1
MRF1513T1MOTOROLA RF DEVICE DATA
The RF MOSFET Line
    
N–Channel Enhancement–Mode Lateral MOSFET
The MRF1513T1 is designed for broadband commercial and industrial
applications with frequencies to 520 MHz. The high gain and broadband
performance of this device make it ideal for large–signal, common source
amplifier applications in 7.5 volt portable and 12.5 volt mobile FM equipment.
Specified Performance @ 520 MHz, 12.5 Volts
Output Power — 3 Watts
Power Gain — 11 dB
Efficiency — 55%
Capable of Handling 20:1 VSWR, @ 15.5 Vdc,
520 MHz, 2 dB Overdrive
Excellent Thermal Stability
Characterized with Series Equivalent Large–Signal
Impedance Parameters
Broadband UHF/VHF Demonstration Amplifier Information
Available Upon Request
In Tape and Reel. T1 Suffix = 1,000 Units per 12 mm,
7 Inch Reel.
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage VDSS 40 Vdc
Gate–Source Voltage VGS ±20 Vdc
Drain Current — Continuous ID2 Adc
Total Device Dissipation @ TC = 25°C (1)
Derate above 25°C
PD31.25
0.25
Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
Operating Junction Temperature TJ150 °C
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 4°C/W
(1) Calculated based on the formula PD =
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
Order this document
by MRF1513/D

SEMICONDUCTOR TECHNICAL DATA

520 MHz, 3 W, 12.5 V
LATERAL N–CHANNEL
BROADBAND
RF POWER MOSFET
CASE 466–02, STYLE 1
PLD–1.5
PLASTIC
Motorola, Inc. 2002
TJ–TC
RθJC
REV 4
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
2
MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Zero Gate Voltage Drain Current
(VDS = 40 Vdc, VGS = 0 Vdc)
IDSS 1 µAdc
Gate–Source Leakage Current
(VGS = 10 Vdc, VDS = 0 Vdc)
IGSS 1 µAdc
ON CHARACTERISTICS
Gate Threshold Voltage
(VDS = 12.5 Vdc, ID = 60 µA)
VGS(th) 1.0 1.7 2.1 Vdc
Drain–Source On–Voltage
(VGS = 10 Vdc, ID = 500 mAdc)
VDS(on) 0.65 Vdc
DYNAMIC CHARACTERISTICS
Input Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Ciss 33 pF
Output Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Coss 16.5 pF
Reverse Transfer Capacitance
(VDS = 12.5 Vdc, VGS = 0, f = 1 MHz)
Crss 2.2 pF
FUNCTIONAL TESTS (In Motorola Test Fixture)
Common–Source Amplifier Power Gain
(VDD = 12.5 Vdc, Pout = 3 Watts, IDQ = 50 mA, f = 520 MHz)
Gps 10 11 dB
Drain Efficiency
(VDD = 12.5 Vdc, Pout = 3 Watts, IDQ = 50 mA, f = 520 MHz)
η50 55 %
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
3
MRF1513T1MOTOROLA RF DEVICE DATA

Figure 1. 450 – 520 MHz Broadband Test Circuit

 







 





  
 





B1, B2 Short Ferrite Beads, Fair Rite Products
#2743021446
C1, C13 240 pF, 100 mil Chip Capacitors
C2, C3, C4, C10,
C11, C12 0 to 20 pF Trimmer Capacitors
C5, C6, C17 120 pF, 100 mil Chip Capacitors
C7, C14 10 mF, 50 V Electrolytic Capacitors
C8, C15 1,200 pF, 100 mil Chip Capacitors
C9, C16 0.1 mF, 100 mil Chip Capacitors
L1 55.5 nH, 5 Turn, Coilcraft
N1, N2 Type N Flange Mounts
R1, R3 15 Chip Resistors (0805)
R2 1 k, 1/8 W Resistor
R4 33 k, 1/8 W Resistor
Z1 0.236 x 0.080 Microstrip
Z2 0.981 x 0.080 Microstrip
Z3 0.240 x 0.080 Microstrip
Z4 0.098 x 0.080 Microstrip
Z5 0.192 x 0.080 Microstrip
Z6, Z7 0.260 x 0.223 Microstrip
Z8 0.705 x 0.080 Microstrip
Z9 0.342 x 0.080 Microstrip
Z10 0.347 x 0.080 Microstrip
Z11 0.846 x 0.080 Microstrip
Board Glass Teflon, 31 mils, 2 oz. Copper






 






TYPICAL CHARACTERISTICS, 450 – 520 MHz
  !" #!$%
&&"&&#'%
(
(
(
(
Figure 2. Output Power versus Input Power
)*  !" #!$%
Figure 3. Input Return Loss
versus Output Power
+
&&!"&#!$%
+
 ,-.
 ,-.
 ,-.
+ +
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.

 / + '0
 / + '0
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
4
MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 450 – 520 MHz
  !" #!$%

"11&$&""2&#3%



 ,-.
 ,-.  ,-.
"11&$&""2&#3%
Figure 4. Gain versus Output Power
  !" #!$%



Figure 5. Drain Efficiency versus Output Power
$&#'%
Figure 6. Output Power versus Biasing Current
4 $ " #5$%
Figure 7. Drain Efficiency versus
Biasing Current

4 $ " #5$%

Figure 8. Output Power versus Supply Voltage
 2 $" #%
Figure 9. Drain Efficiency versus Supply Voltage
 2 $" #%







 






&&!"&#!$%
 
&&!"&#!$%
 


"11&$&""2&#3%


 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 / + '0
)* / + '5
)* / + '5
4 /  5$
 / + '0
)* / + '5
)* / + '5
4 /  5$
 / + '0





 / + '0



 
 
 

Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
5
MRF1513T1MOTOROLA RF DEVICE DATA
Figure 10. 400 – 470 MHz Broadband Test Circuit

 







  





 
 

 




B1, B2 Short Ferrite Bead, Fair Rite Products
#2743021446
C1, C12 330 pF, 100 mil Chip Capacitors
C2, C3, C4,
C10, C11 1 to 20 pF Trimmer Capacitors
C5, C6, C16 120 pF, 100 mil Chip Capacitors
C7, C13 10 µF, 50 V Electrolytic Capacitors
C8, C14 1,200 pF, 100 mil Chip Capacitors
C9, C15 0.1 mF, 100 mil Chip Capacitors
L1 55.5 nH, 5 Turn, Coilcraft
N1, N2 Type N Flange Mounts
R1 15 Chip Resistor (0805)
R2 1 k, 1/8 W Resistor
R3 15 Chip Resistor (0805)
R4 33 k, 1/8 W Resistor
Z1 0.253 x 0.080 Microstrip
Z2 0.958 x 0.080 Microstrip
Z3 0.247 x 0.080 Microstrip
Z4 0.193 x 0.080 Microstrip
Z5 0.132 x 0.080 Microstrip
Z6, Z7 0.260 x 0.223 Microstrip
Z8 0.494 x 0.080 Microstrip
Z9 0.941 x 0.080 Microstrip
Z10 0.452 x 0.080 Microstrip
Board Glass Teflon, 31 mils, 2 oz. Copper







 



TYPICAL CHARACTERISTICS, 400 – 470 MHz
  !" #!$%
&&"&&#'%
(
(
(
(
Figure 11. Output Power versus Input Power
)*  !" #!$%
Figure 12. Input Return Loss
versus Output Power
&&!"&#!$%
++
 ,-.
 ,-.
+ ++
 ,-.
 ,-.
 ,-.
 ,-.
+

 / + '0
 / + '0
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
6
MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 400 – 470 MHz
 ,-.
  !" #!$%



"11&$&""2&#3%



"11&$&""2&#3%
Figure 13. Gain versus Output Power
  !" #!$%



Figure 14. Drain Efficiency versus Output
Power
$&#'%
Figure 15. Output Power versus
Biasing Current
4 $ " #5$%
Figure 16. Drain Efficiency versus
Biasing Current

4 $ " #5$%

Figure 17. Output Power versus
Supply Voltage
 2 $" #%
Figure 18. Drain Efficiency versus
Supply Voltage
 2 $" #%







 






&&!"&#!$%
 
&&!"&#!$%
 


"11&$&""2&#3%
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.  ,-.
 ,-.
 / + '0
)* / + '5
)* / + '5
4 /  5$
 / + '0
)* / + '5
)* / + '5
4 /  5$






  



 
 / + '0
 / + '0
 
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
7
MRF1513T1MOTOROLA RF DEVICE DATA
Figure 19. 135 – 175 MHz Broadband Test Circuit

 












  
 







B1, B2 Short Ferrite Beads, Fair Rite Products
#2743021446
C1, C13 330 pF, 100 mil Chip Capacitors
C2, C4, C10, C12 0 to 20 pF Trimmer Capacitors
C3 12 pF, 100 mil Chip Capacitor
C5 130 pF, 100 mil Chip Capacitor
C6, C17 120 pF, 100 mil Chip Capacitors
C7, C14 10 µF, 50 V Electrolytic Capacitors
C8, C15 1,000 pF, 100 mil Chip Capacitors
C9, C16 0.1 µF, 100 mil Chip Capacitors
C11 18 pF, 100 mil Chip Capacitor
L1 26 nH, 4 Turn, Coilcraft
L2 8 nH, 3 Turn, Coilcraft
L3 55.5 nH, 5 Turn, Coilcraft
L4 33 nH, 5 Turn, Coilcraft
N1, N2 Type N Flange Mounts
R1 15 W Chip Resistor (0805)
R2 56 W, 1/8 W Chip Resistor
R3 10 W, 1/8 W Chip Resistor
R4 33 kW, 1/8 W Chip Resistor
Z1 0.115 x 0.080 Microstrip
Z2 0.230 x 0.080 Microstrip
Z3 1.034 x 0.080 Microstrip
Z4 0.202 x 0.080 Microstrip
Z5, Z6 0.260 x 0.223 Microstrip
Z7 1.088 x 0.080 Microstrip
Z8 0.149 x 0.080 Microstrip
Z9 0.171 x 0.080 Microstrip
Z10 0.095 x 0.080 Microstrip
Board Glass Teflon, 31 mils, 2 oz. Copper



 











 
TYPICAL CHARACTERISTICS, 135 – 175 MHz
  !" #!$%
&&"&&#'%
(
(
(
(
Figure 20. Output Power versus Input Power
)*  !" #!$%
Figure 21. Input Return Loss
versus Output Power
+
&&!"&#!$%
+
 ,-.
 ,-.
++
 ,-.
 ,-.
 ,-.
 ,-.

 / + '0  / + '0
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
8
MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 135 – 175 MHz
 ,-.
  !" #!$%

"11&$&""2&#3%



"11&$&""2&#3%
Figure 22. Gain versus Output Power
  !" #!$%



Figure 23. Drain Efficiency versus Output
Power
$&#'%
Figure 24. Output Power versus
Biasing Current
4 $ " #5$%
Figure 25. Drain Efficiency versus
Biasing Current

4 $ " #5$%
Figure 26. Output Power versus
Supply Voltage
 2 $" #%
Figure 27. Drain Efficiency versus
Supply Voltage
 2 $" #%






 






&&!"&#!$%
 
&&!"&#!$%
   


"11&$&""2&#3%


 ,-.
 ,-.
 ,-.


 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.
 ,-.  ,-.
 ,-.  ,-.
 / + '0
)* / + '5
)* / + '5
4 /  5$
 / + '0
)* / + '5
)* / + '5
4 /  5$



 
 
  
 / + '0
 / + '0
 



Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
9
MRF1513T1MOTOROLA RF DEVICE DATA
Zin = Complex conjugate of source
impedance with parallel 15
resistor and 130 pF capacitor in
series with gate. (See Figure 19).
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
Note: ZOL* was chosen based on tradeoffs between gain, drain efficiency, and device stability.
Figure 28. Series Equivalent Input and Output Impedance
Zin = Complex conjugate of source
impedance with parallel 15
resistor and 130 pF capacitor in
series with gate. (See Figure 10).
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
f
MHz
Zin
ZOL*
450 4.64 +j5.82 13.11 +j2.15
Zin = Complex conjugate of source
impedance with parallel 15
resistor and 120 pF capacitor in
series with gate. (See Figure 1).
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
 / +  4 /  5$  / !
470 5.42 +j6.34 12.16 +j3.26
500 5.96 +j5.45 11.03 +j5.42
520 4.28 +j4.94 10.99 +j7.18
f
MHz
Zin
ZOL*
400 4.72 +j4.38 12.57 +j1.88
 / +  4 /  5$  / !
440 4.88 +j6.34 11.21 +j5.87
470 3.22 +j5.24 9.82 +j8.63
f
MHz
Zin
ZOL*
135 16.55 +j1.82 22.01 +j10.32
 / +  4 /  5$  / !
155 15.59 +j5.38 22.03 +j8.07
175 15.55 +j9.43 22.08 +j6.85
/ 
6
)*
1 /  ,-.


1 /  ,-.
1 /  ,-.

1 /  ,-.

6
)*
/ 
1 /  ,-.
)*

1 /  ,-.

6
Zin ZOL*
*7
,809)*:
;<=>
;?)0;
*';= ;@
7
,809)*:
;<=>
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
10
MOTOROLA RF DEVICE DATA
Table 1. Common Source Scattering Parameters (VDD = 12.5 Vdc)
IDQ = 50 mA
f
S11 S21 S12 S22
f
MHz |S11|∠φ |S21|∠φ |S12|∠φ |S22|∠φ
50 0.93 –94 22.09 125 0.044 33 0.77 –81
100 0.81 –131 12.78 101 0.052 6 0.61 –115
200 0.76 –153 6.31 81 0.047 –10 0.59 –135
300 0.76 –160 3.92 69 0.044 –19 0.64 –142
400 0.77 –164 2.74 60 0.040 –26 0.70 –147
500 0.79 –167 1.99 54 0.036 –31 0.75 –151
600 0.80 –169 1.55 48 0.034 –37 0.80 –155
700 0.81 –171 1.25 44 0.028 –40 0.82 –158
800 0.82 –172 1.02 38 0.027 –42 0.86 –161
900 0.83 –173 0.85 35 0.017 –42 0.88 –163
1000 0.84 –175 0.70 29 0.018 –49 0.91 –166
IDQ = 500 mA
f
S11 S21 S12 S22
f
MHz |S11|∠φ |S21|∠φ |S12|∠φ |S22|∠φ
50 0.84 –127 32.57 112 0.025 17 0.64 –130
100 0.80 –152 17.23 97 0.025 13 0.64 –153
200 0.78 –166 8.62 85 0.025 –9 0.65 –163
300 0.78 –171 5.58 79 0.023 –9 0.67 –166
400 0.78 –173 4.08 72 0.022 –9 0.69 –166
500 0.78 –175 3.14 68 0.020 –10 0.71 –167
600 0.79 –176 2.55 63 0.022 –15 0.74 –168
700 0.79 –177 2.14 60 0.019 –20 0.76 –168
800 0.80 –178 1.80 54 0.018 –31 0.79 –170
900 0.81 –178 1.54 51 0.015 –25 0.80 –170
1000 0.82 –179 1.31 46 0.012 –36 0.81 –172
IDQ = 1 A
f
S11 S21 S12 S22
f
MHz |S11|∠φ |S21|∠φ |S12|∠φ |S22|∠φ
50 0.84 –129 32.57 111 0.023 24 0.61 –137
100 0.80 –153 17.04 97 0.024 13 0.64 –156
200 0.78 –167 8.52 85 0.023 5 0.65 –165
300 0.77 –172 5.53 79 0.020 –7 0.67 –167
400 0.77 –174 4.06 73 0.020 –11 0.69 –167
500 0.78 –175 3.13 69 0.021 –9 0.72 –167
600 0.78 –177 2.54 64 0.017 –26 0.74 –168
700 0.78 –177 2.13 60 0.017 –14 0.75 –168
800 0.79 –178 1.81 55 0.015 –23 0.78 –170
900 0.80 –178 1.54 51 0.013 –31 0.79 –170
1000 0.80 –179 1.30 46 0.011 –17 0.80 –172
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
11
MRF1513T1MOTOROLA RF DEVICE DATA
APPLICATIONS INFORMATION
DESIGN CONSIDERATIONS
This device is a common–source, RF power, N–Channel
enhancement mode, Lateral Metal–Oxide Semiconductor
Field–Effect Transistor (MOSFET). Motorola Application
Note AN211A, “FETs in Theory and Practice”, is suggested
reading for those not familiar with the construction and char-
acteristics of FETs.
This surface mount packaged device was designed pri-
marily for VHF and UHF portable power amplifier applica-
tions. Manufacturability is improved by utilizing the tape and
reel capability for fully automated pick and placement of
parts. However, care should be taken in the design process
to insure proper heat sinking of the device.
The major advantages of Lateral RF power MOSFETs in-
clude high gain, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mis-
matched loads without suffering damage.
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between all three terminals. The metal oxide gate structure
determines the capacitors from gate–to–drain (Cgd), and
gate–to–source (Cgs). The PN junction formed during fab-
rication of the RF MOSFET results in a junction capacitance
from drain–to–source (Cds). These capacitances are charac-
terized as input (Ciss), output (Coss) and reverse transfer
(Crss) capacitances on data sheets. The relationships be-
tween the inter–terminal capacitances and those given on
data sheets are shown below. The Ciss can be specified in
two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate.
In the latter case, the numbers are lower. However, neither
method represents the actual operating conditions in RF ap-
plications.
=8)*
'@
=0;
8;
:'
:@
)@@ / :' :@
@@ / :' '@
=@@ / :'
DRAIN CHARACTERISTICS
One critical figure of merit for a FET is its static resistance
in the full–on condition. This on–resistance, RDS(on), occurs
in the linear region of the output characteristic and is speci-
fied at a specific gate–source voltage and drain current. The
drain–source voltage under these conditions is termed
VDS(on). For MOSFETs, VDS(on) has a positive temperature
coefficient at high temperatures because it contributes to the
power dissipation within the device.
BVDSS values for this device are higher than normally re-
quired for typical applications. Measurement of BVDSS is not
recommended and may result in possible damage to the de-
vice.
GATE CHARACTERISTICS
The gate of the RF MOSFET is a polysilicon material, and
is electrically isolated from the source by a layer of oxide.
The DC input resistance is very high – on the order of 109
— resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage to
the gate greater than the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gates of these devices are es-
sentially capacitors. Circuits that leave the gate open–cir-
cuited or floating should be avoided. These conditions can
result in turn–on of the devices due to voltage build–up on
the input capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal
monolithic zener diode from gate–to–source. If gate protec-
tion is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance low
also helps dampen transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
DC BIAS
Since this device is an enhancement mode FET, drain cur-
rent flows only when the gate is at a higher potential than the
source. RF power FETs operate optimally with a quiescent
drain current (IDQ), whose value is application dependent.
This device was characterized at IDQ = 150 mA, which is the
suggested value of bias current for typical applications. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current. There-
fore, the gate bias circuit may generally be just a simple re-
sistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of this device may be controlled to some de-
gree with a low power dc control signal applied to the gate,
thus facilitating applications such as manual gain control,
ALC/AGC and modulation systems. This characteristic is
very dependent on frequency and load line.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
12
MOTOROLA RF DEVICE DATA
MOUNTING
The specified maximum thermal resistance of 4°C/W as-
sumes a majority of the 0.065 x 0.180 source contact on
the back side of the package is in good contact with an ap-
propriate heat sink. As with all RF power devices, the goal of
the thermal design should be to minimize the temperature at
the back side of the package. Refer to Motorola Application
Note AN4005/D, “Thermal Management and Mounting Meth-
od for the PLD–1.5 RF Power Surface Mount Package,” and
Engineering Bulletin EB209/D, “Mounting Method for RF
Power Leadless Surface Mount Transistor” for additional in-
formation.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for this device. For examples
see Motorola Application Note AN721, “Impedance Matching
Networks Applied to RF Power Transistors.” Large–signal
impedances are provided, and will yield a good first pass
approximation.
Since RF power MOSFETs are triode devices, they are not
unilateral. This coupled with the very high gain of this device
yields a device capable of self oscillation. Stability may be
achieved by techniques such as drain loading, input shunt
resistive loading, or output to input feedback. The RF test fix-
ture implements a parallel resistor and capacitor in series
with the gate, and has a load line selected for a higher effi-
ciency, lower gain, and more stable operating region.
Two–port stability analysis with this device’s
S–parameters provides a useful tool for selection of loading
or feedback circuitry to assure stable operation. See
Motorola Application Note AN215A, “RF Small–Signal
Design Using Two–Port Parameters” for a discussion of two
port network theory and stability.
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
13
MRF1513T1MOTOROLA RF DEVICE DATA
NOTES
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
14
MOTOROLA RF DEVICE DATA
NOTES
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
15
MRF1513T1MOTOROLA RF DEVICE DATA
NOTES
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...
MRF1513T1
16
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
CASE 466–02
ISSUE B
PLD–1.5
PLASTIC
"A
+ ," $ "$ " $
2+, +
+  ,"A -
+ " ""B$- $!$"  "  !
$ C+
_
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A+ + + +
B+ + + +
C+ + + +
D+ + + +
E+ + + +
F+ + + +
G+ + + +
H+ + + +
K+ + + +
L+ + + +
N+ + + +
P+ + + +
Q+ + + +
R+ + + +
S+ + + +
U+ + + +
ZONE V + + + +
ZONE W + + + +
ZONE X + + + +
2" A
 + $
+ $"
+ "
+ "
2
34
1
AF
R
L
NK
D
B
Q
E
P
C
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
ÉÉÉÉ
G
H
ZONE X
ZONE W
0.89 (0.035) X 45 5
"_
_
10 DRAFT
ZONE V
S
U
ÉÉÉ
ÉÉÉ
RESIN BLEED/FLASH ALLOWABLE
J+ + + +
J
+
+
+
+
+
+
mm
inches
+
+
+
+
SOLDER FOOTPRINT
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture
of the part. Motorola and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their
respective owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
E Motorola, Inc. 2002.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T. Hong Kong. 852–26668334
Technical Information Center: 1–800–521–6274
HOME PAGE: http://www.motorola.com/semiconductors/
MRF1513/D
Freescale Semiconductor, I
Freescale Semiconductor, Inc.
For More Information On This Product,
Go to: www.freescale.com
nc...