February 2008 Rev 7 1/33
33
VNH3SP30-E
Automotive fully integrated H-bridge motor driver
Features
Output current: 30A
5V logic level compatible inputs
Undervoltage and overvoltage shutdown
Overvoltage clamp
Thermal shut down
Cross-conduction protection
Linear current limiter
Very low standby power consumption
PWM operation up to 10 kHz
Protection against loss of ground and loss of
VCC
Package: ECOPACK®
Description
The VNH3SP30-E is a full-bridge motor driver
intended for a wide range of automotive
applications. The device incorporates a dual
monolithic high-side driver (HSD) and two low-
side switches. The HSD switch is designed using
STMicroelectronics proprietary VIPower™ M0-3
technology that efficiently integrates a true Power
MOSFET with an intelligent signal/protection
circuit on the same die.
The low-side switches are vertical MOSFETs
manufactured using STMicroelectronics
proprietary EHD (“STripFET™”) process.The
three circuits are assembled in a MultiPowerSO-
30 package on electrically isolated lead frames.
This package, specifically designed for the harsh
automotive environment, offers improved thermal
performance thanks to exposed die pads.
Moreover, its fully symmetrical mechanical design
provides superior manufacturability at board level.
The input signals INA and INB can directly
interface with the microcontroller to select the
motor direction and the brake condition. Pins
DIAGA/ENA or DIAGB/ENB, when connected to an
external pull-up resistor, enable one leg of the
bridge. They also provide a feedback digital
diagnostic signal. The normal condition operation
is explained in The speed of the motor can be
controlled in all possible conditions by the PWM
up to kHz. In all cases, a low level state on the
PWM pin will turn off both the LSA and LSB
switches. When PWM rises to a high level, LSA or
LSB turn on again depending on the input pin
state.
Type RDS(on) Iout Vccmax
VNH3SP30-E 45m max
(per leg) 30A 40V
MultiPowerSO-30
Table 1. Device summary
Package
Order codes
Tube Tape & reel
MultiPowerSO-30 VNH3SP30-E VNH3SP30TR-E
www.st.com
Contents VNH3SP30-E
2/33
Contents
1 Block diagram and pins description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Reverse battery protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Open load detection in Off mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Test mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1 MultiPowerSO-30 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.1 Thermal calculation in clockwise and anti-clockwise operation in steady-
state mode 26
4.1.2 Thermal resistances definition
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . 26
4.1.3 Thermal calculation in transient mode . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.1.4 Single pulse thermal impedance definition
(values according to the PCB heatsink area) . . . . . . . . . . . . . . . . . . . . . 26
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 MultiPowerSO-30 package mechanical data . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
VNH3SP30-E List of tables
3/33
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Block description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Table 3. Pin definitions and functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 4. Pin functions description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 5. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 6. Power section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. Logic inputs (INA, INB, ENA, ENB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 8. PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. Switching (VCC =13V, R
LOAD =1.1, unless otherwise specified) . . . . . . . . . . . . . . . . . . 10
Table 10. Protection and diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 11. Truth table in normal operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 12. Truth table in fault conditions (detected on OUTA). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 13. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 14. Thermal calculation in clockwise and anti-clockwise operation in steady-state mode . . . . 26
Table 15. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 16. MultiPowerSO-30 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 17. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
List of figures VNH3SP30-E
4/33
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. Definition of the delay times measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Definition of the low side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 6. Definition of the high side switching times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. On state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Off state supply current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11. Input high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 12. Input low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 14. High level enable pin current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 15. Delay time during change of operation mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 16. Enable clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 17. High level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 18. Low level enable voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 19. PWM high level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 20. PWM low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 21. PWM high level current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 22. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 23. Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 24. Current limitation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 25. On state high side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 26. On state low side resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 27. On state high side resistance vs Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 28. On state low side resistance vs Vcc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 29. Output voltage rise time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 30. Output voltage fall time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 31. Enable output low level voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 32. ON state leg resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 33. Typical application circuit for DC to 10 kHz PWM operation short circuit protection . . . . . 20
Figure 34. Half-bridge configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 35. Multi-motors configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 36. Waveforms in full bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 37. Waveforms in full bridge operation (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 38. MultiPowerSO-30™ PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 39. Chipset configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 40. Auto and mutual Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . 25
Figure 41. MultiPowerSO-30 HSD thermal impedance junction ambient single pulse . . . . . . . . . . . . 27
Figure 42. MultiPowerSO-30 LSD thermal impedance junction ambient single pulse . . . . . . . . . . . . . 27
Figure 43. Thermal fitting model of an H-bridge in MultiPowerSO-30 . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 44. MultiPowerSO-30 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 45. MultiPowerSO-30 suggested pad layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 46. MultiPowerSO-30 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 47. MultiPowerSO-30 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
VNH3SP30-E Block diagram and pins description
5/33
1 Block diagram and pins description
Figure 1. Block diagram
Table 2. Block description
Name Description
Logic control Allows the turn-on and the turn-off of the high side and the low side switches
according to the truth table
Overvoltage +
undervoltage Shuts down the device outside the range [5.5V..36V] for the battery voltage
High side and low
side clamp voltage
Protects the high side and the low side switches from the high voltage on the
battery line in all configurations for the motor
High side and low
side driver
Drives the gate of the concerned switch to allow a proper RDS(on) for the leg of
the bridge
Linear current limiter Limits the motor current by reducing the high side switch gate-source voltage
when short-circuit to ground occurs
Overtemperature
protection
In case of short-circuit with the increase of the junction’s temperature, shuts
down the concerned high side to prevent its degradation and to protect the die
Fault detection Signals an abnormal behavior of the switches in the half-bridge A or B by
pulling low the concerned ENx/DIAGx pin
Block diagram and pins description VNH3SP30-E
6/33
Figure 2. Configuration diagram (top view)
Table 3. Pin definitions and functions
Pin No Symbol Function
1, 25, 30 OUTA, Heat Slug3 Source of high side switch A / Drain of low side switch A
2, 4, 7, 9, 12,
14, 17, 22, 24,
29
NC Not connected
3, 13, 23 VCC, Heat Slug1 Drain of high side switches and power supply voltage
6EN
A/DIAGAStatus of high side and low side switches A; open drain output
5IN
AClockwise input
8 PWM PWM input
11 INBCounter clockwise input
10 ENB/DIAGBStatus of high side and low side switches B; open drain output
15, 16, 21 OUTB, Heat Slug2 Source of high side switch B / Drain of low side switch B
26, 27, 28 GNDASource of low side switch A(1)
1. GNDA and GNDB must be externally connected together.
18, 19, 20 GNDBSource of low side switch B(1)
VNH3SP30-E Block diagram and pins description
7/33
Table 4. Pin functions description
Name Description
VCC Battery connection
GNDA, GNDBPower grounds; must always be externally connected together
OUTA, OUTBPower connections to the motor
INA, INB
Voltage controlled input pins with hysteresis, CMOS compatible. These two pins
control the state of the bridge in normal operation according to the truth table (brake
to VCC, brake to GND, clockwise and counterclockwise).
PWM
Voltage controlled input pin with hysteresis, CMOS compatible. Gates of low side
FETs are modulated by the PWM signal during their ON phase allowing speed
control of the motor.
ENA/DIAGA,
ENB/DIAGB
Open drain bidirectional logic pins. These pins must be connected to an external pull
up resistor. When externally pulled low, they disable half-bridge A or B. In case of
fault detection (thermal shutdown of a high side FET or excessive ON state voltage
drop across a low side FET), these pins are pulled low by the device (see truth table
in fault condition).
Electrical specifications VNH3SP30-E
8/33
2 Electrical specifications
Figure 3. Current and voltage conventions
2.1 Absolute maximum ratings
Table 5. Absolute maximum ratings
Symbol Parameter Value Unit
Vcc Supply voltage -0.3...40 V
Imax1 Maximum output current (continuous) 30 A
IR Reverse output current (continuous) -30
IIN Input current (INA and INB pins) ±10
mAIEN Enable input current (DIAGA/ENA and DIAGB/ENB pins) ±10
Ipw PWM input current ±10
VESD
Electrostatic discharge (R = 1.5k, C = 100pF)
logic pins
output pins: OUTA, OUTB, VCC
4
5
kV
kV
TjJunction operating temperature Internally limited
°CTcCase operating temperature -40 to 150
TSTG Storage temperature -55 to 150
VNH3SP30-E Electrical specifications
9/33
2.2 Electrical characteristics
Vcc = 9V up to 18V; -40°C < Tj< 150°C, unless otherwise specified.
Table 6. Power section
Symbol Parameter Test Conditions Min Typ Max Unit
VCC
Operating supply
voltage 5.5 36 V
ISSupply current
Off state:
INA=IN
B=PWM=0; T
j= 25°C; VCC =13V
INA=IN
B=PWM=0
20 30
40
µA
µA
On state:
INA or INB=5V, no PWM 15 mA
RONHS
Static high side
resistance
IOUT = 12A; Tj= 25°C
IOUT = 12A; Tj= -40 to 150°C
23 30
60 m
RONLS
Static low side
resistance
IOUT = 12A; Tj= 25°C
IOUT = 12A; Tj= -40 to 150°C
11 15
30
Vf
High side free-
wheeling diode
forward voltage
If = 12 A0.81.1V
IL(off)
High side off state
output current
(per channel)
Tj=25°C; V
OUTX =EN
X=0V; V
CC =13V
Tj= 125°C; VOUTX =EN
X=0V; V
CC =13V
3
5µA
Table 7. Logic inputs (INA, INB, ENA, ENB)
Symbol Parameter Test conditions Min Typ Max Unit
VIL Input low level voltage
Normal operation (DIAGX/ENX pin acts
as an input pin)
1.5
V
VIH Input high level voltage 3.25
VIHYST Input hysteresis voltage 0.5
VICL Input clamp voltage IIN =1mA 6 6.8 8
IIN = -1mA -1 -0.7 -0.3
IINL Input low current VIN =1.5V 1 µA
IINH Input high current VIN =3.25V 10
VDIAG
Enable output low level
voltage
Fault operation (DIAGX/ENX pin acts as
an output pin); IEN =1mA 0.4 V
Electrical specifications VNH3SP30-E
10/33
Table 8. PWM
Symbol Parameter Test Conditions Min Typ Max Unit
Vpwl PWM low level voltage 1.5 V
Ipwl
PWM low level pin
current Vpw =1.5V 1 µA
Vpwh PWM high level voltage 3.25 V
Ipwh
PWM high level pin
current Vpw = 3.25V 10 µA
Vpwhhyst PWM hysteresis voltage 0.5
V
Vpwcl PWM clamp voltage Ipw = 1mA VCC +0.3 V
CC +0.7 V
CC +1
Ipw = -1mA -5 -3.5 -2
Vpwtest
Test mode PWM pin
voltage -3.5 -2 -0.5 V
Ipwtest
Test mode PWM pin
current VIN = -2 V -2000 -500 µA
Table 9. Switching (VCC =13V, R
LOAD =1.1, unless otherwise specified)
Symbol Parameter Test Conditions Min Typ Max Unit
f PWM frequency 0 10 kHz
td(on) Turn-on delay time Input rise time < 1µs
(see Figure 6)100 300
µs
td(off) Turn-off delay time Input rise time < 1µs
(see Figure 6)85 255
trRise time (see Figure 5)1.53
tfFall time (see Figure 5)25
tDEL
Delay time during change
of operating mode (see Figure 4) 600 1800
Table 10. Protection and diagnostic
Symbol Parameter Test Conditions Min Typ Max Unit
VUSD Undervoltage shut-down 5.5 V
VOV Overvoltage shut-down 36 43
ILIM Current limitation 30 45 A
TTSD Thermal shut-down temperature VIN = 3.25V 150 170 200
°CTTR Thermal reset temperature 135
THYST Thermal hysteresis 7 15
VNH3SP30-E Electrical specifications
11/33
Figure 4. Definition of the delay times measurement
Figure 5. Definition of the low side switching times
t
t
V
INB
V
INA
t
PWM
t
I
LOAD
t
DEL
t
DEL
t
f
PWM
t
t
V
OUTA, B
20%
90% 80%
10%
t
r
Electrical specifications VNH3SP30-E
12/33
Figure 6. Definition of the high side switching times
t
t
V
OUTA
V
INA
90%
10%
t
D(on)
t
D(off)
VNH3SP30-E Electrical specifications
13/33
Note: Notice that saturation detection on the low side power MOSFET is possible only if the
impedance of the short-circuit from the output to the battery is less than 100m when the
device is supplied with a battery voltage of 13.5V.
Table 11. Truth table in normal operating conditions
INAINBDIAGA/ENADIAGB/ENBOUTAOUTBOperating mode
11
11
HH Brake to VCC
0 L Clockwise (CW)
01LH Counterclockwise (CCW)
0 L Brake to GND
Table 12. Truth table in fault conditions (detected on OUTA)
INAINBDIAGA/ENADIAGB/ENBOUTAOUTB
11
0
1
OPEN
H
0L
01H
0L
X
X0 OPEN
11H
0L
Fault Information Protection Action
Electrical specifications VNH3SP30-E
14/33
Table 13. Electrical transient requirements
ISO T/R - 7637/1
Test Pulse
Test Level
I
Test Level
II
Test Level
III
Test Level
IV
Test Levels
Delays and Impedance
1 -25V -50V -75V -100V 2ms, 10
2 +25V +50V +75V +100V 0.2ms, 10
3a -25V -50V -100V -150V 0.1µs, 50
3b +25V +50V +75V +100V
4 -4V -5V -6V -7V 100ms, 0.01
5 +26.5V +46.5V +66.5V +86.5V 400ms, 2
ISO T/R - 7637/1
Test Pulse
Test Levels
Result I
Test Levels
Result II
Test Levels
Result III
Test Levels
Result IV
1
CCCC
2
3a
3b
4
5(1)
1. For load dump exceeding the above value a centralized suppressor must be adopted
EEE
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
E
One or more functions of the device are not performed as designed after
exposure to disturbance and cannot be returned to proper operation without
replacing the device.
VNH3SP30-E Electrical specifications
15/33
2.3 Electrical characteristics curves
Figure 7. On state supply current Figure 8. Off state supply current
Figure 9. High level input current Figure 10. Input clamp voltage
Figure 11. Input high level voltage Figure 12. Input low level voltage
Electrical specifications VNH3SP30-E
16/33
Figure 13. Input hysteresis voltage Figure 14. High level enable pin current
Figure 15. Delay time during change of
operation mode
Figure 16. Enable clamp voltage
Figure 17. High level enable voltage Figure 18. Low level enable voltage
VNH3SP30-E Electrical specifications
17/33
Figure 19. PWM high level voltage Figure 20. PWM low level voltage
Figure 21. PWM high level current Figure 22. Overvoltage shutdown
Figure 23. Undervoltage shutdown Figure 24. Current limitation
Electrical specifications VNH3SP30-E
18/33
Figure 25. On state high side resistance vs
Tcase
Figure 26. On state low side resistance vs
Tcase
Figure 27. On state high side resistance vs
Vcc
Figure 28. On state low side resistance vs Vcc
Figure 29. Output voltage rise time Figure 30. Output voltage fall time
VNH3SP30-E Electrical specifications
19/33
Figure 31. Enable output low level voltage Figure 32. ON state leg resistance
Application information VNH3SP30-E
20/33
3 Application information
In normal operating conditions the DIAGX/ENX pin is considered as an input pin by the
device. This pin must be externally pulled high.
PWM pin usage: In all cases, a “0” on the PWM pin will turn off both LSA and LSB switches.
When PWM rises back to “1”, LSA or LSB turn on again depending on the input pin state.
Figure 33. Typical application circuit for DC to 10 kHz PWM operation short circuit
protection
Note: The value of the blocking capacitor (C) depends on the application conditions and defines voltage and
current ripple onto supply line at PWM operation. Stored energy of the motor inductance may fly back
into the blocking capacitor, if the bridge driver goes into tri-state. This causes a hazardous overvoltage
if the capacitor is not big enough. As basic orientation, 500µF per 10A load current is recommended.
In case of a fault condition the DIAGX/ENX pin is considered as an output pin by the device.
The fault conditions are:
overtemperature on one or both high sides
short to battery condition on the output (saturation detection on the low side power
MOSFET)
µC
VNH3SP30-E Application information
21/33
Possible origins of fault conditions may be:
OUTA is shorted to ground overtemperature detection on high side A.
OUTA is shorted to VCC low side power MOSFET saturation detection(a).
When a fault condition is detected, the user can know which power element is in fault by
monitoring the INA, INB, DIAGA/ENA and DIAGB/ENB pins.
In any case, when a fault is detected, the faulty leg of the bridge is latched off. To turn on the
respective output (OUTX) again, the input signal must rise from low to high level.
3.1 Reverse battery protection
Three possible solutions can be considered:
1. a Schottky diode
D
connected to VCC pin
2. an N-channel MOSFET connected to the GND pin (see Figure 33: Typical application
circuit for DC to 10 kHz PWM operation short circuit protection on page 20
3. a P-channel MOSFET connected to the VCC pin
The device sustains no more than -30A in reverse battery conditions because of the two
body diodes of the power MOSFETs. Additionally, in reverse battery condition the I/Os of
VNH3SP30-E will be pulled down to the VCC line (approximately -1.5V). A series resistor
must be inserted to limit the current sunk from the microcontroller I/Os. If IRmax is the
maximum target reverse current through µC I/Os, the series resistor is:
3.2 Open load detection in Off mode
It is possible for the microcontroller to detect an open load condition by adding a simply
resistor (for example, 10k ohm) between one of the outputs of the bridge (for example,
OUTB) and one microcontroller input. A possible sequence of inputs and enable signals is
the following: INA = 1, INB = X, ENA = 1, ENB = 0.
normal condition: OUTA = H and OUTB = H
open load condition: OUTA = H and OUTB = L: In this case the OUTB pin is internally
pulled down to GND. This condition is detected on OUTB pin by the microcontroller as
an open load fault.
a. An internal operational amplifier compares the Drain-Source MOSFET voltage with the internal reference (2.7V
Typ.). The relevant low side power MOS is switched off when its Drain-Source voltage exceeds the reference
voltage.
R
VIOs VCC
IRmax
---------------------------------=
Application information VNH3SP30-E
22/33
3.3 Test mode
The PWM pin can be used to test the load connection between two half-bridges. In the Test
mode (Vpwm = -2V) the internal power MOS gate drivers are disabled. The INA or INB inputs
can be used to turn on the high side A or B, respectively, in order to connect one side of the
load at VCC voltage. The check of the voltage on the other side of the load can be used to
verify the continuity of the load connection. In case of load disconnection, the DIADX/ENX
pin corresponding to the faulty output is pulled down.
Figure 34. Half-bridge configuration
Note: The VNH3SP30-E can be used as a high power half-bridge driver achieving an On
resistance per leg of 22.5m.
Figure 35. Multi-motors configuration
Note: The VNH3SP30-E can easily be designed in multi-motors driving applications such as seat
positioning systems where only one motor must be driven at a time. DIAGX/ENX pins allow
to put unused half-bridges in high impedance.
M
OUT
A
OUT
A
OUT
B
OUT
B
V
CC
PWM
DIAG
A
/EN
A
IN
A
DIAG
B
/EN
B
IN
B
GND
B
GND
A
GND
B
GND
A
PWM
DIAG
A
/EN
A
IN
A
DIAG
B
/EN
B
IN
B
M
2
OUT
A
OUT
A
OUT
B
OUT
B
V
CC
PWM
DIAG
A
/EN
A
IN
A
DIAG
B
/EN
B
IN
B
GND
B
GND
A
GND
B
GND
A
PWM
DIAG
A
/EN
A
IN
A
DIAG
B
/EN
B
IN
B
M
1
M
3