30)
.
256 (6.50)
.335 (8.50)
.343 (8.70)
Pin One ID.
6
5
4
12
3
18° typ.
.300 (7.62)
.347 (8.82)
4°
typ.
H11B1/H11B2/H11B3
PHOTODARLINGTON
OPTOCOUPLER
5–2
H11B1/2/3
Figure 1. Forward voltage versus forward current
Figure 2. Normalized non-saturated and
saturated CTRce versus LED current
Figure 3. Normalized non-saturated and
saturated Ice versus LED current
Figure 4. Normalized non-saturated and saturated
collector-emitter current versus LED current
100101.1
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
IF - Forward Current - mA
VF - Forward Voltage - V
Ta = -55°
C
Ta = 25°
C
Ta = 85°
C
100
101.1
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
IF - LED Current - mA
NCTRce - Normalized CTRce
Vce = 1
V
Vce = 5 V
Normalized to:
Ta = 25°
C
Vce = 5
V
IF = 1 m
A
100101.1
.01
.1
1
10
100 Vce = 5
V
Vce = 1
V
IF - LED Current - mA
NIce - Normalized Ice
Normalized to:
Ta = 25°
C
Vce = 5 V
IF = 2 mA
100
101.1
.001
.01
.1
1
10
Vce = 1V
Vce = 5
V
IF - LED Current - mA
NIce - Normalized Ice
Ta = 25°C
IF = 10 mA
Vce = 5 V
Normalized to:
Figure 5. Non-saturated and saturated HFE
versus base current
Figure 6. Low to high propagation delay versus
collector load resistance and LED current
Figure 7. High to low propagation delay versus
collector load resistance and LED current
Figure 8. Switching waveform and schematic
.01 .1 1 10 100
0
2000
4000
6000
8000
10000 Vce = 5 V
Vce = 1 V
Ib - Base Current - µA
HFE - Forward Transfer Gain
Ta = 25°
C
0 5 10 15 20
0
20
40
60
80 Ta = 25°C, Vcc = 5
V
Vth = 1.5 V
220
470
1K
IF - LED Current - mA
tpLH - Low/High Propagation
Delay - µs
100
0 5 10 15 20
0
5
10
15
20
100
1K
IF - LED Current - mA
tpHL - High/Low Propagation
delay - µs
Ta = 25°C
Vcc = 5 V
Vth = 1.5 V
IF
tR
O
tD
tStF
tPHL
tPLH
VTH=1.5 V
V
O
RL
VCC=10
V
F=10 KHz,
DF=50%
I
F=5 mA