1
DS04-27204-3E
FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP
SWITCHING REG ULATOR
CONTROLLER
MB3775
LOW VOLTAGE DUAL PWM SWIT CHING
REGULATOR CONTROLLER
The MB3775 is a dual puls e-wi dth-modul ation cont rol circui t. It contains t he basic
circuits required for two PWM control circuits. Complete synchronization is
obtained by u sing the same osc il lator output wa ve fo rm.
This IC can provide following types of output voltage: step down, step up, and
inverter. Power consumption is low, thus the MB3775 is ideal for use in high-
effi ciency port able equipment.
Wide supply voltage range: 3.6 V to 18 V
Low cu rrent consumption: 1.3 mA typical
Wide oscil lation f requency range: 1 kHz to 500 kHz
On-chip timer latch short prot ection ci rcuit
On-chip under vol tage lockout protect ion
On-chip r eference v oltage: 1. 28 V
Variab le dead time provides control over total oper ating range.
*: The package s are mounted on the epoxy boar d (4 cm x 4 cm x 1.5 mm)
NOTE : P ermanent device damage ma y oc cur i f the abo v e Absolut e Maxim um
Ratings ar e ex ceede d. Functi onal ope r ation s hould be r estricted t o th e
conditions as detailed in t he operational sections data sheet . Exposure
to absolute maximum rating conditions for extended periods may affect
dev ic e reliabi lit y.
ABSOLUTE MAXIMUM RATINGS (see NO T E) (Ta = 25°C)
Rating Symbol Condition Value Unit
Power Suppl y Voltage VCC 20 V
Error Amp. Input Voltage VI-0.3 to +10 V
Colle c tor Ou tput V o ltage VO20 V
Colle ctor Output Current IO75 mA
Power Dissipation PD
Ta 25 °C(SOP) *620 mW
Ta 25 °C(DIP) 1000 mW
Ta 25°C(VSOP) *430 mW
Operating Temperature TOP -30 to +85 °C
Storage temperat ure Tstg -55 to+125 °C
116
PIN ASSI GNMENT
(TOP VIEW)
(DIP-16P-M04)
(FPT-16P-M06)
(FPT-16P-M05)
2
3
4
5
6
7
8
15
14
13
12
11
10
9
CT
RT
+IN1
-IN1
FB1
D.T.C.1
OUT1
E/GND
VREF
SCP
+IN2
-IN2
FB2
D.T.C.2
OUT2
VCC
This device contains circuitry to protect the inputs against
damage due to high static v oltages or elec tri c fi elds . Howe ver ,
it is advised that normal precautions be taken to avoid
application of any voltage higher than maximum rated voltages
to this high impedance circuit.
2
MB3775
BLOCK DIAGRAM
RECOMMENDED OPERATING CONDITIONS
Parameter Symbol Value Unit
Min Typ Max
Power Supply Voltage VCC 3.6 6.0 18 V
Error Amp. Input Volt age VI-0.2 1.45 V
Collector Output Volt age VO––18 V
Collector Output Current IO0.3 50 mA
Phase Comp ensat ion Capacitor CP–0.1 µF
Timing Capacitor CT150 15000 pF
Timing Resistor RT5.1 100 k
Oscillato r Frequency fOSC 1–500kHz
Refer ence Vo l tag e Output Cur rent I REF -3 -1 mA
Operating Temp erature TOP -30 25 85 °C
16
3
4
5
12
14
13
15
912
7
10
8
116
+
+
_
+
_
+
_+
+
+
_
OUT 1
OUT 2
PWM Comp 1
PWM Comp 2
Error Amp 1
Error Amp 2
2.5V
1.1V
S.C.P. Comp
1.9V -
1.3V -
1µA
2.5V
SR
Latch
R
U.V.L.O.
1.8V
D.T.C. Comp
1.28V 0.9V 0.9V
GND
VREF=1.28V
VCC
Triangular
Waveform
Reference
Voltage
_
+
_
_
_
3
MB3775
OPERATION DESCRIPTION
1. Reference voltage
The reference v oltage circuit generates a stable, temperatur e-compens ated 2.5 V reference from Vcc (pin 9) for use by internal
circuits.
A reference voltage of temperatu re compensated 1/2 Vref can be obtained to external circuit by Vre f termin al ( pin 16).
2. Oscillator
A triangular waveform of any frequency is obtained by connecting an external capacitor and resistor to the CT (pin 1) and RT
terminal s (pi n 2).
The amplitude of this waveform is from 1.3 V to 1.9 V. The oscillator is inter nally connected to the non-inver ting inputs of the
PWM comparators . The oscillator waveform is availab le at the CT terminal .
3. Error amplifiers
The error amplifier detects the output volta ge of t he swi tching regulator.
The common-mode input voltage range is -0.2 V to 1.45 V, so the input reference voltage can be set the VREF and GND levels.
Error amp li fiers can be use d as eit her inverting and non- inverting amplifi ers.
The voltage ga in is fixed. Phas e com pensation is possible by connecting a capacit or to the FB terminals (pins 5 and 12) of the
error am pli fiers.
The error amplifier output are internally connected to the inverting inputs of the PWM comparators and also to the short protection
circuit.
4. Timer latch short protection circuit
The timer latch short p rotecti on circui t detects the output levels of the error amplifiers. If one or both error ampli fier out put s are
1.1 V or lower, the timer circuit begins charging the exter nally connected protection enable capacitor.
If th e output level of the error amplifier does not drop bel ow the normal voltage range before the capa citor voltag e reaches the
transistor base-emitter voltage VBE ( 0.65 V), the latch circuit turns the output drive transistor off and sets the dead time to 100 %.
5. Under voltage lockout protection circuit
An ambiguous transition state at power-on or a momentary fluctuation in the supply line may result in loss of control and may
adv ersely af fect or e ven des troy the system. The under v oltage lock out p rot ection c ir cuit compar es the internal reference vo ltage
level with the supply voltage level. If the supply voltage level falls below the reference level the latch circuit is reset the o ut pu t
drive tr ansistor is turned of f and t he dead ti m e is set to 100 %. The prote cti on enab le t erminal (pin 15) is pul led “Low”.
6. PWM comparator
Each PWM co mpar ator has two i n verting inputs and one non- inverting i nput. This v olt age- to-pulse- wi dth con v ert er cont rols the
output pulse width according t o the i nput voltage.
The PWM comparator turns the output drive transistor on when the oscillator triangular wa veform is higher than the error amplifier
output and the dead tim e control terminal v oltage.
7. Output drive transistor
The open-collector output-drive transistors provide common-emitter output of 18 V dielectric capability. The output drive tran-
sistors can source up to 50 mA of drive current to the switching power transistor.
4
MB3775
ELECTRICAL CHARACTERISTICS
Reference Secti on
Under Voltage Lockout Prot ection Section
Pr ot ec tion C ir c uit S e ctio n
Triangular W aveform Oscillat or Section
Dead-Time Control Secti on
(Ta=25°C, VCC=6V)
Parameter condition
Symbol
Value Unit
Min Typ Max
Out put Voltage IOR =-1 mA VREF 1.26 1.28 1.30 V
Out put Tem p. Stability Ta = -30 °C to +85 °CVRTC -0.2 2 %
Input Stabi lity VCC = 3.6 V to 18 V Line 210mV
Load Stabi lity IOR = -0.1 mA to -1 mA Load 17.5mV
Sho rt Circuit Output Current VREF = 0 V IOS ––
30 10 mA
Threshold Voltage IOR = -0.1 mA VtH 2.72 V
IOR = -0.1 mA VtL 2.60 V
Hysteresis Width IOR = -0.1 mA VHYS 80 120 mV
Reset Voltage (VCC)VR1.5 1.9 V
Input Threshold Voltage VtPC 0.60 0.65 0.7 V
Input Stand by Voltage No pull up VSTB 50 100 mV
Input Latch Volt age No pull up VI50 100 mV
Input Source Current Ibpc -1.4 -1.0 -0.6 µA
Comparator Threshold Vol tage Pin 5, Pin 12 VtC 1.1 V
Ocillator Frequency CT = 330 pF, RT = 1 5 k fOSC 200 kHz
Fr equen cy Deviation CT = 330 pF, RT = 1 5 kfdev 10 %
Fr equen cy Stability (VCC)V
CC = 3.6 V to 18 V fdV 1%
Fr equen cy Stability (Ta)T
a = -30 °C to +85 °C fdT -44%
Input Threshold Volt age
(fOSC = 10 kHz) Duty Cycle = 0 % Vt0 1.0 VREF
-0.15 V
Duty Cycle = 100 % Vt100 0.2 0.4 V
Input Bias Current Ibdt -0.2 1µA
Latch Mode Source Current Vdt = 0.7 V Idt -150 -80 µA
Latch Input Volt age Idt=-40 µAVdt VREF
-0.1 ––V
5
MB3775
ELECT R ICAL CHARACTERISTICS (Continued)
Error Amp. Section
PWM Comparator Section
Output Sect ion
(Ta=25°C, VCC=6V)
Parameter Condition
Symbol
Value Unit
Mi n Typ Max
Input Offset Voltage VO = 1.6 V VIO -10 +10 mV
Input Offset Current VO = 1.6 V IIO -100 +100 nA
Input Bi as Current VO = 1.6 V IB-500 -100 nA
Common Mode Input Volt age Range VCC=3.6V to 18V VICR -0.2 +1.45 V
Voltage Gai n AV84 120 V/V
Fr equ enc y Band Width AV = -3 dB BW 3 MHz
Common Mode Rejecti on Ratio CMRR 60 80 dB
Max. Output Vol tage Widt h VOM+ 2.2 2.4 V
VOM- –0.70.9V
Output Sink Current VO = 1.6 V IOM+ 24 50 µA
Output Sou rce Current VO = 1.6 V IOM- -1.2 -0.7 mA
Input Threshold Voltage
(fOSC=10 kH z) Duty Cycle = 0 % Vt0 –1.92.1V
Duty Cycle = 100 % V t100 1.05 1.3 V
Input Si nk Current Pin 5, Pin 12 = 1.6 V IIN+ 24 50 µA
Input Source Current Pin 5, Pin 12 = 1.6 V IIN- -1.2 -0.7 mA
Output Leak Curre nt VO=18V Leak 10 µA
Output Saturation Vo ltage IO=50 m A V SAT –1.11.4V
Stand by Current Output “OFF” ICCS –1.31.8mA
Average Supply Current RT=15kICCa –1.72.4mA
6
MB3775
TEST CIRCUIT
TIMING CHART (Internal Wave form)
SW TEST INPUT
OUTPUT 1
OUTPUT 2
TEST INPUT
330pF
0.1µF
12345678
16 15 14 13 12 11 10 9
MB3775
CPE
VCC=6V
15k
4.7k
4.7k
1.9V
1.5V
1.3V
1.1V
“High”
“Low”
“High”
“Low”
0.6V
0V
“High”
“Low”
3.6V
0 V
2.8 V (Typ. Value)
tPE
DEAD TIME 100%
LOCK-OUT CANCEL
Protection Enable Time tPE 0. 6 x 106 x CPE (sec)
LOCK-OUT
Error Amp. outpu t
Tr iang ul ar wavefor m os il lator ou tp ut
Dead Time PWM
input voltage
Short circuit protection
comparator Referenc e
PWM comparator
Output Transistor
collector waveform
S. C . P. Termina l
Short circuit protection
comparator output
Power supply voltage
(VCC : Min. Value )
input
output
waveform
7
MB3775
APPLICATION CIRCUIT
MB3775
116
215
314
413
5
6
7
8
12
11
10
9
820pF
10k
2.3k
33k
0.1µF
33k
1µF
33k
1µF
330
9.1k
330
33k
120µH
220µF220µF
470
120µH
5.6k
1.9k
0.1µF
0.1µF
220µF
56µH
VIN (10V)
V0- (-5V) GND V0+ (+5V)
+-
+-
-+
-+
-+
470
+-
+-
-+
-+
-+
820pF
10k
2.3k
33k
0.1µF
33k
1µF
33k
1µF
330
9.1k
330
33k
120µH
220µF220µF
100
120µH
16k
1.9k
0.1µF
0.1µF
220µF
56µH
VIN (5V)
V0- (-5V) GND V0+ (+12V)
3.9k
MB3775
116
215
314
413
5
6
7
8
12
11
10
9
Fig. 1 - Chopper Type Step Down/Inverting
Fig. 2 - Chopper Type Step Up/Inverting
8
MB3775
APPLICATION CIRCUIT (Continued)
+-
+-
-+
-+
-+
-
+
MB3775
116
215
314
413
5
6
7
8
12
11
10
9
820pF
10k
2.3k
33k
0.1µF
33k
1µF
33k
1µF
9.1k
33k
120µH
220µF220µF
1.9k
0.1µF
0.1µF
220µF
56µH
VIN (5V)
V0- (-5V) GND V0+ (+12V)
16k
150
120µH
470
330pF
33k
33k
220
470
470
470
1µF
33k
1.9k
0.1µF
0.1µF
56µH
VIN (1 0V)
V02-
(-12V)
-+
220µF
V01-
(-5V) GND V02+
(+5V) V01+
(+12V)
-+
220µF
-+
220µF
-+
220µF
-+
220µF
820pF
10k
33k
220
1nF
1.8k
0.1µF
5.6K
MB3775
116
215
314
413
5
6
7
8
12
11
10
9
Fig. 3 - Chopper Type Step Up/Inverting (For High Speed)
Fig. 4 - M ulti Output Type (Apply Transformer)
9
MB3775
HOW TO SET OUTPUT VOLTAGE
The output vol tage is set using the connection shown in Fig. 5 and 6.
The error amplifiers are supplied to the internal reference voltage circuit as are the other internal circuits. The
common -mode in put voltage rang e is from -0.2 V to +1. 45 V.
When the a mplifiers are operated non-inverting, tie the inverting terminal to VREF ( 1.28 V). When the amplifiers
are operated inverting, tie the non-in verting terminal to ground.
R2
R1
VREF
+
-
PIN 5 or PIN 12
V0+ [V0+ = V REF X (1 + R2/R1)]
Fig. 5 -Connection of Error Amp.
Output Voltage V0 is plus
R2
R1
VREF
+
-PIN 5 or PIN 12
V0- [V0- = -VREF X (R2/R1)]
Fig. 6 -Connection of Error Amp.
Ou t put Voltag e V 0 is minus
10
MB3775
HOW TO SET TIME CONSTANT FOR TIMER LATCH SHORT PROTECTION CIRCUIT
TIMING CHART shows the configurati on of the protec ti on latch circui t.
Error amplifier outputs, are internally connected to the non-inver ting inputs of the short-circuit protection comparator and are
compared with the reference voltage (1.1 V) connected to the inver ting input.
When the load condition of the switching regulator is stable, the error amplifier has no output fluctuation. Thus, shor t-circuit
protection control is also kept in balance, and the protect ion enab le terminal (pin 15) voltage is kept at about 50 mV.
If th e load condition dras ti cally changes due to a load sho rt -circuit and if lo w-l evel signals (1.1 V or lower) are input to th e non-
inverting inputs of the short-circuit protection comparator from the error amplifiers, the short-circuit protection comparator outputs
a “ Lo w” l e v e l to turn tr an si sto r Q1 off. The protect ion enab l e terminal v ol tage is disc harg ed, and the n the short-circ uit pr otecti on
comparator charges the externally connected protection enable capacitor CPE according to the following formula:
VPE = 50 mV + tPE x 10-6/CPE
0.65 = 50 mV + tPE x 10-6/CPE
CPE = tPE/0.6 (µF)
When the protection enable capacitor charges to about 0.65 V, the protection latch is set to enable the under voltage lockout
protection cir cuit and to turn the output drive transis tor off. The dead time is set to 100 %.
Once the under voltage lockout protection circuit is enabled, the protection enable is released; however, the protection latch is
not reset if the power is not turned off.
The non- inv erting inputs of the D .T.C . comparator a re connected to the D .T.C. termi nals (pins 6 and 11 ) through the pow er supply
(about 0.9 V) and are compared with a reference voltage (about 1.8 V) connected to the inverting input.
To prevent malfunction of the shor t protection circuit in soft-start mode (using D.T.C. term inals), the D.T.C. comparator outputs
a “High” level to turn Q2 on until the D.T.C. terminal voltage drops to about 0.9 V.
Error Amp .1
Error Amp.2
1.1V
S.C.P.Comp. R1
Q1Q2Q3
CPE
15
11
6
SR
Latch U.V.L.O.
1µA
2.5V
D.T.C.1
D.T.C.2
D.T.C.Comp.
+
+
-
1.8V 0.9V 0.9V
+
+
-
Fig. 7 - Protection Latch Circuit
11
MB3775
SYNCHRONIZATION OF ICs
To synchronize MB3775 ICs, first, the specified capacitor and resistor are connected to the CT and RT terminals of the master
IC to star t self oscillation. Next, 2 V is applied to the RT term inals of the slave ICs to disable the charge/discharge circuit for
trian gular wave oscillation. Final ly, the CT terminal s of the master and slave ICs are connected.
Instead of applying VRT to the RT t erminals, th ese terminals can be pulled u p by a resis tor (see re sistance indicate d by the da shed
lin e in Fig. 8). Select the pull-up resistan ce R pull from the formula given below.
VCC
0.5 x N Rpull Rpull: Pull up Resistor (kΩ)
VCC: Power Supply Voltage (V)
N: Number of Sl ave ICs
MB3775
MB3775
MB3775
2V
VRT
Rpull CTRT
VCC
Fig. 8 - Connection of Master, Slave
(MASTER)
(SLAVE)
(SLAVE)
12
MB3775
TYP ICAL PERFORMANCE CHARACTERISTICS
2.0
1.5
1.0
0.5
05101520 05101520
2.0
1.5
1.0
0.5
2.0
1.5
1.0
0.5
05101520
1.29
1.28
1.26
-30 0306090
1.25
3.0
2.0
1.0
0100 1K 10K 100K 1M
3.5
3.0
2.5
2.0
1.5
1.0
0.5
050 100 150 350200 250 300
Fig. 9 - Power supply voltage vs. Reference voltage Fig. 10 - Pow er supply voltag e vs. Average suppl y curr ent
Fig. 12 - Reference voltage vs. Temp.
Fig. 13 - Collector saturation voltage vs. Sink current Fig. 14 - Er ror Amp. Max. ou tput voltage vs. Fr equency
Power supply voltage VCC (V) Power supply voltage VCC (V)
Power supply voltage VCC (V) Temp. Ta (5C)
Sink current lO (mA) Frequency f(Hz)
1.27
Fig. 11 - Power su pply voltage vs. Stand by curren t
Reference voltage V REF(V)
Average supply current I (mA)
Stand by current ICCS (mA)
Collector saturation vo ltage VSAT (V)
Error Amp Max output voltage VOM (V) Reference voltage VREF (V) CCa
13
MB3775
TYP ICAL PERFORMANCE CHARACTERISTICS (Continued)
1M
100k
10k
1k
1001K 10K 100K 1M 10M 101102103104105
103
102
101
100
10-1
1011021031041051K 10K 100K 1M 10M
2.2
2.0
1.8
1.4
1.0
1.6
1.2
60
40
20
-20
-60
0
-40
180
90
-90
0
-180
90
60
40
20
-20
-60
0
-40
60
40
20
-20
-60
0
-40
100102103107
105
101104106
100102103107
105
101104106
180
90
-90
0
-180
180
90
-90
0
-180
CFB=1µF CFB=0.1µF
Fig. 15 - Timing resistor vs. Oscillation Frequency Fig. 16 - Triangular waveform cycle vs. Timing capacitor
Fig. 17 - Timing capacitor vs. Triangular waveform Max. Amplitude volt age Fig. 18 - Frequency vs. Gain/Phase
Fig. 19 - Frequency vs. Gain/Phase (Actual Data) Fig. 20 - Fr equency vs. Gain/Phase (Actual Data)
CT=150pF
CT=1500pF
CT=15000pF
Timing resistance=15k
VCC=6V
Timing resistance=15k
VCC=6V
Gain
Timing resistor RT ()Timi ng capacitor CT (pF)
Timing capacitor CT (pF) Frequency f(Hz)
Frequency f(Hz) Frequency f(Hz)
Phase
Gain
Phase
Gain
Phase
Timing resistor fOSC (Hz)Triangular waveform Max. Amplitude voltage (V)
Gain AV(dB)
Tr iang ular wav ef orm cy cle (µsec)
Phase ϕ (de g) Phase ϕ (deg)
Gain AV(dB)
Phase ϕ (de g)
Gain AV(dB)
14
MB3775
TYP ICAL PERFORMANCE CHARACTERISTICS (Continued)
V
60
40
20
-20
-60
0
-40
100102103107
105
101104106
180
90
-90
0
-180
Fig. 21 - Frequency vs. Gain/Phase (Actual Data)
Frequency f(Hz)
Gain
Phase
Gain A (dB)
Phase ϕ (deg)
CFB=0.01µF
15
MB3775
APPLICATION
1. How to set the error amplifier frequency characteristic
Figure 22 shows the equivalent circuit of the error am plifier.
The fr equency charac teristic of the err or amplif ie r is set by R1, R2, and CP . The high-frequency gain is set by the ratio of resistors
R1 and R2 in the IC (set value 0 dB).
When CP = 0.1 µF, the gain at 20 kHz f 5 MH z is about 0 dB. The roll -off f requency is adjusted by changing ex ternal phase
comp ensating capacitor CP (see Fig. 24).
When high fr eque ncy gain i s n eeded or the phase mus t be adv anced at a lo w f requenc y, conne ct a re sisto r RP b etw een the FB
terminal and CP as shown in Figure 23 (see Fig. 25).
NOTE: As s hown abo ve, the f requency chara cte rist ic of the e rr or amplifier is set b y the external phase compensating c apacitor
CP.
When a ceram ic c hip capa ci tor mus t be used t o meet the r equi rements of a sm all system, be c areful of i ts te mper ature
characteristic. (-30 °C 1/5 and 80 °C 1/3 f or the frequency characteristic, so a sufficient phase margin must be allowed
for at room temperature.) Ceramic chip capacitors with a low temperature characteristic (B characteristic) or film
capacitors ar e recommended (see Fig. 26 to 28).
R1 38 kPWM COMP
[- IN]
[+ IN]
[FB]
CP
R2 470
-
+
x 12 0
Error Amp.
Fig. 22 - Error Amp. Equivalent Circuit
PWM COMP
[- IN]
[+ IN]
[FB]
CP
-
+
x 120
RP
Error Amp .
Fig. 23 - Error Amp. Equivalent Circuit (Insert RP)
R1 38 k
R2 470
=
..=
..
16
MB3775
Gain AV(dB) Gain AV(dB)
60
20
-20
-40
-60
60
40
20
0
-20
-40
-60
10 100 1k 10k 100k 1M 10M 100M
100 1k 10k 100k 1M 10M 100M10
180
90
0
-90
-180
180
90
0
-90
-180
RP=0
RP=0
CP=0.1µF
CP=0.1µF
AV
AVCP=0.1µF
(Large)
(Large)
(Large)
(Large)
(Small)
(Small)
ϕ
ϕ
Frequency f(Hz)
0
40
Fig. 24 - Error Amp. Frequency characteristics
Freq uency f(Hz)
Fig. 25 - Error Amp. Frequency characteristics
Phase ϕ (deg)
Phase ϕ (deg)
17
MB3775
Gain AV(dB) Gain AV(dB) Gain AV(dB)
20
10
0
-10
-20
20
10
0
-10
-20
20
10
0
-10
-20
1K 10K 100K 1M
1K 10K 100K
1K 10K 100K 1M
90
0
90
-90
90
0
-90
ϕ
ϕ
ϕ
AV
AV
AV
-30°C
80°C
25°C
80°C
25°C
80°C
-30°C, 25°C, 80°C
-30°C,
25°C
80°C
1M
Frequency f(Hz)
Frequency f(Hz)
Frequency f(Hz)
-90
-30°C
25°C
80°C
0
-30°C
25°C
Fig. 26 - Ceramic Chip Capacitor (0.1 µF)
Temp. characteristic
Temp. : Ratio
Temp. characteristic
Temp. : Ratio
Temp. characteristic
Fig. 27 - Tantal Capacitor (0.33 µF)
Fig. 28 - Fi lm Capacitor (0.1 µF)
-30°C:0.19
25°C:1.0
80°C:0.32
-30°C :0.95 to 1.05
25°C:1.0
80°C :0.95 to 1.05
-30°C :0 . 9 to 1.1
25°C:1.0
80°C :0 .9 to 1.1
-30°C
Phase ϕ (deg)
Phase ϕ (deg)Phase ϕ (de g)
18
MB3775
2. Effect of equivalent series resistance of smoothing capacitor
The equivalent series resistance (ESR) of the smoothing capacitor in the DC/DC conv erter g reatly aff ects the loop phase characteristic.
A smoothing ca pacitor with a lo w ESR reduces system stability by increasin g the phase sh if t i n the hi gh-f requency regi on (see Fi g. 30) .
Therefore, a smoothing capacitor with a high ESR will improve system stability. Be careful when using low ESR semiconductor electrolytic
capacit ors (OS-CON) and tant alum capac it ors.
Tr
VIN DR
L
RC
C
L
Fig. 29 - Step Down DC/DC Converter Basic Circui t
20
0
-20
-40
-60
10 100 1K 10K 100K 10 100 1K 10K 100K
-90
0
-180
: RC=0
: RC=31m
Frequency f(Hz) Frequency f(Hz)
Fig. 30 - Gain vs. Frequency Fig. 31 - Phase vs. Frequency
(1)
(2)
(2)
(1)
(1)
(2)
: RC=0
: RC=31m
(1)
(2)
Gain AV (dB)
Phase ϕ (deg)
19
MB3775
Reference data
If an aluminum electrolytic smoothing capacitor (RC 1.0) is replaced with a low ESR semiconductor electrolytic
capaci tor (OS-CON: RC 0.2 ), th e phase shift is reduced by half (see Fig. 33 and 34).
R1
- IN
-
+~
R2
+ IN
VOUT V0+
VREF
VIN
FB
0.1µF
Error Amp.
Fig. 32 - DC/DC Converter AV vs. ϕ characteri stic Test Circuit
AV vs. ϕ characteristic
Bet w ee n thi s po int.
V
60
20
0
-20
-40
60
20
0
-20
-40
10 100 1K 10K 100K
10 100 1K 10K
+
-
+
-
OS-CON
220µF(16V)
RC 1.0Ω : fosc=1KHz
AI Capacitor
22µF(16V)
RC 0.2Ω : fosc=1kHz
GND
GND
V0+
V0+
AV
62°
27°
AV
ϕ
ϕ
100K
180
90
0
-90
-180
180
90
0
-90
-180
40
Frequency f(Hz)
Frequency f(Hz)
40
Fig. 33 - DC/DC Converter +5 V output
Fig. 34 - DC/DC Converter +5 V output
Gain A (dB)
Phase ϕ (deg)
Gain AV (dB)
Phase ϕ (deg)
VCC=10V
RL=25
CP=0.1µF
VCC=10V
RL=25
CP=0.1µF
20
MB3775
3. Mea su res for en su r in g sy st em st ab il ity w he n a low ES R sm o o thi ng ca p ac it or i s us ed
When a lo w ESR smoothing capacitor is used in the DC/DC con verter, only the L and C are apparent ev en in the high-frequen cy region,
and the phase is delayed by almost 1805. Consequently, the system phase margin and stability are reduced. On the other hand, a
low ESR capaci tor is needed to reduce the amount of output ripple. This is contrary to the s ystem stabil ity e xplai ned abov e .
To s olv e thi s prob lem, phase com pensati on can be used. This method i ncre ases the phase mar gin by adv anc ing the phas e when the
phase m argin i s reduced by a low ESR capacitor.
The three sugges tions list ed below are rec ommended f or DC/DC conv e rters usi ng the MB3775.
(1) As shown in Fig. 35, a capacitor is connected in parallel with the output feedback resistor to advance the phase. Use the
formula below as a guidel ine for the capaci tance .
C11
2πfR2
Unstab le F requency (See Fig. 32)
R1
CP
R2
+ IN +
-
V0+
VREF
FB
- IN
C1
Fig. 35 - External cir cuit example1 to advance the phase
60
40
20
0
-20
-4010 100 1K 10K 100K
180
90
0
-90
-180
66°
ϕ
AV
VCC=10V
RL=25
CP=0.1µF
Smoothing Capacitor
22µF OS-CON
C1=4700pF
R1=1.8k
R2=5.6
Fr eq uenc y f(H z )
Fig. 36 - DC/DC Converter +5 V output
Gain AV (dB)
Phase ϕ (deg)
21
MB3775
3. Measures for ensuring system stability when a low ESR smoothing capacitor is used
(Continued)
(2) As shown in Figure 37, a r esistor (R P) is connected bet ween the FB terminal and CP of the error amplifier to advanc e the phase .
The more RP is incr eased, the more the phase is adv ance d. Ho we v er, the gain in the high-frequency range is also i ncreased,
which causes instability. Therefore, select the optimum resistanc e (see Fig. 38).
R1
CP
R2
+ IN +
-
V0+
VREF
FB
- I N
RP
Fig. 37 - External cir cu it example 2 to advance the phase
VCC=10V
RL=25
CP=0.1µF
Smoothing Capacitor
22µF OS-CON
RP=470
R1=1.8k
R2=5.6
ϕ
45°
60
40
20
0
-20
-4010 100 1K 10K 100K
180
90
0
-90
-180
AV
Frequency f(Hz)
Fig. 38 - DC/DC Converter +5 V output
Gain AV (dB)
Phase ϕ (deg)
22
MB3775
(3) As shown i n Fi g. 39, the phase is adv anced b y using both e xample 1 and 2 (Fig. 35 and 37).
4. Error amplifier input ripple voltage
The boost circuit for charging the phase com pensating capacitor CP is connected to the error ampl if ier as shown in Figure 40
to prot ect against output volt age ov erl oad at pow er-on.
A 15 mV offset voltage i s provided for the negati ve input side so that the boost circui t onl y operates at power-on. When a
capaci to r is connect ed in par alle l wit h the out put f eedb ac k resist or, beca use the out put rippl e is too larg e or f or advanced phase
compensation, the boost circuit starts operating, which may degrade regulation if the differential input voltage of the error am-
pli fier exceeds 15 mV. Be careful with th e dif ferential input vol tage of the error amplifier.
R1
R2
+ IN +
-
V0+
VREF
FB
- IN
C1
CP
RP
Fig. 39 - External cir cuit example 3 to advance the phase
R3
[+ IN]
+
-
VREF
[FB]
[- IN]
CP
+
-
x 120
15mV
R4
VCC
V0 +
Fig. 40 - Error Amp. /Boost Equivalent circuit
Advanced phase
compensation
capacitor
Boost circuit
Error Amp .
R1 38 k
R2 470
23
MB3775
PACKAGE DIMENSIONS
+.012
–0
+.008
–.012
–0
+.012
+0.30
–0 –0
+0.30
+0.20
–0.30
0.99
3.00(.118)MIN
4.36(.172)MAX
(.244±.010)
6.20±0.25
TYP
7.62(.300)
.060
.770
.039
INDEX-1
MAX
1.27(.050)
1.52
0.25±0.05
(.010±.002)
0.51(.020)MIN
15°MAX
19.55
TYP
2.54(.100)
INDEX-2
(.018±.003)
0.46±0.08
1994 FUJITSU LIMITED D16033S
-
2C
-
3
C
16 pins, Plastic DIP
(DIP-16P-M04)
Dimensions in mm (inches ).
+0.40
–0.20
+.016
–.008
+0.05
–0.02
+.002
–.001
+0.25
–0.20 +.010
–.008
0.68(.027)MAX
0.18(.007)MAX
0.15(.006)
0.20(.008)
Details of "B" part
"B"
8.89(.350)REF
1.27(.050)
TYP
INDEX 6.80
.268
0.15
.006
10.15 .400
(.307±.016)(.209±.012)
(.018±.004)
(STAND OFF)
(.020±.008)
0.50±0.20
5.30±0.30 7.80±0.40
0.05(.002)MIN
2.25(.089)MAX
0.45±0.10
Details of "A" part
0.20(.008)
0.40(.016)
0.18(.007)MAX
0.68(.027)MAX
"A"
M
Ø0.13(.005)
0.10(.004)
1994 FUJITSU LIMITED F16015S-2C-4
C
16 pins, Plastic SOP
(FPT-16P-M06)
Dimensions in mm (inches).
24
MB3775
+0.20
–0.10
+.008
–.004
+0.10
–0.05
+.004
–.002
+0.05
–0.02
+.002
–.001
INDEX
"A"
0.10(.004)
1.25
.049
0.22
.009 0.15
.006
(.0256±.0047)
*
(.173±.004) (.252±.008) NOM
6.40±0.20
4.40±0.10 5.40(.213)
0.65±0.12
*
5.00±0.10(.197±.004)
4.55(.179)REF
Details of "A" part
0 10°
(STAND OFF)
0.10±0.10(.004±.004)
(.020±.008)
0.50±0.20
1994 FUJITSU LIMITED F16013S-2C-4
C
16 pins, Plastic SOP
(FPT-16P-M05)
Dimensions in mm (i nches ).
MB3775
FUJITSU LIMITED
All Rights Reserved.
The contents of this document are subject to change without notice.
Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications, and
are not intended to be incorporated in devices for actual use. Also,
FUJITSU is unable to assume responsibility for infringement of
any patent rights or other rights of third parties arising from the use
of this information or circuit diagrams.
The products described in this document are designed, developed
and manufactured as contemplated for general use, including
without limitation, ordinary industrial use, general office use,
personal use, and household use, but are not designed, developed
and manufactured as contemplated (1) for use accompanying fatal
risks or dangers that, unless extremely high safety is secured, could
have a serious effect to the public, and could lead directly to death,
personal injury, severe physical damage or other loss (i.e., nuclear
reaction control in nuclear facility, aircraft flight control, air traffic
control, mass transport control, medical life support system, missile
launch control in weapon system), or (2) for use requiring
extremely high reliability (i.e., submersible repeater and artificial
satellite).
Please note that Fujitsu will not be liable against you and/or any
third party for any claims or damages arising in connection with
above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You
must protect against injury, damage or loss from such failures by
incorporating safety design measures into your facility and
equipment such as redundancy, fire protection, and prevention of
over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for export
of those products from Japan.
F9803
FUJITSU LIMITED Printed in Japan