LTC5510
1
5510fa
For more information www.linear.com/LTC5510
TYPICAL APPLICATION
FEATURES DESCRIPTION
1MHz to 6GHz Wideband
High Linearity Active Mixer
The LTC
®
5510 is a high linearity mixer optimized for applica-
tions requiring very wide input bandwidth, low distortion,
and low LO leakage. The chip includes a double-balanced
active mixer with an input buffer and a high speed LO ampli-
fier. The input is optimized for use with 1:1 transmission-
line baluns, allowing very wideband impedance matching.
The mixer can be used for both up- and down-conversion
and can be used in wideband systems.
The LO can be driven differentially or single-ended and
requires only 0dBm of LO power to achieve excellent distor-
tion and noise performance, while also reducing external
drive circuit requirements. The LTC5510 offers low LO
leakage, greatly reducing the need for output filtering to
meet LO suppression requirements.
The LTC5510 is optimized for 5V but can also be used
with a 3.3V supply with slightly reduced performance.
The shutdown function allows the part to be disabled for
further power savings.
30MHz to 4GHz Up/Down Mixer for Wideband Receiver Conversion Gain, IIP3 and NF
vs Input Frequency
APPLICATIONS
n Input Frequency Range to 6GHz
n 50Ω Matched Input from 30MHz to >3GHz
n Capable of Up- or Down-Conversion
n OIP3: 27dBm at fOUT = 1575MHz
n 1.5dB Conversion Gain
n Noise Figure: 11.6dB at fOUT = 1575MHz
n High Input P1dB: 11dBm at 5V
n 5V or 3.3V Supply at 105mA
n Shutdown Control
n LO Input Impedance Always Matched
n 0dBm LO Drive Level
n 0n-Chip Temperature Monitor
n –40°C to 105°C Operation (TC)
n 16-Lead (4mm × 4mm) QFN Package
n Wideband Receivers/Transmitters
n Cable Downlink Infrastructure
n HF/VHF/UHF Mixer
n Wireless Infrastructure L, LT, LT C , LT M, Linear Technology and the Linear logo are registered trademarks of Linear
Technology Corporation. All other trademarks are the property of their respective owners.
LGND
LO
LO+
TEMP
TEMPERATURE
MONITOR
OUT+
OUT
IN+
IN
10nF
EN
EN
VCC1 VCC2 IADJ
5V
LTC5510
F
6.8nH
6.8nH
5510 TA01
LO
50Ω
OUT
1575MHz
50Ω
BD1222J50200AHF
4:1
IN
30MHz TO
4GHz
50Ω
TCM1-43X+
1:1
0.1µF0.1µF
0.1µF
0.1µF
0.6pF
6.8pF
10nF
4.75kΩ
BIAS
INPUT FREQUENCY (MHz)
0
GAIN (dB), IIP3 (dBm), NF (dB)
20
25
15
10
1000 30002000 4000
5
0
30
5510 TA01a
GC
IIP3
fOUT = 1575MHz
PIN = –10dBm
PLO = 0dBm
TC = 25°C
NF
HS LO LS LO
LTC5510
2
5510fa
For more information www.linear.com/LTC5510
PIN CONFIGURATIONABSOLUTE MAXIMUM RATINGS
Supply Voltage (VCC1, VCC2, OUT+, OUT) ................ 6.0V
Enable Voltage (EN) .........................0.3V to VCC + 0.3V
Current Adjust Voltage (IADJ) .................... 0.3V to 2.7V
LO Input Power (1MHz to 6GHz) ........................ +10dBm
LO Differential DC Voltage .......................................1.5V
LO+, LO Input DC Voltage ........................... 0.3V to 3V
IN+, IN Input Power (1MHz to 6GHz) ................ +15dBm
IN+, IN Input DC Voltage ......................... 0.3V to 2.4V
Temp Monitor Input Current (TEMP) ......................10mA
Operating Temperature Range (TC) ........ 4C to 105°C
Storage Temperature Range .................. 6C to 150°C
Junction Temperature (TJ) .................................... 150°C
(Note 1)
16 15 14 13
5 6 7 8
TOP VIEW
17
UF PACKAGE
16-LEAD (4mm
×
4mm) PLASTIC QFN
9
10
11
12
4
3
2
1
TEMP
IN+
IN
LGND
GND
OUT+
OUT
GND
TP
LO+
LO
GND
EN
VCC1
VCC2
IADJ
TJMAX = 150°C, θJC = 6°C/W
EXPOSED PAD (PIN 17) IS GND, MUST BE SOLDERED TO PCB
ORDER INFORMATION
LEAD FREE FINISH TAPE AND REEL PART MARKING PACKAGE DESCRIPTION TEMPERATURE RANGE
LTC5510IUF#PBF LTC5510IUF#TRPBF 5510 16-Lead (4mm × 4mm) Plastic QFN –40°C to 105°C
Consult LTC Marketing for parts specified with wider operating temperature ranges.
For more information on lead free part marking, go to: http://www.linear.com/leadfree/
For more information on tape and reel specifications, go to: http://www.linear.com/tapeandreel/
PARAMETER CONDITIONS MIN TYP MAX UNITS
Input Frequency Range Requires External Matching l1 to 6000 MHz
LO Input Frequency Range l1 to 6500 MHz
Output Frequency Range Requires External Matching l1 to 6000 MHz
Input Return Loss ZO = 50Ω, 30MHz to 3GHz >11 dB
LO Input Return Loss ZO = 50Ω, 1MHz to 5GHz >10 dB
Output Impedance Differential at 1500MHz 201Ω||0.6pF R||C
LO Input Power fLO = 1MHz to 5GHz –6 0 6 dBm
5V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 5V, R1 = 4.75kΩ
Conversion Gain fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
0.5 1.5
1.4
1.1
1.2
dB
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 900MHz l–0.007 dB/°C
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm. Test circuit shown in Figure 1. (Notes 2, 3, 4)
LTC5510
3
5510fa
For more information www.linear.com/LTC5510
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
24.0 27.8
25.0
26.0
24.5
dBm
dBm
dBm
dBm
SSB Noise Figure fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
11.6
12.1
11.6
11.8
14.5 dB
dB
dB
dB
SSB Noise Figure Under Blocking fIN =900MHz, fLO = 2475MHz,
fBLOCK = 800MHz, PBLOCK = +5dBm
20.3 dB
LO-IN Leakage fLO = 20MHz to 3300MHz <–50 dBm
LO-OUT Leakage fLO = 20MHz to 1000MHz
fLO = 1000MHz to 3300MHz
<–40
<–33
dBm
dBm
IN-OUT Isolation fIN = 20MHz to 1150MHz
fIN = 1150MHz to 3000MHz
>40
>22
dB
dB
IN-LO Isolation fIN = 30MHz to 3000MHz >55 dB
Input 1dB Compression fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
11.0
12.2
11.5
11.6
dBm
dBm
dBm
dBm
3.3V Wideband Up/Downmixer Application: fIN = 30MHz to 3000MHz, fOUT = 1575MHz, VCC = 3.3V, R1 = 1.8kΩ
Conversion Gain fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
1.5
1.4
1.1
1.2
dB
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 900MHz l–0.006 dB/°C
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
24.2
23.3
23.9
22.3
dBm
dBm
dBm
dBm
SSB Noise Figure fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
11.2
12.2
11.4
11.4
dB
dB
dB
dB
SSB Noise Figure Under Blocking fIN = 900MHz, fLO = 2475MHz,
fBLOCK = 800MHz PBLOCK = +5dBm
20.8 dB
LO-IN Leakage fLO = 20MHz to 3300MHz <–50 dBm
LO-OUT Leakage fLO = 20MHz to 1000MHz
fLO = 1000MHz to 3300MHz
<–40
<–33
dBm
dBm
IN-OUT Isolation fIN = 20MHz to 1150MHz
fIN = 1150MHz to 3000MHz
>40
>22
dB
dB
IN-LO Isolation fIN = 30MHz to 3000MHz >55 dB
Input 1dB Compression fIN = 190MHz, fLO = 1765MHz, Upmixer
fIN = 900MHz, fLO = 2475MHz, Upmixer
fIN = 2150MHz, fLO = 575MHz, Downmixer
fIN = 2600MHz, fLO = 1025MHz, Downmixer
8.9
10.7
10.1
9.6
dBm
dBm
dBm
dBm
LTC5510
4
5510fa
For more information www.linear.com/LTC5510
PARAMETER CONDITIONS MIN TYP MAX UNITS
5V Wideband Upmixer Application: fIN = 30MHz to 1000MHz, fOUT = 2140MHz, fLO = fIN + fOUT, VCC = 5V, R1 = 4.75kΩ
Conversion Gain fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
1.1
1.0
1.0
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 190MHz l–0.006 dB/°C
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
25.6
24.6
23.9
dBm
dBm
dBm
SSB Noise Figure fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
12.0
12.2
12.4
dB
dB
dB
SSB Noise Floor at PIN = +5dBm fIN = 800MHz, fLO = 3040MHz, fOUT = 2140MHz –151.4 dBm/Hz
LO-IN Leakage fLO = 2100MHz to 3500MHz <–50 dBm
LO-OUT Leakage fLO = 2100MHz to 3500MHz <–31 dBm
IN-OUT Isolation fIN = 30MHz to 1100MHz >40 dB
IN-LO Isolation fIN = 30MHz to 1100MHz >50 dB
Input 1dB Compression fIN = 190MHz
fIN = 450MHz
fIN = 900MHz
11.5
11.5
11.7
dBm
dBm
dBm
5V VHF/UHF Wideband Downmixer Application: fIN = 100MHz to 1000MHz, fOUT = 44MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open
Conversion Gain fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
1.9
1.9
1.9
dB
dB
dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fIN = 456MHz l–0.006 dB/°C
Two-Tone Input 3rd Order Intercept
(Δf = 2MHz)
fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
27.8
28.5
26.8
dBm
dBm
dBm
SSB Noise Figure fIN = 140MHz
fIN = 456MHz
fIN = 900MHz
10.8
10.9
11.6
dB
dB
dB
SSB Noise Figure Under Blocking fIN = 900MHz, fLO = 944MHz,
fBLOCK = 800MHz, PBLOCK = +5dBm
20.0 dB
Two-Tone Input 2nd Order Intercept
(Δf = fIM2 = 42MHz)
fIN1 = 477MHz, fIN2 = 435MHz, fLO = 500MHz 72 dBm
2LO-2RF Output Spurious Product
(fIN = fLO – fOUT/2)
fIN = 478MHz at –6dBm, fLO = 500MHz, fOUT = 44MHz –84 dBc
3LO-3RF Output Spurious Product
(fIN = fLO – fOUT/3)
fIN = 485.33MHz at –6dBm, fLO = 500MHz,
fOUT = 44.01MHz
–82 dBc
LO-IN Leakage fLO = 50MHz to 1200MHz <–62 dBm
LO-OUT Leakage fLO = 50MHz to 1200MHz <–31 dBm
IN-OUT Isolation fIN = 50MHz to 1000MHz >23 dB
IN-LO Isolation fIN = 50MHz to 1000MHz >62 dB
Input 1dB Compression fIN = 456MHz 12.1 dBm
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
LTC5510
5
5510fa
For more information www.linear.com/LTC5510
AC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. EN = High, PLO = 0dBm, PIN = –10dBm (–10dBm/tone for two-tone tests),
unless otherwise noted. Test circuit shown in Figure 1. (Notes 2, 3, 4)
Note 1: Stresses beyond those listed under Absolute Maximum Ratings
may cause permanent damage to the device. Exposure to any Absolute
Maximum Rating condition for extended periods may affect device
reliability and lifetime.
Note 2: The LTC5510 is guaranteed functional over the case operating
temperature range of –40°C to 105°C. (θJC = 6°C/W)
Note 3: SSB Noise Figure measured with a small-signal noise source,
bandpass filter and 3dB matching pad on the signal input, bandpass filter
and 6dB matching pad on the LO input, and no other RF signals applied.
Note 4: Specified performance includes all external component and
evaluation PCB losses.
DC ELECTRICAL CHARACTERISTICS
The l denotes the specifications which apply over the full operating
temperature range, otherwise specifications are at TC = 25°C. VCC = 5V, EN = High, unless otherwise noted. Test circuit shown in
Figure 1. (Note 2)
PARAMETER CONDITIONS MIN TYP MAX UNITS
Power Supply
Supply Voltage (Pins 6, 7, 10, 11) 5V Supply
3.3V Supply
l
l
4.5
3.1
5
3.3
5.3
3.5
V
V
Supply Current (Pins 6, 7, 10, 11) 5V, R1 = Open
5V, R1 = 4.75k
3.3V, R1 = Open
3.3V, R1 = 1.8k
105
99.6
105
94
113
mA
mA
mA
mA
Total Supply Current – Shutdown EN = Low 1.3 2.5 mA
Enable Logic Input (EN)
EN Input High Voltage (On) l1.8 V
EN Input Low Voltage (Off) l0.5 V
EN Input Current –0.3V to VCC + 0.3V –20 200 μA
Turn-On Time EN: Low to High 0.6 μs
Turn-Off Time EN: High to Low 0.6 μs
Current Adjust Pin (IADJ)
Open Circuit DC Voltage 1.8 V
Short Circuit DC Current IADJ Shorted to Ground 1.9 mA
Temperature Monitor Pin (TEMP)
DC Voltage at TJ = 25°C IIN = 10µA
IIN = 80µA
697
755
mV
mV
Voltage Temperature Coefficient IIN = 10µA
IIN = 80µA
l
l
–1.80
–1.61
mV/°C
mV/°C
PARAMETER CONDITIONS MIN TYP MAX UNITS
5V VHF/UHF Upmixer Application: fIN = 70MHz, fOUT = 100MHz to 1000MHz, fLO = fIN + fOUT, VCC = 5V, R1 = Open, L3 = 220nH
Conversion Gain fOUT = 456MHz 1.1 dB
Conversion Gain vs Temperature TC = –40°C to 105°C, fOUT = 456MHz l0.007 dB/°C
Two-Tone Output 3rd Order Intercept
(Δf = 2MHz)
fOUT = 456MHz 29.0 dBm
SSB Noise Figure fOUT = 456MHz 11.3 dB
SSB Noise Floor at PIN = +5dBm fIN = 44MHz, fLO = 532MHz, fOUT = 462MHz –152 dBm/Hz
LO-IN Leakage fLO = 100MHz to 1500MHz <–62 dBm
LO-OUT Leakage fLO = 100MHz to 1500MHz <–39 dBm
IN-OUT Isolation fIN = 50MHz to 400MHz >43 dB
IN-LO Isolation fIN = 50MHz to 400MHz >70 dB
Input 1dB Compression fOUT = 456MHz 11.0 dBm
LTC5510
6
5510fa
For more information www.linear.com/LTC5510
TYPICAL DC PERFORMANCE CHARACTERISTICS
TYPICAL AC PERFORMANCE CHARACTERISTICS
Conversion Gain Distribution
at 1575MHz OIP3 Distribution at 1575MHz
Noise Figure Distribution
at 1575MHz
5V Supply Current
vs Supply Voltage
3.3V Supply Current
vs Supply Voltage
(Test Circuit Shown in Figure 1)
5V Wideband Up/Downmixer Application:
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), fLO = 1765MHz, PLO = 0dBm, output
measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
SUPPLY VOLTAGE (V)
4.5
SUPPLY CURRENT (mA)
102
104
100
98
4.7 5.14.9 5.3
96
94
106
5510 G01
TC = –40°C
TC = 25°C
TC = 85°C
TC = 105°C
R1 = 4.75kΩ
SUPPLY VOLTAGE (V)
3.0
SUPPLY CURRENT (mA)
96
94
92
3.1 3.53.43.33.2 3.6
90
88
98
5510 G02
TC = –40°C
TC = 25°C
TC = 85°C
TC = 105°C
R1 = 1.8kΩ
GAIN (dB)
0.8
DISTRIBUTION (%)
40
30
20
1 1.2 21.81.61.4 2.2
10
0
50
5510 G03
fIN = 190MHz
85°C
25°C
–40°C
OIP3 (dBm)
21
DISTRIBUTION (%)
40
30
20
23 31292725 33
10
0
50
5510 G04
fIN = 190MHz
85°C
25°C
–40°C
NOISE FIGURE (dB)
9
DISTRIBUTION (%)
40
30
20
13121110 14
10
0
50
5510 G05
fIN = 190MHz
85°C
25°C
–40°C
LTC5510
7
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, OIP3 and NF
vs LO Power
Noise Figure
vs Input Blocker Level
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
IM2 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Up/Downmixer Application for
fIN < 1575MHz: VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO,
PLO = 0dBm, output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
1200800400 1600
8
4
0
32
5510 G06
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
1200
GAIN (dB), OIP3 (dBm)
28
24
20
16
12
180016001400 2000
8
4
0
32
5510 G07
OIP3
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
1500
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
270023001900 3100
–60
–70
–80
0
5510 G08
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
30–3–6–9 6
8
4
0
32
5510 G09
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OIP3
NF
GC
BLOCKER POWER (dBm)
–20
NOISE FIGURE (dB)
22
20
18
0–5–10–15 5
16
14
12
24
5510 G10
fIN = 900MHz
fBLOCK = 800MHz
fLO = 2475MHz
6dBm
3dBm
0dBm
–3dBm
PLO = –6dBm
SUPPLY VOLTAGE (V)
4.5
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
5.25.15.04.94.84.74.6 5.3
8
4
0
32
5510 G11
NF
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
GC
OIP3
OUTPUT POWER (dBm)
–15
IM3 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G12
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM2 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G13
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
fIM2 = 1385MHz
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
30
25
20
15
10
754515–15 105
5
0
35
5510 G14
NF
IP1dB
GC
OIP3
LTC5510
8
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, OIP3 and NF
vs LO Power
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Up/Downmixer Application
for fIN > 1575MHz: VCC = 5V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
INPUT FREQUENCY (MHz)
1600
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
280024002000 3200
10
5
0
30
5510 G15
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
1200
GAIN (dB), OIP3 (dBm)
25
20
15
180016001400 2000
10
5
0
30
5510 G16
OIP3
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
0 300
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
1200900600 1500
–60
–70
–80
0
5510 G17
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
0–3–6–9 3 6
10
5
0
30
5510 G18
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
SUPPLY VOLTAGE (V)
4.5
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
4.94.7 5.1 5.3
10
5
0
30
5510 G20
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM3 LEVEL (dBc)
–20
–40
–5–10 0 5
–60
–80
–100
0
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
CASE TEMPERATURE (°C)
–45 –15
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
20
25
15
4515 75 105
10
5
0
30
5510 G23
OIP3
NF
GC
IP1dB
LTC5510
9
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, OIP3 and NF
vs LO Power
Noise Figure
vs Input Blocker Level
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
IM2 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
3.3V Wideband Up/Downmixer Application
for fIN < 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
1200800400 1600
8
4
0
32
5510 G24
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
1200
GAIN (dB), OIP3 (dBm)
30
25
20
15
180016001400 2000
10
5
0
35
5510 G25
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
GC
OIP3
LO-IN
LO FREQUENCY (MHz)
1500
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
270023001900 3100
–60
–70
–80
0
5510 G26
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
30–3–6–9 6
8
4
0
32
5510 G27
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OIP3
NF
GC
BLOCKER POWER (dBm)
–20
NOISE FIGURE (dB)
22
20
18
0–5–10–15 5
16
14
12
24
5510 G28
fIN = 900MHz
fBLOCK = 800MHz
fLO = 2475MHz
6dBm
3dBm
0dBm
–3dBm
PLO = –6dBm
SUPPLY VOLTAGE (V)
3.0
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
3.53.43.33.23.1 3.6
8
4
0
32
5510 G29
NF
GC
OIP3
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM3 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G30
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM2 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G31
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
fIM2 = 1385MHz
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
30
25
20
15
10
754515–15 105
5
0
35
5510 G32
NF
IP1dB
GC
OIP3
LTC5510
10
5510fa
For more information www.linear.com/LTC5510
TYPICAL AC PERFORMANCE CHARACTERISTICS
3.3V Wideband Up/Downmixer Application for
fIN > 1575MHz: VCC = 3.3V, TC = 25°C, fIN = 2150MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), LSLO, PLO = 0dBm,
output measured at 1575MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
Conversion Gain, OIP3 and NF
vs LO Power
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain and OIP3
vs Output Frequency LO Leakage vs LO Frequency
INPUT FREQUENCY (MHz)
1600
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
10
280024002000 3200
5
0
30
5510 G33
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
1200
GAIN (dB), OIP3 (dBm)
25
20
15
10
180016001400 2000
5
0
30
5510 G34
OIP3
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
0
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
1200900600300 1500
–60
–70
–80
0
5510 G35
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
30–3–6–9 6
10
5
0
30
5510 G36
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OIP3
NF
GC
SUPPLY VOLTAGE (V)
3.0
GAIN (dB), OIP3 (dBm), NF (dB)
25
20
15
3.53.43.33.23.1 3.6
10
5
0
30
5510 G38
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM3 LEVEL (dBc)
–20
–40
0–5–10 5
–60
–80
0
5510 G39
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
25
20
15
10
754515–15 105
5
0
30
5510 G41
OIP3
NF
IP1dB
GC
LTC5510
11
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, OIP3 and NF
vs LO Power Output Noise Floor vs Input Power
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
IM2 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Input Frequency
Conversion Gain, OIP3 and NF
vs Output Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V Wideband Upmixer Application:
VCC = 5V, TC = 25°C, fIN = 190MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
2140MHz, unless otherwise noted. (Test Circuit Shown in Figure 1).
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
800400 1200
8
4
0
32
5510 G42
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
1600 1700
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
2100 22001900 20001800 2300
8
4
0
32
5510 G43
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
2100
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
330031002900270025002300 3500
–60
–70
–80
0
5510 G44
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
30–3–6–9 6
8
4
0
32
5510 G45
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OIP3
NF
GC
INPUT POWER (dBm)
–20
OUTPUT NOISE (dBm/Hz)
–148
–150
–152
0–5–10–15 5
–154
–156
–158
–160
–162
–146
5510 G46
fIN = 800MHz
fLO = 3040MHz
6dBm
3dBm
0dBm
–3dBm
PLO = –6dBm
SUPPLY VOLTAGE (V)
4.5
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
5.25.15.04.94.84.74.6 5.3
8
4
0
32
5510 G47
NF
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
GC
OIP3
OUTPUT POWER (dBm)
–15
IM3 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G48
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM2 LEVEL (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G49
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
fIM2 = 1950MHz
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
25
20
15
10
754515–15 105
5
0
30
5510 G50
NF
IP1dB
GC
OIP3
LTC5510
12
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, OIP3 and NF
vs LO Power
Output Noise Floor
vs Input Power
Conversion Gain, OIP3 and NF
vs Supply Voltage
IM3 Level
vs Output Power (2-Tone)
IM2 Level
vs Output Power (2-Tone)
Conversion Gain, OIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, OIP3 and NF
vs Output Frequency
Conversion Gain and OIP3
vs Input Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V VHF/UHF Upmixer Application:
VCC = 5V, TC = 25°C, fIN = 70MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
456MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).
OUTPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
12
800600400200 1000
8
4
0
32
5510 G51
OIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
INPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm)
28
24
20
16
300200100 400
12
8
4
0
32
5510 G52
OIP3
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
0
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
1200900600300 1500
–60
–70
–80
–90
0
5510 G53
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
30–3–6–9 6
12
4
8
0
32
5510 G54
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OIP3
NF
GC
INPUT POWER (dBm)
–20
OUTPUT NOISE (dBm/Hz)
–148
–150
–152
–154
–156
0–5–10–15 5
–158
–160
–162
–146
5510 G55
fIN = 44MHz
fOUT = 462MHz
fLO = 532MHz
6dBm
3dBm
0dBm
–3dBm
PLO = –6dBm
SUPPLY VOLTAGE (V)
4.5
GAIN (dB), OIP3 (dBm), NF (dB)
28
24
20
16
5.25.15.04.94.84.74.6 5.3
12
8
4
0
32
5510 G56
NF
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
GC
OIP3
OUTPUT POWER (dBm)
–15
IM3 (dBc)
–20
–40
–60
0 3–3–12 –9 –6 6
–80
–100
0
5510 G57
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT POWER (dBm)
–15
IM2 (dBc)
–20
–40
–60
0–3–6 3–9–12 6
–80
–100
0
5510 G58
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
fIM2 = 386MHz
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), OIP3 AND P1dB (dBm)
28
24
20
16
12
754515–15 105
8
4
0
32
5510 G59
NF
GC
OIP3
IP1dB
LTC5510
13
5510fa
For more information www.linear.com/LTC5510
Conversion Gain, IIP3 and NF
vs LO Power
Noise Figure
vs Input Blocker Level
Conversion Gain, IIP3 and NF
vs Supply Voltage
IM3 Level
vs Input Power (2-Tone)
Conversion Gain, IIP3, NF and
Input P1dB vs Case Temperature
Conversion Gain, IIP3 and NF
vs Input Frequency
Conversion Gain and IIP3
vs Output Frequency LO Leakage vs LO Frequency
TYPICAL AC PERFORMANCE CHARACTERISTICS
5V VHF/UHF Downmixer Application:
VCC = 5V, TC = 25°C, fIN = 456MHz, PIN = –10dBm (–10dBm/tone for 2-tone tests, Δf = 2MHz), HSLO, PLO = 0dBm, output measured at
44MHz, unless otherwise noted. (Test Circuit Shown in Figure 2).
INPUT FREQUENCY (MHz)
0
GAIN (dB), IIP3 (dBm), NF (dB)
25
20
15
800600400200 1000
10
5
0
30
5510 G60
IIP3
NF
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
OUTPUT FREQUENCY (MHz)
0
GAIN (dB), IIP3 (dBm)
25
20
15
25020050 100 150 300
10
5
0
30
5510 G61
IIP3
GC
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
LO-IN
LO FREQUENCY (MHz)
0
LO LEAKAGE (dBm)
–10
–20
–30
–40
–50
1000800200 400 600 1200
–60
–70
–80
0
5510 G62
LO-OUT
LO INPUT POWER (dBm)
–12
GAIN (dB), IIP3 (dBm), NF (dB)
25
20
15
30–3–6–9 6
10
5
0
30
5510 G63
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
IIP3
NF
GC
SUPPLY VOLTAGE (V)
4.5
GAIN (dB), IIP3 (dBm), NF (dB)
25
20
15
10
5.25.15.04.94.84.74.6 5.3
5
0
30
5510 G65
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
GC
IIP3
NF
INPUT POWER (dBm)
–15
IM3 (dBc)
–20
–40
–60
0–5–10 5
–80
–100
0
5510 G66
TC = 105°C
TC = 85°C
TC = 25°C
TC = –40°C
CASE TEMPERATURE (°C)
–45
GAIN AND NF (dB), IIP3 AND P1dB (dBm)
25
20
15
10
754515–15 105
5
0
30
5510 G68
IP1dB
GC
IIP3
NF
BLOCKER POWER (dBm)
–20
NOISE FIGURE (dB)
24
22
20
0–5–10–15 5
18
16
14
12
26
5510 G64
PLO = –6dBm
PLO = –3dBm
PLO = 0dBm
PLO = 3dBm
PLO = 6dBm
fIN = 900MHz
fBLOCK = 800MHz
fLO = 944MHz
LTC5510
14
5510fa
For more information www.linear.com/LTC5510
PIN FUNCTIONS
TEMP (Pin 1): Temperature Monitor. This pin is connected
to the anode of a diode through a 30Ω resistor. It may be
used to measure the die temperature by forcing a current
into the pin and measuring the voltage.
IN+, IN (Pins 2, 3): Differential Signal Input. For optimum
performance, these pins should be driven with a differential
signal. The input can be driven single-ended, with some
performance degradation, by connecting the undriven pin
to RF ground through a capacitor. An internally generated
1.6V DC bias voltage is present on these pins, thus DC
blocking capacitors are required.
LGND (Pin 4): DC Ground Return for the Input Amplifier.
This pin must be connected to DC ground. The typical
current from this pin is 64mA. In some applications an
external chip inductor may be used. Note that any induc-
tor DC resistance will reduce the current through this pin.
EN (Pin 5): Enable Pin. When the applied voltage is greater
than 1.8V, the IC is enabled. Below 0.5V, the IC is disabled.
VCC1 , VCC2 (Pins 6, 7): Power Supply Pins for the Bias
and LO Buffer Circuits. Typical current consumption is
41mA. These pins should be connected together on the
circuit board and decoupled with a 10nF capacitor located
close to the pins.
IADJ (Pin 8): Bias Adjust Pin. This pin allows adjustment
of the internal mixer current by adding an external pull-
down resistor. The typical DC voltage on this pin is 1.8V.
If not used, this pin must be left floating.
GND (Pins 9, 12, 13, Exposed Pad (Pin 17)): Ground.
These pins must be soldered to the RF ground plane on
the circuit board. The exposed metal pad of the package
provides both electrical contact to ground and a good
thermal contact to the printed circuit board.
OUT, OUT+ (Pins 10, 11,): Differential Output. These
pins must be connected to a DC supply through imped-
ance matching inductors and/or a transformer center-tap.
Typical DC current consumption is 32mA into each pin.
LO, LO+ (Pins 14, 15): Differential Local Oscillator Input.
A single-ended LO may be used by connecting one pin to
RF ground through a DC blocking capacitor. These pins
are internally biased to 1.7V; thus, DC blocking capacitors
are required. Each LO input pin is internally matched to
50Ω for both EN states.
TP (Pin 16): Test Pin. This pin is used for production test
purposes only and must be connected to ground.
BLOCK DIAGRAM
15 14 13
11
10
2
3
4
5
LO+
16
TP
17
EXPOSED PAD
GND LOGND
EN VCC1
7
VCC2 IADJ
IN+
IN
LGND
12 GND
9GND
OUT+
OUT
5510 BD
1
TEMP
6 8
BIAS
LTC5510
15
5510fa
For more information www.linear.com/LTC5510
TEST CIRCUITS
C3
C1
1
3
6
4
TEMPERATURE
MONITOR TEMP
TP GND
GND
GND
LO+
LO
50Ω
LO
IN+
IN
OUT+
OUT
LGND
EN
EN
IADJ
VCC1 VCC2
C5C4
C2
L3
C7
OUT
50Ω
0.062”
0.015”
0.015”
RF
DC1983A
EVALUATION BOARD
STACK-UP
(NELCO N4000-13)
GND
GND
BIAS
IN
50Ω
T1
1:1
1
16 13
12
11
10
9
15 14
2
3
4
58
6 7
C6
5510 F01
R1
VCC
L1
TO VCC
L2
123
654
C8
NC
T2
4:1
17
GND
LTC5510
C9
5V/3.3V Wideband
Up/Downmixer* 5V Wideband Upmixer
REF DES
fIN = 30MHz-3000MHz
fOUT = 1575MHz
fIN = 30MHz-2500 MHz
fOUT = 2140MHz SIZE COMMENTS
C1, C2, C4, C5 0.1µF 0.1µF 0402 Murata GRM15, X7R
C3 0.7pF - 0402 Murata GJM15, C0G
C6 1µF 1µF 0603 Murata GRM18, X7R
C7, C8 10nF 10nF 0402 Murata GRM15, X7R
C9 6.8pF 5.6pF 0402 Murata GJM15, C0G
L1, L2 6.8nH 5.6nH 0402 CoilCraft 0402HP
L3 0603
R1 4.75kΩ (5V),
1.8kΩ (3.3V)
4.75kΩ 0402 1%
T1 Mini-Circuits
TC1-1-13M+
Mini-Circuits
TC1-1-13M+
T2 Anaren
BD1222J50200AHF
Mini-Circuits
NCS4-232+
*Standard DC1983A Eval Board Configuration
Figure 1. High Frequency Output Test Circuit Schematic (DC1983A)
LTC5510
16
5510fa
For more information www.linear.com/LTC5510
TEST CIRCUITS
IN
50Ω
T1
1:1
C3
1 6
3 4
C1
TEMPERATURE
MONITOR TEMP
TP GND
GND
GND
LO+
LO
50Ω
LO
IN+
IN
OUT+
OUT
LGND
EN
EN
IADJ
VCC1 VCC2
C5C4
C2
L3
C7
OUT+
0.062”
0.015”
0.015”
RF
DC1984A
EVALUATION BOARD
STACK-UP
(NELCO N4000-13)
GND
GND
BIAS
OUT
1
16 13
12
11
10
9
15 14
2
3
4
58
6 7
C6
5510 F02
R1
VCC
L1
L4
L5
L2
OPTIONAL
DIFF OUT
C8
T2
4:1
17
GND
LTC5510
C9
C10
1
2
3
6
4
Figure 2. Low Frequency Output Test Circuit Schematic (DC1984A)
5V VHF/UHF Upmixer*
5V VHF/UHF
Wideband Downmixer
REF DES
fIN = 70MHz
fOUT = 100MHz-1000 MHz
fIN = 100MHz-1000 MHz
fOUT = 44MHz SIZE COMMENTS
C1, C2, C4, C5 0.1µF 0.1µF 0402 Murata GRM15, X7R
C3 0.5pF 0.9pF 0402 Murata GJM15, C0G
C6 1µF 1µF 0603 Murata GRM18, X7R
C7, C8, C9, C10 10nF 10nF 0402 Murata GRM15, X7R
L1, L2 - - 0603
L3 220nH 0603 Coilcraft 0603HP, WE 744761
L4, L5 15nH 0402 CoilCraft 0402HP
R1 - - 0402
T1 Mini-Circuits
TC1-1-13M+
Mini-Circuits
TC1-1-13M+
T2 Mini-Circuits
TC4-19LN+
Mini-Circuits
TC4-1W-7ALN+
*Standard DC1984A Eval Board Configuration
LTC5510
17
5510fa
For more information www.linear.com/LTC5510
The LTC5510 uses wideband high performance RF and LO
amplifiers driving a double-balanced mixer core to achieve
frequency up- or down-conversion with high linearity over
a very broad frequency range. For flexibility, all ports are
differential; however, the LO port has also been optimized
for single-ended use. Low side or high side LO injection
can be used. The IN port may also be driven single-ended,
though with some reduction in performance.
See the Pin Functions and Block Diagram sections for a
description of each pin. Test circuit schematics showing all
APPLICATIONS INFORMATION
Figure 3. LTC5510 Evaluation Board Layouts
3a. High Frequency Output Board (DC1983A)
3b. Low Frequency Output Board (DC1984A)
external components required for the data sheet specified
performance are shown in Figures 1 and 2. The evaluation
boards are shown in Figures 3a and 3b.
The High Frequency Output test circuit, shown in Figure 1,
utilizes a multilayer chip balun to realize a single-ended
output. The Low Frequency Output test circuit in Figure 2
uses a wire-wound balun and is designed to accommodate
a differential output if desired. Both the IN and LO ports
are very broadband and use the same configurations for
both test circuits. Additional components may be used
to modify the DC supply current or frequency response,
which will be discussed in the following sections.
IN Port Interface
A simplified schematic of the mixers input is shown in
Figure 4a. The IN+ and IN pins drive the bases of the input
transistors while internal resistors are used for impedance
matching. These pins are internally biased to a common
mode voltage of 1.6V, thus external capacitors C1 and C2
are required for DC isolation and can be used for impedance
matching. A small value of C3 can be used to improve the
impedance match at high frequencies and may improve
noise figure. The 1:1 transformer, T1, provides single-ended
to differential conversion for optimum performance.
The typical return loss at the IN port is shown in Figure 5
with 0.1µF at C1 and C2. The performance is better than
12dB up to 2.6GHz without C3. Adding a capacitance of
0.7pF at C3 extends the impedance match to 3GHz.
Differential input impedances (parallel equivalent) for
various frequencies are listed in Table 1. At frequencies
below 30MHz additional external components may be
needed to optimize the input impedance. Figure 4b shows
an equivalent circuit that can be used for single-ended
or differential impedance matching at frequencies below
1GHz. Above 1GHz, the S-parameters should be used.
The DC bias current of the input amplifier flows through Pin
4 (LGND). Typically this pin should be directly connected
to a good RF ground; however, at lower input frequencies
it may be beneficial to insert an inductor to ground for
improved IP2 performance. The inductor should have low
resistance and must be rated to handle 64mA DC current.
5510 F03a
5510 F03b
LTC5510
18
5510fa
For more information www.linear.com/LTC5510
APPLICATIONS INFORMATION
Figure 4a. IN Port with External Matching
Figure 4b. IN Port Equivalent Circuit (< 1GHz)
VCC
5510 F04a
IN
50
Ω
T1
1:1
2
3
C1
LTC5510
C3
C2
64mA
LGND
IN+
IN
4
VCC
Figure 5. IN Port Return Loss
Table 1. IN Port Differential Impedance
FREQUENCY
(MHz)
IMPEDANCE (Ω) REFL. COEFF.
REAL* IMAG* MAG ANG (°)
0.2 823 –j3971 0.89 –1.4
1 751 –j800 0.88 –7.2
10 133 –j154 0.50 –41
30 78.1 –j248 0.25 –36
50 73.3 –j378 0.20 –27
100 71.3 –j665 0.18 –17
200 70.7 –j961 0.17 –12
500 70.0 –j832 0.17 –14
1000 67.9 –j509 0.16 –24
1200 66.7 –j439 0.16 –28
1500 64.6 –j367 0.15 –35
2000 60.4 –j302 0.13 –49
2200 58.5 –j289 0.12 –55
2500 55.5 –j280 0.11 –66
3000 50.6 –j303 0.08 –91
4000 42.9 –j7460 0.08 –178
5000 42.7 j155 0.17 126
6000 55.9 j89 0.29 96
*Parallel Equivalent Impedance
LO Input Interface
The LTC5510 can be driven by a single-ended or differ-
ential LO signal. Internal resistors, as shown in Figure 6,
provide an impedance match of 50Ω per side or 100Ω
differential. The impedance match is maintained when the
part is disabled as well. The LO input pins are internally
biased to 1.7V, thus external capacitors, C4 and C5 are
used to provide DC isolation.
5510 F04b
75Ω
450Ω
450Ω
200pF
IN+
IN
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–6
–12
–18
300020001000
4000
–24
–30
0
5510 F05
T1 = TC1-1-13M+
C1, C2 = 0.1µF
C3 = OPEN
C3 = 0.7pF
LTC5510
19
5510fa
For more information www.linear.com/LTC5510
APPLICATIONS INFORMATION
Figure 7. Single-Ended LO Input Return Loss
Figure 6. LO Input Circuit
Table 2. Single-Ended LO Input Impedance
FREQUENCY
(MHz)
IMPEDANCE (Ω) REFL. COEFF.
REAL IMAG MAG ANG (°)
1 90.3 –1.0 0.29 –1
10 87.5 –7.1 0.28 –8
100 55.3 –16.4 0.16 –63
600 47.8 –5.0 0.06 –111
1100 47.0 –4.7 0.06 –119
1600 46.2 –5.0 0.06 –124
2100 45.2 –5.1 0.07 –130
2600 44.2 –4.7 0.08 –138
3100 43.2 –3.9 0.08 –148
3600 42.3 –2.4 0.09 –161
4100 41.5 –0.3 0.09 –178
4500 40.8 2.0 0.10 166
5000 40.1 5.6 0.13 147
6000 38.6 14.3 0.20 120
6500 37.7 19.1 0.25 110
Table 3. Differential LO Input Impedance
FREQUENCY
(MHz)
IMPEDANCE (Ω) REFL. COEFF.
REAL IMAG MAG ANG (°)
1 94.9 –0.1 0.31 –0.1
10 95.3 –0.5 0.31 –0.4
100 94.8 –2.3 0.31 –2
600 91.7 –12.5 0.31 –12
1100 85.6 –20.1 0.30 –21
1600 78.4 –24.2 0.29 –30
2100 71.5 –25.4 0.27 –38
2600 65.7 –24.3 0.24 –45
3100 61.3 –21.7 0.22 –51
3600 58.2 –17.9 0.18 –56
4100 56.2 –13.3 0.14 –58
4500 55.2 –9.1 0.10 –55
5000 54.6 –2.9 0.05 –31
6000 54.0 11.0 0.11 64
6500 53.7 18.5 0.18 69
5510 F06
LO
50
Ω
C5 LTC5510
C4
LO
LO+
15
14
VCC
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–5
–10
–15
–20
4000300020001000
5000
–25
–30
0
5510 F07
OFF (EN = LOW)
ON (EN = HIGH)
C4, C5 = 0.1µF
The measured return loss of the LO input port is shown
in Figure 7 for C4 and C5 values of 0.1µF. The return loss
is better than 10dB from 5MHz to 6GHz. For frequencies
below 5MHz, larger C4 and C5 values are required. Table
2 lists the single-ended input impedance and reflection
coefficient versus frequency for the LO input. The dif-
ferential impedance is listed in Table 3.
LTC5510
20
5510fa
For more information www.linear.com/LTC5510
APPLICATIONS INFORMATION
5510 F08
32mA
32mA
LTC5510
OUT+
11
OUT
10
VCC
Figure 8. Output Interface
Figure 9. Output Port Equivalent Circuit
5510 F09
LTC5510
OUT+
11
OUT
245Ω 0.4pF 0.2pF
1.2nH
1.2nH
10
OUT Port Interface
The differential output interface is shown in Figure 8.
The OUT+ and OUT pins are open collector outputs with
internal load resistors that provide a 245Ω differential
output resistance at low frequencies.
Figure 9 shows the equivalent circuit of the output and
Table 4 lists differential impedances for various frequencies.
The impedance values are listed in parallel equivalent form,
with equivalent capacitances also shown. For optimum
single-ended performance, the differential output signal
must be combined through an external transformer or a
discrete balun circuit. In applications where differential filters
or amplifiers follow the mixer, it is possible to eliminate
the transformer and drive these components differentially.
Table 4. Differential OUT Port Impedance
FREQUENCY
(MHz)
IMPEDANCE (Ω) REFL. COEFF.
REAL* IMAG* (CAP) MAG ANG
1 245 j240k (0.67pF) 0.66 0.0
10 244 j40k (0.40pF) 0.66 0.2
50 244 j5.31k (0.60pF) 0.66 1.1
100 245 j2.66k (0.60pF) 0.66 2.3
300 243 j884 (0.60pF) 0.66 6.8
500 240 j529 (0.60pF) 0.66 11
1000 224 j260 (0.61pF) 0.65 23
1500 201 j169 (0.63pF) 0.63 35
2000 171 j122 (0.65pF) 0.60 48
2500 138 j93 (0.69pF) 0.57 62
3000 104 j73 (0.73pF) 0.53 78
3500 73 j59 (0.77pF) 0.48 97
4000 47 j51 (0.78pF) 0.43 120
4500 29 j59 (0.60pF) 0.39 148
5000 22 j4.74K 0.38 180
6000 49 j51 0.44 117
* Parallel Equivalent
Output Matching: High Frequency Output Board
The high frequency (HF) output evaluation board (DC1983A)
shown in Figure 3a is designed to use multilayer chip hybrid
baluns at the output. This board is intended for frequen-
cies above about 800MHz (limited by balun availability).
These baluns deliver good performance and are smaller
than wire-wound baluns. The board is configured for the
matching topology shown in Figure 10. Inductors L1 and
L2 are used to tune out the parasitic output capacitance,
while the transformer provides differential to single-ended
conversion and impedance transformation. The DC bias
to the mixer core can be applied through the matching
inductors. Each pin draws approximately 32mA of DC
supply current.
LTC5510
21
5510fa
For more information www.linear.com/LTC5510
Figure 10. HF Board Output Schematic
5510 F10
OUT+
OUT
11
10
L1
L2
OUT
V
CC
VCC
123
654
C8
NC
C9
APPLICATIONS INFORMATION
Figure 12. LF Board Output Schematic
Figure 11. Out Port Return Loss of HF Board (DC1983A).
Tuned for 1575MHz (a), and 2140MHz (b)
Table 6. OUT Port Component Values: LF Output Board (DC1984A)
FREQUENCY
(MHz)
RANGE*
(MHz)
L1, L2
(nH)
L4, L5
(nH) T2
44 5 to 325 Mini-Circuits
TC4-1W-7ALN+
456 10 to 1300 15 Mini-Circuits
TC4-19LN+
* 12dB Return Loss Bandwidth
Table 5. OUT Port Component Values: HF Output Board (DC1983A)
FREQUENCY
(MHz)
RANGE*
(GHz)
L1, L2
(nH)
C9
(pF) T2
1575 1.2 to 2.1 6.8 6.8 Anaren
BD1222J50200AHF
2140 1.6 to 2.5 5.6 5.6 Mini-Circuits
NCS4-232+
* 12dB Return Loss Bandwidth
FREQUENCY (MHz)
1000
–24
RETURN LOSS (dB)
–6
–12
–18
0
2500
3000
1500 2000
5510 F11
a b
VCC
5510 F12
OUT+
OUT
OUT
11
10
L1
L4
L5
L2
C8
LTC5510
T2
C10
C9
1
2
3
6
4
Capacitor C9 can be used to improve the impedance match.
The component values used for characterization are listed
in Table 5, along with the 12dB return loss bandwidths.
The measured return loss curves are plotted in Figure 11.
Output Matching: Low Frequency Output Board
For lower output frequencies, wire-wound transformers pro-
vide better performance. The low frequency (LF) evaluation
board (DC1984A) in Figure 3(b) accommodates these appli-
cations. The output matching topology is shown in Figure 12.
Components L1, L2, L4 and L5 are used to tune the im-
pedance match, while T2 provides the desired impedance
transformation. C9 and C10 are used for DC blocking in
some applications. Table 6 lists component values used
for characterization, and the measured return loss perfor-
mance is plotted in Figure 13.
LTC5510
22
5510fa
For more information www.linear.com/LTC5510
APPLICATIONS INFORMATION
DC and RF Grounding
The LTC5510 relies on the backside ground for both RF and
thermal performance. The exposed pad must be soldered
to the low impedance top side ground plane of the board.
The top side ground should also be connected to other
ground layers to aid in thermal dissipation and ensure a
low inductance RF ground. The LTC5510 evaluation boards
(Figures 3a and 3b) utilize a 4 × 4 array of vias under the
exposed pad for this purpose.
Enable Interface
Figure 14 shows a schematic of the EN pin interface. To
enable the part, the applied EN voltage must be greater
than 1.8V. Setting the voltage below 0.5V will disable
the IC. If the enable function is not required, the enable
pin can be connected to VCC through a 1k resistor. The
ramp-up time of the supply voltage should be greater than
1ms. The voltage at the enable pin should never exceed
the power supply voltage (VCC) by more than 0.3V. Under
no circumstances should voltage be applied to the enable
pin before the supply voltage is applied to the VCC pin. If
this occurs, damage to the IC may result.
5510 F14
LTC5510
300k
EN
5
6
VCC1
Figure 14. Enable Pin Interface
Figure 15. Current Adjust Pin Interface
5510 F15
LTC5510
715Ω
3V
4mA
IADJ
8
6
VCC1
R1BIAS
Table 7. Recommended Values for R1
VCC (V) fOUT (MHz) R1 (Ω) ICC (mA)
5 <1200 Open 105
5 >1200 4.75k 99
3.3 <1200 1k 90
3.3 >1200 1.8k 94
Current Adjust Pin (IADJ)
The IADJ pin (Pin 8) can be used to optimize the perfor-
mance of the mixer core over temperature. The nominal
open-circuit DC voltage on this pin is 1.8V and the typical
short-circuit current is 1.9mA. As shown in Figure 15, an
internal 4mA reference sets the current in the mixer core.
Connecting resistor R1 to the IADJ pin shunts some of
the reference current to ground, thus reducing the mixer
core current. The optimum value of R1 depends on the
supply voltage and intended output frequency. Some
recommended values are shown in Table 7, but the values
can be optimized as required for individual applications.
Figure 13. Out Port Return Loss of LF Board (DC1984A)
Tuned for 44MHz (a), and 456MHz (b)
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–6
–12
1200900600300
1500
–18
–24
0
5510 F13
a
b
LTC5510
23
5510fa
For more information www.linear.com/LTC5510
5510 F17
LTC5510
10k
220µF
10nF
0.5Ω
VCC
V
CC
EN
5 6
VCC
7
Figure 17. Suggested Configuration for Simultaneous VCC
and EN Switching
APPLICATIONS INFORMATION
Figure 16. TEMP Pin Voltage vs Junction Temperature
JUNCTION TEMPERATURE (°C)
–50
TEMP PIN VOLTAGE (mV)
800
850
750
700
650
600
9070503010–10–30
110
550
500
900
5510 G16
IIN = 80µA
IIN = 10µA
Temperature Monitor (TEMP)
The TEMP input (pin 1) is connected to an on-chip diode
that can be used as a coarse temperature monitor by forc-
ing current into it and measuring the resulting voltage. The
temperature diode is protected by a series 30Ω resistor
and additional ESD diodes to ground.
The TEMP pin voltage is shown as a function of junction
temperature in Figure 16. Given the voltage (in mV) at
the pin, VD, the junction temperature can be estimated
for forced input currents of 10µA and 80µA using the
following equations:
TJ (10µA) = (VD – 742.4)/ –1.796
TJ (80µA) = (VD – 795.6)/ –1.609
Auto Supply Voltage Detect
An internal circuit automatically detects the supply volt-
age and configures internal components for 3.3V or 5V
operation. The DC current is affected when the auto-detect
circuit switches at approximately 4.1V. To avoid undesired
operation, the mixer should only be operated in the 3.1V
to 3.6V or 4.5V to 5.3V supply ranges.
Supply Voltage Ramping
Fast ramping of the supply voltage can cause a current
glitch in the internal ESD protection circuits. Depending on
the supply inductance, this could result in a supply volt-
age transient that exceeds the maximum rating. A supply
voltage ramp time of greater than 1ms is recommended.
The ramp rate of the supply voltage at the VCC pins should
not exceed 20V/ms. If the EN and VCC pins are switched
simultaneously, the configuration in Figure 17 can be used
to slow the rise time at the VCC pins if needed.
Spurious Output Levels
Mixer spurious output levels versus harmonics of the IN
and LO frequencies are tabulated in Tables 8 and 9 for
the 5V Wideband Up/Downmixer application. Results
are shown for frequencies up to 15GHz. The spur fre-
quencies can be calculated using the following equation:
fSPUR = |M • fIN ± N • fLO|
Table 8 shows the “difference” spurs (fSPUR = |M fIN N
fLO|) and Table 9 shows the “sum” spurs (fSPUR = M • fIN
+ N • fLO ). The spur levels were measured on a standard
evaluation board at room temperature using the test circuit
shown in Figure 1. The spurious output levels for each
application will be dependent on the external matching
circuits and the particular application frequencies.
LTC5510
24
5510fa
For more information www.linear.com/LTC5510
Table 8. Output Spur Levels (dBc), fSPUR = |M • fIN – N • fLO|
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)
N
01234 5678
M
0 –30 –30 –40 –18 –44 –4 –46 –24
1 –64 0** –50 –30 –64 –22 –55 –47 –72
2 * –37 –73 –65 –65 –58 –49 –72 –59
3 * –48 * –71 * –66 –79 –75 –86
4 * –68 * –83 * –84 * * *
5 * –77 * –84 * –87 * * *
6 * –89 * –87 * * * * *
7 * * * –86 * * * * *
8 * * * –84 * * * * *
9***** ****
10***** ****
* Less Than <–90dBc
**Carrier Frequency
Table 9. Output Spur Levels (dBc), fSPUR = M • fIN + N • fLO
(fIN = 190MHz at –7dBm, fLO = 1765MHz at 0dBm, VCC = 5V)
N
0 1 2345678
M
0 –30 –30 –40 –18 –44 –4 –46 –24
1 -64 –0.4** –50 –16 –55 –26 –52 –52 –69
2 * –36 –73 –50 –63 –59 –46 –76 –62
3 * –49 –88 –65 * –72 –74 –84 –81
4 * –66 * –84 –90 * –79 * *
5 * –70 * * * * * *
6 * –73 * * * * * *
7 * –75 * * * * * *
8 * –74 * * * * * *
9 * –80 * * * * * *
10 * * * * * * * *
* Less Than <–90dBc
**Image Frequency
APPLICATIONS INFORMATION
LTC5510
25
5510fa
For more information www.linear.com/LTC5510
TYPICAL APPLICATIONS
LGND
LO
LO+
OUT+
OUT
IN+
IN
10nF
EN
EN
VCC1 VCC2 IADJ
5V
LTC5510
F
2nH
2nH
5510 TA02
LO
50Ω
IN
456MHz
MINI-CIRCUITS
TC1-1-13M+
1:1
MINI-CIRCUITS
NCS1-422+
1:1
0.1µF0.1µF
0.1µF
0.1µF
0.7pF
4.75kΩ
BIAS
TYPICAL PERFORMANCE (ROOM TEMPERATURE)
IN = 456MHz, OUT = 3500MHz, LO = 3956MHz
PIN = –10dBm, PLO = 0dBm
GC = 0.6dB
OIP3 = 24.7dBm
SSB NF = 13.3dB
INPUT P1dB = 11dBm
OUT
50Ω
5V
123
654
10nF
NC
4.7pF
OUTPUT FREQUENCY (MHz)
3100
OIP3 (dBm), NF (dB)
GAIN (dB)
25
20
15
10
370035003300 3900
5
0
30
5
4
3
2
1
0
6
5510 TA03
GC
OIP3
HSLO
LSLO
NF
fIN = 456MHz
INPUT FREQUENCY (MHz)
0
OIP3 (dBm)
GAIN (dB)
25
20
15
10
800600400200 1000
5
0
30
5
4
3
2
1
0
6
5510 TA04
GC
OIP3
fOUT = 3500MHz
HSLO
LSLO
FREQUENCY (MHz)
0
ISOLATION (dB)
LO LEAKAGE (dBm)
80
60
40
4000300020001000 5000
20
0
100
–20
–40
–60
–80
–100
0
5510 TA05
IN-LO LO-OUT
LO-IN
IN-OUT
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–6
–12
–18
4000300020001000 5000
–24
–30
0
5510 TA06
IN
OUT
LO
Upmixer with 3.3GHz to 3.8GHz Output
Conversion Gain, OIP3 and NF
vs Output Frequency
IN Isolation and LO Leakage
vs Frequency
Conversion Gain and OIP3
vs Input Frequency
IN, OUT and LO Port Return Loss
vs Frequency
LTC5510
26
5510fa
For more information www.linear.com/LTC5510
TYPICAL APPLICATIONS
Mixer with Extended Input Frequency Range to 6GHz
Conversion Gain and IIP3
vs Input Frequency
IN PORT and LO PORT Return Loss
vs Frequency
LO-OUT Leakage and IN-OUT
Isolation vs Frequency
OUT PORT Return Loss
vs Frequency
LGND
LO
LO+
OUT+
OUT
IN+
IN
10nF
EN
EN
VCC1 VCC2 IADJ
5V
LTC5510
F
5510 TA07
LO
50Ω
OUT
140MHz
IN
30MHz TO 6000MHz
MINI-CIRCUITS
TCM1-63AX+
1:1
MINI-CIRCUITS
TC4-1W-7ALN+
4:1
0.1µF0.1µF
0.1µF
0.1µF
0.3pF 0.05pF
10nF
4.75kΩ
BIAS
TYPICAL PERFORMANCE (ROOM TEMPERATURE)
IN = 3GHz, OUT = 140MHz, LO = 3.14GHz
PIN = –10dBm, PLO = 0dBm
GC = 1.3dB
IIP3 = 21.3dBm
INPUT FREQUENCY (MHz)
0
RETURN LOSS (dB)
25
30
20
15
10
5
50004000300020001000 6000
0
–5
35
5510 TA08
IIP3
GC
FREQUENCY (MHz)
0
LO-OUT LEAKAGE (dBm)
IN-OUT ISOLATION (dB)
–20
–10
–30
–40
–50
50004000300020001000 6000
–60
0
40
50
30
20
10
0
60
5510 TA09
IN-OUT
LO-OUT
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–10
–5
–15
–20
–25
50004000300020001000 6000
–35
–30
0
5510 TA10
IN-PORT
LO-PORT
FREQUENCY (MHz)
0
RETURN LOSS (dB)
–10
–5
–15
–20
400300200100 500
–25
0
5510 TA11
LTC5510
27
5510fa
For more information www.linear.com/LTC5510
TYPICAL APPLICATIONS
LGND
LO
LO+
OUT+
OUT
IN+
IN
10nF
EN
EN
VCC1 VCC2 IADJ
5V
LTC5510
F
IN
100MHz TO 1000MHz
50Ω
5510 TA12
LO
50Ω
OUT
44MHZ
50Ω
TYPICAL PERFORMANCE (TC = 25°C)
IN = 450MHz, OUT = 44MHz, LO = 494MHz
PIN = –5dBm, PLO = 0dBm
GC = 1.8dB
IIP3 = 26.3dBm
SSB NF = 11.5dB
INPUT P1dB = 8.8dBm
TC4-1W-7ALN+
4:1
10nF10nF
10nF
10nF
10nF
100nH
BIAS
Broadband Downmixer Application Using Single-Ended Input
INPUT FREQUENCY (MHz)
0
GAIN (dB), IIP3 (dBm), NF (dB)
25
20
15
800600400200 1000
5
10
0
30
5510 TA13
NF
IIP3
GC
fOUT = 44MHz
HSLO
OUTPUT FREQUENCY (MHz)
0
GAIN (dB)
IIP3 (dBm)
5
4
25020015010050 300
2
3
1
6
26
24
20
22
18
28
5510 TA14
IIP3
GC
fIN = 450MHz
HSLO
FREQUENCY (MHz)
0
LO LEAKAGE (dBm)
IN ISOLATION (dB)
900600300 1200
–90
–80
–70
–60
–50
–40
–30
–20
–10
0
0
10
20
30
40
50
60
70
80
90
5510 TA15
IN-LO
IN-OUT
LO-IN
LO-OUT
FREQUENCY (MHz)
0
RETURN LOSS (dB)
800 1000600400200 1200
–35
–30
–25
–20
–15
–10
–5
0
5510 TA16
IN
LO
OUT
Conversion Gain, IIP3 and NF
vs Input Frequency
LO Leakage and IN Isolation
vs Frequency
Conversion Gain and IIP3
vs Output Frequency
IN, OUT and LO Port Return Loss
vs Frequency
LTC5510
28
5510fa
For more information www.linear.com/LTC5510
PACKAGE DESCRIPTION
Please refer to http://www.linear.com/designtools/packaging/ for the most recent package drawings.
4.00 ±0.10
(4 SIDES)
NOTE:
1. DRAWING CONFORMS TO JEDEC PACKAGE OUTLINE MO-220 VARIATION (WGGC)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE
MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.15mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION
ON THE TOP AND BOTTOM OF PACKAGE
PIN 1
TOP MARK
(NOTE 6)
0.55 ±0.20
1615
1
2
BOTTOM VIEW—EXPOSED PAD
2.15 ±0.10
(4-SIDES)
0.75 ±0.05 R = 0.115
TYP
0.30 ±0.05
0.65 BSC
0.200 REF
0.00 – 0.05
(UF16) QFN 10-04
RECOMMENDED SOLDER PAD PITCH AND DIMENSIONS
0.72 ±0.05
0.30 ±0.05
0.65 BSC
2.15 ±0.05
(4 SIDES)
2.90 ±0.05
4.35
±0.05
PACKAGE OUTLINE
PIN 1 NOTCH R = 0.20 TYP
OR 0.35 × 45° CHAMFER
UF Package
16-Lead Plastic QFN (4mm × 4mm)
(Reference LTC DWG # 05-08-1692 Rev Ø)
LTC5510
29
5510fa
For more information www.linear.com/LTC5510
Information furnished by Linear Technology Corporation is believed to be accurate and reliable.
However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-
tion that the interconnection of its circuits as described herein will not infringe on existing patent rights.
REVISION HISTORY
REV DATE DESCRIPTION PAGE NUMBER
A 06/15 LO and OUTPUT frequency range increased to 6500 and 6000MHz, respectively.
Corrected Figure 4 caption.
2, 19, 20, 22,
23, 26
22
LTC5510
30
5510fa
For more information www.linear.com/LTC5510
5V CATV Downmixer with 1GHz IF Bandwidth
Linear Technology Corporation
1630 McCarthy Blvd., Milpitas, CA 95035-7417
(408) 432-1900 FAX: (408) 434-0507 www.linear.com/LTC5510
LINEAR TECHNOLOGY CORPORATION 2013
LT 0615 REV A • PRINTED IN USA
RELATED PARTS
TYPICAL APPLICATION
PART NUMBER DESCRIPTION COMMENTS
Mixers and Modulators
LT
®
5527 400MHz to 3.7GHz, 5V Downconverting Mixer 2.3dB Gain, 23.5dBm IIP3 and 12.5dB NF at 1900MHz, 5V/78mA Supply
LT5557 400MHz to 3.8GHz, 3.3V Downconverting Mixer 2.9dB Gain, 24.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/82mA Supply
LTC559x 600MHz to 4.5GHz Dual Downconverting Mixer
Family
8.5dB Gain, 26.5dBm IIP3, 9.9dB NF, 3.3V/380mA Supply
LTC5569 300MHz to 4GHz, 3.3V Dual Active
Downconverting Mixer
2dB Gain, 26.8dBm IIP3 and 11.7dB NF, 3.3V/180mA Supply
LTC554x 600MHz to 4GHz, 5V Downconverting Mixer Family 8dB Gain, >25dBm IIP3 and 10dB NF, 3.3V/200mA Supply
LT5578 400MHz to 2.7GHz Upconverting Mixer 27dBm OIP3 at 900MHz, 24.2dBm at 1.95GHz, Integrated RF Output Transformer
LT5579 1.5GHz to 3.8GHz Upconverting Mixer 27.3dBm OIP3 at 2.14GHz, NF = 9.9dB, 3.3V Supply, Single-Ended LO and RF Ports
LTC5588-1 200MHz to 6GHz I/Q Modulator 31dBm OIP3 at 2.14GHz, –160.6dBm/Hz Noise Floor
LTC5585 700MHz to 3GHz Wideband I/Q Demodulator >530MHz Demodulation Bandwidth, IIP2 Tunable to >80dBm, DC Offset Nulling
Amplifiers
LTC6430-15 High Linearity Differential IF Amp 20MHz to 2GHz Bandwidth, 15.2dB Gain, 50dBm OIP3, 3dB NF at 240MHz
LTC6431-15 High Linearity Single-Ended IF Amp 20MHz to 1.7GHz Bandwidth, 15.5dB Gain, 47dBm OIP3, 3.3dB NF at 240MHz
LTC6412 31dB Linear Analog VGA 35dBm OIP3 at 240MHz, Continuous Gain Range –14dB to 17dB
LT5554 Ultralow Distortion IF Digital VGA 48dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
RF Power Detectors
LT5538 40MHz to 3.8GHz Log Detector ±0.8dB Accuracy Over Temperature, –72dBm Sensitivity, 75dB Dynamic Range
LT5581 6GHz Low Power RMS Detector 40dB Dynamic Range, ±1dB Accuracy Over Temperature, 1.5mA Supply Current
LTC5582 40MHz to 10GHz RMS Detector ±0.5dB Accuracy Over Temperature, ±0.2dB Linearity Error, 57dB Dynamic Range
LTC5583 Dual 6GHz RMS Power Detector Up to 60dB Dynamic Range, ±0.5dB Accuracy Over Temperature, >50dB Isolation
ADCs
LTC2208 16-Bit, 130Msps ADC 78dBFS Noise Floor, >83dB SFDR at 250MHz
LTC2153-14 14-Bit, 310Msps Low Power ADC 68.8dBFS SNR, 88dB SFDR, 401mW Power Consumption
RF PLL/Synthesizer with VCO
LTC6946-1/
LTC6946-2/
LTC6946-3
Low Noise, Low Spurious Integer-N PLL with
Integrated VCO
373MHz to 5.79GHz, –157dBc/Hz WB Phase Noise Floor, –100dBc/Hz Closed-Loop
Phase Noise
LGND
LOGNDLO+
TP
OUT+
OUT
GND
IN+
GND
IN
10nF
EN
EN
VCC1 VCC2 IADJ
5V
LTC5510
F
15nH
15nH
5510 TA17
LO
50Ω
IFOUT
50MHz TO
1000MHz
50Ω
IN
1150MHz
50Ω
TC1-1-13M+
1:1
TC4-19LN+
4:1
1
2
3
6
4
10nF
10nF
10nF
10nF
0.5pF
10nF
10nF
10nF
IF OUTPUT FREQUENCY (MHz)
0
GAIN (dB), OIP3 (dBm)
2RF-LO SPUR (dBc)
600 800400200 1000
0
9
6
3
15
12
18
21
24
27
30
–110
–100
–90
–80
–70
–60
–50
–40
–30
–20
–10
5510 TA18
2RF-LO
GC
OIP3
fIN = 1150MHz
PIN = –7dBm
fLO = fIN + fOUT
PLO = 0dBm
TC = 25°C
Conversion Gain, OIP3 and 2RF-LO
Spur vs IF Output Frequency