Data Sheet No. PD60045-O IR2103(S) & (PbF) HALF-BRIDGE DRIVER Features * Floating channel designed for bootstrap operation * * * * * * * * * Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Gate drive supply range from 10 to 20V Undervoltage lockout 3.3V, 5V and 15V logic compatible Cross-conduction prevention logic Matched propagation delay for both channels Internal set deadtime High side output in phase with HIN input Low side output out of phase with LIN input Also available LEAD-FREE Product Summary VOFFSET 600V max. IO+/- 130 mA / 270 mA VOUT 10 - 20V ton/off (typ.) 680 & 150 ns Deadtime (typ.) 520 ns Packages Description The IR2103(S) are high voltage, high speed power 8-Lead SOIC IR2103S MOSFET and IGBT drivers with dependent high and low 8-Lead PDIP side referenced output channels. Proprietary HVIC and IR2103 latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts. Typical Connection up to 600V VCC VCC VB HIN HIN HO LIN LIN VS COM LO TO LOAD (Refer to Lead Assignments for correct configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IR2103(S) & (PbF) Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Symbol Definition Min. Max. Units VB High side floating absolute voltage -0.3 625 VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 VLO Low side output voltage -0.3 VCC + 0.3 Logic input voltage (HIN & LIN ) -0.3 VCC + 0.3 -- 50 VIN dVs/dt PD RthJA Allowable offset supply voltage transient Package power dissipation @ TA +25C Thermal resistance, junction to ambient (8 Lead PDIP) -- 1.0 (8 Lead SOIC) -- 0.625 (8 Lead PDIP) -- 125 (8 Lead SOIC) -- 200 TJ Junction temperature -- 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) -- 300 V V/ns W C/W C Recommended Operating Conditions The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 1 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage (HIN & LIN ) 0 VCC TA Ambient temperature -40 125 Units V C Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details). 2 www.irf.com IR2103(S) & (PbF) Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25C unless otherwise specified. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay -- 680 820 VS = 0V toff Turn-off propagation delay -- 150 220 VS = 600V Turn-on rise time -- 100 170 tr -- 50 90 DT tf Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off Turn-off fall time 400 520 650 MT Delay matching, HS & LS turn-on/off -- -- 60 ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic "1" (HIN) & Logic "0" ( LIN ) input voltage 3 -- -- VIL Logic "0" (HIN) & Logic "1" ( LIN ) input voltage -- -- 0.8 VOH High level output voltage, VBIAS - VO -- -- 100 VOL Low level output voltage, VO -- -- 100 ILK Offset supply leakage current -- -- 50 VB = VS = 600V IQBS Quiescent VBS supply current -- 30 55 VIN = 0V or 5V IQCC Quiescent VCC supply current -- 150 270 IIN+ Logic "1" input bias current -- 3 10 HIN = 5V, LIN = 0V IIN- HIN = 0V, LIN = 5V Logic "0" input bias current -- -- 1 VCCUV+ VCC supply undervoltage positive going threshold 8 8.9 9.8 VCCUV- VCC supply undervoltage negative going threshold 7.4 8.2 9 IO+ Output high short circuit pulsed current 130 210 -- IO- Output low short circuit pulsed current 270 360 -- V mV A VCC = 10V to 20V IO = 0A IO = 0A VIN = 0V or 5V V mA www.irf.com VCC = 10V to 20V VO = 0V, VIN = VIH PW 10 s VO = 15V, VIN = VIL PW 10 s 3 IR2103(S) & (PbF) Functional Block Diagram VB HV LEVEL SHIFT Q HO R PULSE FILTER S VS IHN PULSE GEN UV DETECT DEAD TIME & SHOOT-THROUGH PREVENTION VCC VCC LO LIN COM Lead Definitions Symbol Description HIN Logic input for high side gate driver output (HO), in phase LIN VB Logic input for low side gate driver output (LO), out of phase HO High side gate drive output VS High side floating supply return VCC Low side and logic fixed supply LO Low side gate drive output COM Low side return High side floating supply Lead Assignments 1 VCC VB 8 1 VCC VB 8 2 HIN HO 7 2 HIN HO 7 3 LIN VS 6 3 LIN VS 6 COM LO 5 4 COM LO 5 4 4 8 Lead PDIP 8 Lead SOIC IR2103 IR2103S www.irf.com IR2103(S) & (PbF) LIN HIN 50% 50% tr toff LIN ton 90% tf 90% HO 10% LO LO 10% Figure 1. Input/Output Timing Diagram 50% 50% HIN ton toff tr 90% HO 10% tf 90% 10% Figure 2. Switching Time Waveform Definitions HIN LIN 50% 50% 90% HO 10% DT LO DT 90% 10% Figure 4. Deadtime Waveform Definitions www.irf.com 5 1 40 0 1400 1 20 0 1200 Turn-On Delay Time (ns) Turn-On Delay Time (ns) IR2103(S) & (PbF) 1 00 0 M ax. 8 00 6 00 T yp . 4 00 2 00 800 Typ. 600 400 200 0 0 -50 -25 0 25 50 75 Temperature (oC) 1 00 10 1 25 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 6A. Turn-On Time vs Temperature Figure 6B. Turn-On Time vs Supply Voltage 1000 500 Turn-Off Delay Time (ns) Max. Turn-On Delay Time (ns) Max. 1000 800 600 Typ. 400 200 400 300 M ax. 200 100 Typ. 0 0 0 2 4 6 8 10 12 14 16 18 -5 0 20 -2 5 0 25 50 75 100 125 Temperature (oC) Input Voltage (V) 500 1000 400 800 300 Turn-Off Delay Time (ns Figure 7A. Turn-Off Time vs Temperature Turn-Off Delay Time (ns) Figure 6C. Turn-On Time vs Input Voltage M ax. 200 Typ. 100 600 Max. 400 200 T yp 0 0 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20 VBIAS Supply Voltage (V) Input V oltage (V ) Figure 7B. Turn-Off Time vs Supply Voltage 6 Figure 7C. Turn-Off Time vs Input Voltage www.irf.com IR2103(S) & (PbF) 500 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 500 400 300 200 Max. 100 400 300 M ax. 200 100 Typ. Typ. 0 -50 0 -25 0 25 50 75 Temperature (oC) 100 125 10 12 18 20 200 Turn-Off Fall Time (ns) 200 Turn-Off Fall Time (ns) 16 Figure 9B. Turn-On Rise Time vs Voltage Figure 9A. Turn-On Rise Time vs Temperature 150 100 M ax. Typ. 50 150 M ax. 100 Typ. 50 0 0 -5 0 -2 5 0 25 50 75 Temperature (oC) 100 10 125 Figure 10A. Turn Off Fall Time vs Temperature 1400 1400 1200 1200 1000 1000 800 M ax. 600 T y p. 400 200 12 14 16 VBIAS Supply Voltage (V) 18 20 Figure 10B. Turn Off Fall Time vs Voltage Deadtime (ns) Deadtime (ns) 14 VBIAS Supply Voltage (V) M ax. 800 600 Typ. 400 M in . M in . 200 0 0 -5 0 -2 5 0 25 50 75 100 Temperature (oC) Figure 11A. Deadtime vs Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 11B. Deadtime vs Voltage 7 8 8 7 7 6 6 Input Voltage (V) Input Voltage (V) IR2103(S) & (PbF) 5 4 M in. 3 2 1 5 4 M in. Min. 3 2 1 Temperature (oC) 0 -50 -25 0 25 50 0 75 10 0 12 5 10 12 Temperature (oC) Figure12A. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Temperature 4 4 3 .2 3.2 2 .4 1 .6 M ax. 0 .8 2.4 1.6 Max. -2 5 0 25 50 75 100 125 10 12 Temperature (oC) 14 16 Vcc Supply Voltage (V) 18 20 Figure 13B. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Voltage Figure 13A. Logic "0"(HIN) & Logic "1"(LIN) Input Voltage vs Temperature 1 1 High Level Output Voltage (V) High Level Output Voltage (V) 20 0 -5 0 0 .8 0 .6 0 .4 M ax. 0 0.8 0.6 0.4 0.2 Max. 0 -5 0 -2 5 0 25 50 75 Temperature (oC) Figure 14A. High Level Output vs Temperature 8 18 0.8 0 0 .2 16 Figure 12B. Logic "1" (HIN) & Logic "0" (LIN) Input Voltage vs Voltage Input Voltage (V) Input Voltage (V) 14 VBIAS Supply Voltage (V) 100 125 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 14B. High Level Output vs Voltage www.irf.com IR2103(S) & (PbF) 1 Low Level Output Voltage (V) Low Level Output Voltage (V) 1 0 .8 0 .6 0 .4 0 .2 M ax. 0.8 0.6 0.4 0.2 Max. 0 0 -5 0 -2 5 0 25 50 75 100 10 125 12 Temperature (oC) 500 400 300 200 100 M ax. 0 -2 5 0 25 50 18 20 75 100 125 500 400 300 200 Max. 100 0 0 200 Temperature (oC) 400 600 800 VB Boost Voltage (V) Figure 16A. Offset Supply Current vs Temperature Figure 16B. Offset Supply Current vs Voltage 150 150 VBS Supply Current (A) VBS Supply Current (A) 16 Figure 15B. Low Level Output vs Voltage Offset Supply Leakge Current (A) Offset Supply Leakge Current (A) Figure 15A. Low Level Output vs Temperature -5 0 14 Vcc Supply Voltage (V) 120 90 60 M ax. 30 120 90 60 Max . 30 Typ. Ty p. 0 0 -5 0 -2 5 0 25 50 75 100 Temperature (oC) Figure 17A. VBS Supply Current vs Temperature www.irf.com 125 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17B. VBS Supply Current vs Voltage 9 IR2103(S) & (PbF) 700 VCC Supply Current (A) VCC Supply Current (A) 700 600 500 400 Max. 300 200 100 Typ. 600 500 400 300 M ax. 200 100 Typ. 0 0 -50 -25 0 25 50 75 100 10 125 12 Temperature (oC) Figure 18A. Vcc Supply Current vs Temperature Logic "1" Input Current (A) Logic "1" Input Current (A) 18 20 30 25 20 15 M a x. 10 Max 5 T y p. 25 20 15 M ax. 10 5 Typ. 0 0 -5 0 -2 5 0 25 50 75 100 10 125 12 Temperature (oC) 14 16 18 20 Vcc Supply Voltage (V) Figure 19A. Logic "1" Input Current vs Temperature Figure 19B. Logic "1" Input Current vs Voltage 5 5 Logic "0" Input Current (A) Logic "0" Input Current (A) 16 Figure 18B. Vcc Supply Current vs Voltage 30 4 3 2 Max. 1 0 4 3 2 Max. 1 0 -50 -25 0 25 50 75 100 Temperature (oC) Figure 20A. Logic "0" Input Current vs Temperature 10 14 Vcc Supply Voltage (V) 125 10 12 14 16 Vcc Supply Voltage (V) 18 20 Figure 20B. Logic "0" Input Current vs Voltage www.irf.com IR2103(S) & (PbF) 11 M ax . VCC UVLO Threshold -(V) VCC UVLO Threshold +(V) 11 10 T y p. Typ. 9 M in. 8 7 -2 5 0 25 50 75 100 Max. 9 Typ. Typ. 8 7 Min. 6 -50 6 -5 0 10 125 -25 0 Temperature (oC) Figure 21A. Vcc Undervoltage Threshold(+) vs Temperature 100 125 500 Output Source Current (mA) Output Source Current (mA) 75 Figure 21B. Vcc UndervoltageThreshold (-) vs Temperature 500 400 Typ. 300 200 100 M in . 0 400 300 200 Typ. 100 Min. 0 -5 0 -2 5 0 25 50 75 100 10 125 12 Temperature (oC) Figure 22A. Output Source Current vs Temperature 18 20 700 Output Sink Current (mA) 600 500 14 16 VBIAS Supply Voltage (V) Figure 22B. Output Source Current vs Voltage 700 Output Sink Current (mA) 25 50 Temperature (oC) Typ. 400 300 M in . 200 100 600 500 400 Typ. 300 200 M in. 100 0 0 -5 0 -2 5 0 25 50 75 100 Temperature (oC) Figure 23A. Output Sink Current vs Temperature www.irf.com 125 10 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 23B. Output Sink Current vs Voltage 11 IR2103(S) & (PbF) Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 A e 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0 8 0 8 y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 2. CONTROLLING DIMENSION: MILLIMETER 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC 12 MIN .0532 K x 45 A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) www.irf.com IR2103(S) & (PbF) LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx YWW? Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP IR2103 order IR2103 8-Lead SOIC IR2103S order IR2103S Leadfree Part 8-Lead PDIP IR2103 order IR2103PbF 8-Lead SOIC IR2103S order IR2103SPbF IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level Data and specifications subject to change without notice. 4/2/2004 www.irf.com 13