TK637xxB/H/S
AP-MS0034-E-00 - 1 - 2011/02
TK637xxH/S
1-
. DESCRIPTION
The TK637xxH/S is a CMOS LDO regulator. The
packages are the small and thin SON2017-6, and the
extremely versatile SOT23-5.
The IC is designed for portable applications with space
requirements.
The IC can supply 150mA output current.
The IC does not require input capacitor, output capacitor,
and noise-bypass capacitor.
The IC offers low 10μA quiescent current and good
transient performance.
The output voltage is internally fixed from 1.35V to 4.2V.
2-
. FEATURES
Capacitor-less
(Without input capacitor, output capacitor, and noise-
bypass capacitor)
Package: SON2017-6 / SOT23-5
Low quiescent current
Good transient performance
Thermal and over current protection
On/Off control
High accuracy
3-
. APPLICATIONS
Mobile Communication
Battery Powered System
Any Electronic Equipment
4-
. PIN CONFIGURATION
SON2017-6 (TK637xxH)
VOut
GND
VIn
(Top View)
VCont
NC
GND
6
5
4
1
2
3
SOT23-5 (TK637xxS)
VOut
1
2
3
5
4
GND
VIn
(Top View)
VCont NC
5-
. BLOCK DIAGRAM
VIn
GND
VCont
VOut
On/Off
Control
VRef
Thermal &
Over Current
Protection
150mA, Capacitor-less, Low IQ, CMOS LDO Regulator IC
TK637xxB/H/S
AP-MS0034-E-00 - 2 - 2011/02
6-
. ORDERING INFORMATION
T K 6 3 7
Voltage Code
(Refer to the following table)
Package Code
B : FC-4
H : SON2017-6 Package
S : SOT23-5 Package
Operating Temp. Range Code
C : C Rank(standard) only
Tape/Reel Code
B : Normal type for FC
L : Normal type for plastic packages
C
Solder Composion Code
- G : Lead Free
- GH : PB Free & Halogen Free
brank : Lead Containing
Output Voltage
Voltage Code
Voltage Code
Output Voltage
Voltage Code
1.35V
02
28
3.3V
33
1.5V
15
01
3.5V
35
1.8V
18
29
2.5V
25
30
2.6V
26
31
2.7V
27
32
*If you need a voltage other than the value listed in the above table, please contact Asahi Kasei Microdevices.
TK637xxB/H/S
AP-MS0034-E-00 - 3 - 2011/02
7-
. ABSOLUTE MAXIMUM RATINGS
Ta=25C
Parameter
Symbol
Rating
Units
Conditions
Absolute Maximum Ratings
Input Voltage
VIn,MAX
-0.3 ~ 7.0
V
Output pin Voltage
VOut,MAX
-0.3 ~ VIn+0.3
V
Control pin Voltage
VCont,MAX
-0.3 ~ 7.0
V
Storage Temperature Range
Tstg
-55 ~ 150
C
Power Dissipation
PD
500
mW
TK637xxH (SON2017-6)
TK637xxS (SOT23-5)
When mounted on a PCB
(7mm8mm0.8mm),
Internal Limited Tj=150°C 2*
Operating Condition
Operational Temperature Range
TOP
-40 ~ 85
C
Operational Voltage Range
VOP
1.8 ~ 6.0
V
*2 PD must be decreased at the rate of 4mW for operation above 25C.
The maximum ratings are the absolute limitation values with the possibility of the IC being damaged.
If the operation exceeds any of these standards, quality cannot be guaranteed.
TK637xxB/H/S
AP-MS0034-E-00 - 4 - 2011/02
8-
. ELECTRICAL CHARACTERISTICS
The parameters with min. or max. values will be guaranteed at Ta=Tj=25C with test when manufacturing or SQC
(Statistical Quality Control) methods. The operation between -40 ~ 85C is guaranteed by design.
VIn=VOut,TYP+1V, VCont=1.2V, Ta=Tj=25°C
Parameter
Symbol
Value
Units
Conditions
MIN
TYP
MAX
Output Voltage
VOut
Refer to TABLE 1
V
IOut=5mA
Line Regulation
LinReg
-
0.0
4.0
mV
VIn=1V
Load Regulation
LoaReg
Refer to TABLE 2
mV
Refer to TABLE 2
Dropout Voltage *1
VDrop
Refer to TABLE 2
mV
Refer to TABLE 2
Maximum Load Current *2
IOut,MAX
200
300
-
mA
VOut=VOut,TYP0.9
Quiescent Current
IQ
-
10
20
µA
IOut=0mA, VCont=VIn
Standby Current
IStandby
-
0.01
0.1
µA
VCont=0V
GND Pin Current
IGND
-
25
50
µA
IOut=50mA, VCont=VIn
Control Terminal
Control Current
ICont
-
0.3
0.6
µA
VCont=1.2V
Control Voltage
VCont
1.2
-
-
V
VOut On state
-
-
0.2
V
VOut Off state
Reference Value
Output Voltage / Temp.
VOut/Ta
-
100
-
ppm/°C
IOut=5mA
Output Noise Voltage
(TK63728)
VNoise
-
45
-
µVrms
COut=1.0µF , IOut=30mA ,
BPF=400Hz~80kHz
Ripple Rejection
(TK63728)
RR
-
65
-
dB
COut=1.0µF ,
IOut=10mA , f=1kHz
Rise Time
(TK63728)
tr
-
300
-
µs
COut=1.0µF ,
VCont : Pulse Wave (100Hz) ,
VCont On VOut95% point
*1: For VOut 1.8V, no regulations.
*2: The maximum output current is limited by power dissipation.
The maximum load current is the current where the output voltage decreases to 90% by increasing the output current at
Tj=25°C, compared to the output voltage specified at VIn=VOut,TYP+1V. The maximum load current indicates the current
at which over current protection turns on.
For all output voltage products, the maximum output current for normal operation without operating any protection is
200mA. Accordingly, LoaReg and VDrop are specified on the condition that IOut is less than 200mA.
General Note
Parameters with only typical values are just reference. (Not guaranteed)
The noise level is dependent on the output voltage, the capacitance and capacitor characteristics.
TK637xxB/H/S
AP-MS0034-E-00 - 5 - 2011/02
TABLE 1.
Part Number
Output Voltage
MIN
TYP
MAX
V
V
V
TK63715H/S
1.485
1.500
1.515
TK63718H/S
1.782
1.800
1.818
TK63725H/S
2.475
2.500
2.525
TK63726H/S
2.574
2.600
2.626
TK63727H/S
2.673
2.700
2.727
TK63728H/S
2.772
2.800
2.828
TK63701H/S
2.821
2.850
2.879
TK63729H/S
2.871
2.900
2.929
TK63730H/S
2.970
3.000
3.030
TK63731H/S
3.069
3.100
3.131
TK63732H/S
3.168
3.200
3.232
TK63733H/S
3.267
3.300
3.333
TK63735H/S
3.465
3.500
3.535
Notice.
Please contact your authorized Asahi Kasei Microdevices representative for voltage availability.
TK637xxB/H/S
AP-MS0034-E-00 - 6 - 2011/02
TABLE 2.
Part Number
Load Regulation
Dropout Voltage
IOut=1 ~ 50mA
IOut=1 ~ 100mA
IOut=1 ~ 150mA
IOut=50mA
IOut=100mA
IOut=150mA
TYP
MAX
TYP
MAX
TYP
MAX
TYP
MAX
TYP
MAX
TYP
MAX
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
mV
TK63715H/S
7
28
13
52
20
80
190
-
380
-
570
-
TK63718H/S
7
28
14
56
21
84
145
-
290
-
435
-
TK63725H/S
8
32
15
60
22
88
105
155
210
320
315
490
TK63726H/S
8
32
15
60
23
92
100
150
200
310
305
470
TK63727H/S
8
32
15
60
23
92
100
145
195
295
295
460
TK63728H/S
8
32
15
60
23
92
95
140
185
285
280
435
TK63701H/S
8
32
15
60
23
92
95
140
185
285
280
435
TK63729H/S
8
32
15
60
23
92
90
135
180
275
270
420
TK63730H/S
8
32
16
64
24
96
90
135
180
275
270
420
TK63731H/S
8
32
16
64
24
96
90
135
180
275
270
420
TK63732H/S
8
32
16
64
24
96
90
135
180
275
270
420
TK63733H/S
8
32
16
64
24
96
90
135
180
275
270
420
TK63735H/S
8
32
16
64
25
100
90
135
180
275
270
420
TK637xxB/H/S
AP-MS0034-E-00 - 7 - 2011/02
9-
. TEST CIRCUIT
IOut
=5mA
COut
=1.0uF
CIn
=1.0uF
VCont
V
_
A
_ICont VOut
VIn=
VOut,TYP+1.0V
A
_VIn VOut
VCont GND
IIn
Test circuit for electrical characteristic
Notice.
The limit values of the electrical characteristics are determined when
CIn=1.0F(Ceramic) and COut=1.0F(Ceramic).
But ceramic and/or tantalum capacitors can both be used for CIn, and
COut.
This IC does not oscillate without input and output capacitors. The
electrical characteristics without input and output capacitors are
guaranteed by design., please refer to 12-1 for external capacitor.
IOut
COut
=1.0uF
CIn
=1.0uF
VCont
V
_
A
_ICont VOut
VIn
VIn VOut
VCont GND
VOut vs VIn
VDrop vs IOut
VOut vs IOut
VOut vs IOut
VOut vs Ta
VDrop vs Ta
IOut,MAX vs Ta
ICont vs VCont , VOut vs VCont
ICont vs Ta
VCont vs Ta
VNoise vs VIn
VNoise vs IOut
VNoise vs VOut
VNoise vs Frequency
COut
=1.0uF
CIn
=1.0uF
VCont
A
_ICont
VIn=
VOut,TYP+1.0V
A
_VIn VOut
VCont GND
IIn
Open
IQ vs VIn
IStandby vs VIn
IQ vs Ta
IOut
COut
=1.0uF
CIn
=1.0uF
VCont
VIn=
VOut,TYP+1.0V
VIn VOut
VCont GND
A
_
IGND
A
_ICont
IGND vs IOut
IGND vs Ta
TK637xxB/H/S
AP-MS0034-E-00 - 8 - 2011/02
IOut
=10mA
COut
=1.0uF
VIn VOut
VCont GND
VIn=
VOut,TYP+1.5V
Vripple=
500mVP-P
VCont
=1.2V
RR vs VIn
RR vs Frequency
RR vs Frequency
COut
=1.0uF
V
_VOut
VIn VOut
VCont GND
VOut,TYP+1V
VOut,TYP+2V
VCont
=1.2V
IOut
Line Transient
COut
=1.0uF
CIn
=1.0uF
V
_VOut
VIn=
VOut,TYP+1.0V
VIn VOut
VCont GND
IOut
VCont
=1.2V
Load Transient
IOut=
30mA
COut
=1.0uF
CIn
=1.0uF
V
_VOut
VIn=
VOut,TYP+1.0V
VIn VOut
VCont GND
VCont
=0V 1.2V
On/Off Transient
TK637xxB/H/S
AP-MS0034-E-00 - 9 - 2011/02
10-
. TYPICAL CHARACTERISTICS
10-1-
. DC CHARACTERISTICS
VOut vs VIn (TK63715H/S)
VIn [V]
0 1 2 3 4 5 6
VOut [mV]
-30
-25
-20
-15
-10
-5
0
5
10
IOut=5mA
VOut vs VIn (TK63742H/S)
VIn [V]
0 1 2 3 4 5 6
VOut [mV]
-30
-25
-20
-15
-10
-5
0
5
10
IOut=5mA
VOut vs VIn (TK63728H/S)
VIn-VOut [mV]
-100 0 100 200 300
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
IOut=0, 10, 30, 50, 80mA
VOut vs VIn (TK63728H/S)
VIn [V]
0 1 2 3 4 5 6
VOut [mV]
-30
-25
-20
-15
-10
-5
0
5
10
IOut=5mA
VOut vs VIn (TK63715H/S)
VIn-VOut [mV]
-100 0 100 200 300
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
IOut=0, 10, 30, 50, 80mA
VOut vs VIn (TK63742H/S)
VIn-VOut [mV]
-100 0 100 200 300
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
IOut=0, 10, 30, 50, 80mA
TK637xxB/H/S
AP-MS0034-E-00 - 10 - 2011/02
VDrop vs IOut (TK63715H/S)
IOut [mA]
050 100 150 200
VDrop [mV]
-400
-350
-300
-250
-200
-150
-100
-50
0
VDrop vs IOut (TK63728H/S)
IOut [mA]
050 100 150 200
VDrop [mV]
-400
-350
-300
-250
-200
-150
-100
-50
0
VDrop vs IOut (TK63742H/S)
IOut [mA]
050 100 150 200
VDrop [mV]
-400
-350
-300
-250
-200
-150
-100
-50
0
VOut vs IOut (TK63715H/S)
IOut [mA]
0 100 200 300 400 500
VOut [V]
0
0.5
1
1.5
2
VOut vs IOut (TK63728H/S)
IOut [mA]
0 100 200 300 400 500
VOut [V]
0
0.5
1
1.5
2
2.5
3
3.5
4
VOut vs IOut (TK63742H/S)
IOut [mA]
0 100 200 300 400 500
VOut [V]
0
1
2
3
4
5
6
TK637xxB/H/S
AP-MS0034-E-00 - 11 - 2011/02
VOut vs IOut (TK63715H/S)
IOut [mA]
050 100 150 200
VOut [mV]
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
VOut vs IOut (TK63728H/S)
IOut [mA]
0100 200
VOut [mV]
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
50 150
VOut vs IOut (TK63742H/S)
IOut [mA]
050 100 150 200
VOut [mV]
-40
-35
-30
-25
-20
-15
-10
-5
0
5
10
VOut vs Ta (TK63715H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
60
80
100
VOut vs Ta (TK63728H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
60
80
100
VOut vs Ta (TK63742H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VOut [mV]
-100
-80
-60
-40
-20
0
20
40
60
80
100
TK637xxB/H/S
AP-MS0034-E-00 - 12 - 2011/02
VDrop vs Ta (TK63715H/S)
-50 -25 0 25 50 75 100
VDrop [mV]
-400
-350
-300
-250
-200
-150
-100
-50
0
Ta [ °C]
IOut=50mA
IOut=80mA
VDrop vs Ta (TK63728H/S)
-50 -25 0 25 50 75 100
-400
-350
-300
-250
-200
-150
-100
-50
0
VDrop [mV]
Ta [ °C]
IOut=50mA
IOut=80mA
VDrop vs Ta (TK63742H/S)
-50 -25 0 25 50 75 100
-400
-350
-300
-250
-200
-150
-100
-50
0
VDrop [mV]
Ta [ °C]
IOut=50mA
IOut=80mA
IOut,MAX vs Ta (TK63715H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IOut,MAX [mA]
200
300
400
IOut,MAX vs Ta (TK63728H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IOut,MAX [mA]
200
300
400
IOut,MAX vs Ta (TK63742H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IOut,MAX [mA]
200
300
400
TK637xxB/H/S
AP-MS0034-E-00 - 13 - 2011/02
IQ vs VIn (TK63715H/S)
VIn [V]
0 1 2 3 4 5 6
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
IQ vs VIn (TK63728H/S)
VIn [V]
0 1 2 3 4 5 6
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
IQ vs VIn (TK63742H/S)
VIn [V]
0 1 2 3 4 5 6
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
IStandby vs VIn (TK63715H/S)
VIn [V]
0 1 2 3 4 5 6
IStandby [nA]
0
1
2
3
4
5
6
7
8
9
10
VCont=0V
IStandby vs VIn (TK63728H/S)
VIn [V]
0 1 2 3 4 5 6
IStandby [nA]
0
1
2
3
4
5
6
7
8
9
10
VCont=0V
IStandby vs VIn (TK63742H/S)
VIn [V]
0 1 2 3 4 5 6
IStandby [nA]
0
1
2
3
4
5
6
7
8
9
10
VCont=0V
TK637xxB/H/S
AP-MS0034-E-00 - 14 - 2011/02
IGND vs IOut (TK63715H/S)
IOut [mA]
050 100 150 200
IGND [µA]
0
20
40
60
80
100 VCont=VIn
IGND vs IOut (TK63728H/S)
IOut [mA]
050 100 150 200
IGND [µA]
0
20
40
60
80
100 VCont=VIn
IGND vs IOut (TK63742H/S)
IOut [mA]
050 100 150 200
IGND [µA]
0
20
40
60
80
100 VCont=VIn
IQ vs Ta (TK63715H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
IQ vs Ta (TK63728H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
IQ vs Ta (TK63742H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IQ [µA]
0
2
4
6
8
10
12
14
16
18
20
VCont=VIn
TK637xxB/H/S
AP-MS0034-E-00 - 15 - 2011/02
IGND vs Ta (TK63715H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IGND [µA]
0
20
40
60
80
100
VCont=VIn, IOut=50mA
IGND vs Ta (TK63728H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IGND [µA]
0
20
40
60
80
100
VCont=VIn, IOut=50mA
IGND vs Ta (TK63742H/S)
Ta [°C]
-50 -25 0 25 50 75 100
IGND [µA]
0
20
40
60
80
100
VCont=VIn, IOut=50mA
ICont vs VCont, VOut vs VCont (TK63715H/S)
VCont [V]
0 0.5 1 1.5 2
VOut [V]
0
0.5
1
1.5
2
ICont [µA]
0
0.25
0.5
0.75
1
VOut
ICont
ICont vs VCont, VOut vs VCont (TK63728H/S)
VCont [V]
0 0.5 1 1.5 2
ICont [µA]
0
0.25
0.5
0.75
1
VOut [V]
0
1
2
3
4
VOut
ICont
ICont vs VCont, VOut vs VCont (TK63742H/S)
VCont [V]
0 0.5 1 1.5 2
ICont [µA]
0
0.25
0.5
0.75
1
VOut [V]
0
2
4
6
8
VOut
ICont
TK637xxB/H/S
AP-MS0034-E-00 - 16 - 2011/02
VCont vs Ta (TK63715H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VCont [V]
0
0.2
0.4
0.6
0.8
1
1.2
1.4
VCont vs Ta (TK63728H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VCont [V]
0
0.2
0.4
0.6
0.8
1
1.2
1.4
ICont vs Ta (TK637xxH/S)
Ta [°C]
-50 -25 0 25 50 75 100
ICont [µA]
0
0.25
0.5
0.75
1
VCont=1.2V
VCont vs Ta (TK63742H/S)
Ta [°C]
-50 -25 0 25 50 75 100
VCont [V]
0
0.2
0.4
0.6
0.8
1
1.2
1.4
TK637xxB/H/S
AP-MS0034-E-00 - 17 - 2011/02
10-2-
. AC CHARACTERISTICS
RR vs VIn (TK63715H/S)
VIn-VOut [V]
0 0.5 1 1.5 2 2.5 3 3.5
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IOut=80mA
50mA
30mA
10mA
Vripple=0.1Vp-p, f=1kHz
RR vs VIn (TK63728H/S)
VIn-VOut [V]
0 0.5 1 1.5 2 2.5 3 3.5
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IOut=80mA
50mA
30mA
10mA
Vripple=0.1Vp-p, f=1kHz
RR vs VIn (TK63742H/S)
VIn-VOut [V]
0 0.5 1 1.5 2 2.5
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0Vripple=0.1Vp-p, f=1kHz
IOut=80mA
50mA
30mA
10mA
RR vs Frequency (TK63715H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
COut=1.0µF(cer.)
COut=1.0µF(tant.)
IOut=10mA
RR vs Frequency (TK63728H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0IOut=10mA
COut=1.0µF(cer.)
COut=1.0µF(tant.)
RR vs Frequency (TK63742H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0IOut=10mA
COut=1.0µF(cer.)
COut=1.0µF(tant.)
TK637xxB/H/S
AP-MS0034-E-00 - 18 - 2011/02
RR vs Frequency (TK63715H/S)
Frequency [Hz]
100 1k 10k 100k
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
1M
COut=0.47µF
0.68µF
1.0µF
IOut=10mA
RR vs Frequency (TK63728H/S)
Frequency [Hz]
100 1k 10k 100k
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
1M
COut=0.47µF
0.68µF
1.0µF
IOut=10mA
RR vs Frequency (TK63742H/S)
Frequency [Hz]
100 1k 10k 100k
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
1M
COut=0.47µF
0.68µF
1.0µF
IOut=10mA
The ripple rejection (RR) characteristic depends on the
characteristic and the capacitance value of the capacitor
connected to the output side. The RR characteristic of
50kHz or more varies greatly with the capacitor on the
output side and PCB pattern. If necessary, please confirm
stability of your design.
TK637xxB/H/S
AP-MS0034-E-00 - 19 - 2011/02
VNoise vs VIn (TK63715H/S)
VIn [V]
1 2 3 4 5 6
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100 IOut=30mA
VNoise vs VIn (TK63728H/S)
VIn [V]
2.5 3 3.5 4 4.5 5 5.5 6
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100 IOut=30mA
VNoise vs VIn (TK63742H/S)
VIn [V]
4 4.5 5 5.5 6
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
IOut=30mA
VNoise vs IOut (TK63715H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
VNoise vs IOut (TK63728H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
VNoise vs IOut (TK63742H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
TK637xxB/H/S
AP-MS0034-E-00 - 20 - 2011/02
VNoise vs VOut,TYP (TK637xxH/S)
VOut,TYP [V]
1.5 2 2.5 3 3.5 4 4.5
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100 IOut=30mA
VNoise vs Frequency (TK63715H/S)
Frequency [Hz]
10 100 1k 10k 100k
0.01
0.1
1
10
VNoiseV/Hz]
IOut=10mA
VNoise vs Frequency (TK63728H/S)
Frequency [Hz]
10 100 1k 10k 100k
0.01
0.1
1
10
IOut=10mA
VNoiseV/Hz]
VNoise vs Frequency (TK63742H/S)
Frequency [Hz]
10 100 1k 10k
0.01
0.1
1
10
100k
VNoise [µV/Hz]
IOut=10mA
TK637xxB/H/S
AP-MS0034-E-00 - 21 - 2011/02
10-3-
. TRANSIENT CHARACTERISTICS
Line Transient (TK63715H/S)
Time
20µsec/div
3.5V
2.5V
IOut=10mA
20mV/div
IOut=50mA
VIn
VOut
Line Transient (TK63728H/S)
Time
20µsec/div
4.8V
3.8V
IOut=10mA
VIn
VOut 20mV/div
IOut=50mA
Line Transient (TK63742H/S)
Time
20µsec/div
6.2V
5.2V
IOut=10mA
VIn
VOut 20mV/div
IOut=50mA
Load Transient (IOut=580mA) (TK63715H/S)
Time
100µsec/div
COut=1.0µF
COut=0.68µF
VOut 100mV/div
IOut
80mA
5mA 100mA/div
Load Transient (IOut=580mA) (TK63728H/S)
Time
100µsec/div
COut=1.0µF
COut=0.68µF
VOut 100mV/div
IOut
80mA
5mA 100mA/div
Load Transient (IOut=580mA) (TK63742H/S)
Time
100µsec/div
COut=1.0µF
COut=0.68µF
VOut 100mV/div
IOut
80mA
5mA 100mA/div
TK637xxB/H/S
AP-MS0034-E-00 - 22 - 2011/02
Load Transient (IOut=550mA) (TK63715H/S)
Time
100µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=TF=2µsec
TR=TF=10µsec
Load Transient (IOut=550mA) (TK63728H/S)
Time
100µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=TF=2µsec
TR=TF=10µsec
Load Transient (IOut=550mA) (TK63742H/S)
100mV/div
100mA/div
IOut
VOut
Time
100µsec/div
5mA 50mA
TR=TF=2µsec
TR=TF=10µsec
Time
10µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=2µsec
TR=10µsec
100mV/div
100mA/div
IOut
VOut
Time
10µsec/div
50mA
5mA
TR=2µsec
TR=10µsec
Time
10µsec/div
100mV/div
100mA/div
IOut
VOut
5mA
50mA
TR=2µsec
TR=10µsec
TK637xxB/H/S
AP-MS0034-E-00 - 23 - 2011/02
On/Off Transient (VCont=01.2V) (TK63715H/S)
Time
10µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
0.5V/div
1V/div
IOut=30mA
On/Off Transient (VCont=01.2V) (TK63728H/S)
Time
50µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
1V/div
1V/div
IOut=30mA
On/Off Transient (VCont=01.2V) (TK63742H/S)
Time
50µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
2V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63715H/S)
Time
200µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
0.5V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63728H/S)
Time
200µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
1V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63742H/S)
Time
200µsec/div
COut=0.47µF
0.68µF
1.0µF
VOut
VCont
IIn 200mA/div
2V/div
1V/div
IOut=30mA
TK637xxB/H/S
AP-MS0034-E-00 - 24 - 2011/02
11-
. PIN DESCRIPTION
Pin No.
Pin
Description
Internal Equivalent Circuit
Description
TK637xxH
TK637xxS
2, 5
2
GND
GND Terminal
6
3
VCont
VCont
5M
ESD
protection
Control Terminal
VCont > 1.2V : On
VCont < 0.2V : Off
The pull-down resistor (about
5M) is built-in.
3
5
VOut
VOut
VIn
ESD
protection
Output Terminal
1
1
VIn
Input Terminal
4
4
NC
No Connected
TK637xxB/H/S
AP-MS0034-E-00 - 25 - 2011/02
12-
. APPLICATIONS INFORMATION
12-1-
. External Capacitor
General linear regulators require input capacitor and
output capacitor in order to maintain the regulators loop
stability.
The TK637xxH/S provides stable operation without input
and output capacitors.
Refer to the following data that measured without input
and output capacitors.
The other electrical characteristics are equal to the
electrical characteristics when using input and output
capacitors.
Transient characteristics (influence of load deviation)
improve by using output capacitor (see the Load
Transient on page 28).
High frequency ripple can not be rejected without input
and output capacitors. Therefore, it is recommended that
external input and output capacitors be used when high
frequency ripple is expected.
Because a situation changes with each application, please
confirm to operation in your design.
Test Circuit (Capacitor-less)
IOut
VCont
V
_VOut
VIn
VIn VOut
VCont GND
RR vs Frequency (TK63715H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IOut=10mA
Capacitor-less
RR vs Frequency (TK63728H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IOut=10mA
Capacitor-less
RR vs Frequency (TK63742H/S)
Frequency [Hz]
100 1k 10k 100k 1M
RR [dB]
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
IOut=10mA
Capacitor-less
TK637xxB/H/S
AP-MS0034-E-00 - 26 - 2011/02
VNoise vs IOut (TK63715H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100 Capacitor-less
VNoise vs IOut (TK63728H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
Capacitor-less
VNoise vs IOut (TK63742H/S)
IOut [mA]
050 100 150 200
VNoiseVrms]
0
10
20
30
40
50
60
70
80
90
100
Capacitor-less
Load Transient (IOut=550mA) (TK63715H/S)
Time
10µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=2µsec
TR=10µsec
Capacitor-less
Load Transient (IOut=550mA) (TK63728H/S)
Time
10µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=2µsec
TR=10µsec
Capacitor-less
Load Transient (IOut=550mA) (TK63742H/S)
Time
10µsec/div
100mV/div
100mA/div
IOut
VOut
50mA
5mA
TR=2µsec
TR=10µsec
Capacitor-less
TK637xxB/H/S
AP-MS0034-E-00 - 27 - 2011/02
On/Off Transient (VCont=01.2V) (TK63715H/S)
Capacitor-less
Time
10µsec/div
VOut
VCont
IIn 200mA/div
0.5V/div
1V/div
IOut=30mA
On/Off Transient (VCont=01.2V) (TK63728H/S)
Capacitor-less
Time
50µsec/div
VOut
VCont
IIn 200mA/div
1V/div
1V/div
IOut=30mA
On/Off Transient (VCont=01.2V) (TK63742H/S)
Capacitor-less
Time
50µsec/div
VOut
VCont
IIn 200mA/div
2V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63715H/S)
Capacitor-less
Time
200µsec/div
VOut
VCont
IIn 200mA/div
0.5V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63728H/S)
Capacitor-less
Time
200µsec/div
VOut
VCont
IIn 200mA/div
1V/div
1V/div
IOut=30mA
On/Off Transient (VCont=1.20V) (TK63742H/S)
Capacitor-less
Time
200µsec/div
VOut
VCont
IIn 200mA/div
2V/div
1V/div
IOut=30mA
TK637xxB/H/S
AP-MS0034-E-00 - 28 - 2011/02
12-2-
. Layout
Fig12-1: Layout example (TK637xxH)
VCont
VIn VOut
GND
(Top View)
NCGND
PCB Material : Glass epoxy
Size : 10mm7mm×0.8mm
Fig12-2: Layout example (TK637xxS)
VCont
VIn
VOut
GND
(Top View)
NCGND
PCB Material : Glass epoxy
Size : 12mm7mm×0.8mm
Please do derating with 4mW/C at Pd=500mW
(TK637xxH/S), and 25C or more. Thermal resistance
(ja) is=250C/W.
Fig12-3: Derating Curve (TK637xxH/S)
25 50 100 150°C
Pd(mW)
500
(85°C)
-4mW/°C
The package loss is limited at the temperature that the
internal temperature sensor works (about 150C).
Therefore, the package loss is assumed to be an internal
limitation. There is no heat radiation characteristic of the
package unit assumed because of its small size. Heat is
carried away from the device by being mounted on the
PCB. This value is directly effected by the material and
the copper pattern etc. of the PCB. The losses are
approximately 500mW (TK637xxH/S). Enduring these
losses becomes possible in a lot of applications operating
at 25C.
The overheating protection circuit operates when the
junction temperature reaches 150C (this happens when
the regulator is dissipating excessive power, outside
temperature is high, or heat radiation is bad). The output
current and the output voltage will drop when the
protection circuit operates. However, operation begins
again as soon as the output voltage drops and the
temperature of the chip decreases.
How to determine the thermal resistance when
mounted on PCB
The thermal resistance when mounted is expressed as
follows:
Tj=jaPd+Ta
Tj of IC is set around 150C. Pd is the value when the
thermal sensor is activated.
If the ambient temperature is 25C, then:
150=jaPd+25
ja=125/Pd (C /mW)
TK637xxB/H/S
AP-MS0034-E-00 - 29 - 2011/02
Pd is easily calculated.
A simple way to determine Pd is to calculate VInIIn
when the output side is shorted. Input current gradually
falls as output voltage rises after working thermal
shutdown. You should use the value when thermal
equilibrium is reached.
Fig12-4: How to determine DPd
25 50 100 150
Pd (mW)
Pd
Ta (°C)
75 125
DPd
2
3
4
5
Procedure (When mounted on PCB.)
1. Find Pd (VInIIn when the output side is short-
circuited).
2. Plot Pd against 25C.
3. Connect Pd to the point corresponding to the 150C
with a straight line.
4. In design, take a vertical line from the maximum
operating temperature (e.g., 75C) to the derating
curve.
5. Read off the value of Pd against the point at which the
vertical line intersects the derating curve. This is taken
as the maximum power dissipation DPd.
6. DPd (VIn,MAXVOut)=IOut (at 75C)
The maximum output current at the highest operating
temperature will be IOut DPd (VIn,MAXVOut).
Please use the device at low temperature with better
radiation. The lower temperature provides better quality.
12-3-
. On/Off Control
It is recommended to turn the regulator Off when the
circuit following the regulator is not operating. A design
with little electric power loss can be implemented. We
recommend the use of the On/Off control of the regulator
without using a high side switch to provide an output
from the regulator. A highly accurate output voltage with
low voltage drop is obtained.
Because the control current is small, it is possible to
control it directly by CMOS logic.
Fig12-5: The use of On/Off control
REG
Vsat
On/Off Cont.
Control Terminal Voltage ((VCont)
On/Off State
VCont > 1.2V
On
VCont < 0.2V
Off
Parallel Connected On/Off Control
Fig12-6: The example of parallel connected IC
TK63742
TK63733
TK63715
4.2V
3.3V
1.5V
On/Off
Cont.
VIn VOut
The above figure is multiple regulators being controlled
by a single On/Off control signal. There is concern of
overheating, because the power loss of the low voltage
side IC (TK63715H/S) is large. The series resistor (R) is
put in the input line of the low output voltage regulator in
order to prevent over-dissipation. The voltage dropped
across the resistor reduces the large input-to-output
voltage across the regulator, reducing the power
dissipation in the device. When the thermal sensor works,
a decrease of the output voltage, oscillation, etc. may be
observed.
TK637xxB/H/S
AP-MS0034-E-00 - 30 - 2011/02
12-4-
. Definition of term
Characteristics
Output Voltage (VOut)
The output voltage is specified with VIn=(VOutTYP+1V)
and IOut=5mA.
Maximum Output Current (IOut, MAX)
The rated output current is specified under the condition
where the output voltage drops to 90% of the value
specified with IOut=5mA. The input voltage is set to
VOutTYP+1V and the current is pulsed to minimize
temperature effect.
Dropout Voltage (VDrop)
The dropout voltage is the difference between the input
voltage and the output voltage at which point the
regulator starts to fall out of regulation. Below this value,
the output voltage will fall as the input voltage is reduced.
It is dependent upon the output voltage, the load current,
and the junction temperature.
Line Regulation (LinReg)
Line regulation is the ability of the regulator to maintain a
constant output voltage as the input voltage changes. The
line regulation is specified as the input voltage is changed
from VIn=VOut,TYP+1V to VIn=6V. It is a pulse
measurement to minimize temperature effect.
Load Regulation (LoaReg)
Load regulation is the ability of the regulator to maintain
a constant output voltage as the load current changes. It is
a pulsed measurement to minimize temperature effects
with the input voltage set to VIn=VOut,TYP+1V. The load
regulation is specified under an output current step
condition of 1mA to 50mA.
Ripple Rejection (RR)
Ripple rejection is the ability of the regulator to attenuate
the ripple content of the input voltage at the output. It is
specified with 500mVP-P, 1kHz super-imposed on the
input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection
is the ratio of the ripple content of the output vs. input and
is expressed in dB.
Standby Current (IStandby)
Standby current is the current which flows into the
regulator when the output is turned off by the control
function (VCont=0V).
Protections
Over Current Sensor
The over current sensor protects the device when there is
excessive output current. It also protects the device if the
output is accidentally connected to ground.
Thermal Sensor
The thermal sensor protects the device in case the
junction temperature exceeds the safe value (Tj=150C).
This temperature rise can be caused by external heat,
excessive power dissipation caused by large input to
output voltage drops, or excessive output current. The
regulator will shut off when the temperature exceeds the
safe value. As the junction temperatures decrease, the
regulator will begin to operate again. Under sustained
fault conditions, the regulator output will oscillate as the
device turns off then resets. Damage may occur to the
device under extreme fault.
Please prevent the loss of the regulator when this
protection operates, by reducing the input voltage or
providing better heat efficiency.
ESD
MM : 200pF 0 150V or more
HBM : 100pF 1.5k 2000V or more
TK637xxB/H/S
AP-MS0034-E-00 - 31 - 2011/02
13-
. PACKAGE OUTLINE
6-Lead-Small Outline Non-Leaded Package : SON2017-6
1.7
0.20+0.10
0.05
0.65 M
0.10
+0.2
0.1
2.0 +0.2
0.1
1
4
3
6
(0.1)
0.75
(0.2)
0.10
0.125+0.10
0.05
2.1 0.2
(0.2)
1
4
3
6
Reference Mount Pad
1.8
0.6
0.3
0.65
Mark
1 Pin Mark Lot No.
Lead Free Mark
Unit : mm
Package Structure and Others
Package Material
:
Epoxy Resin
Mark Method
:
Laser
Terminal Material
:
Copper Alloy
County of Origin
:
Japan
Terminal Finish
:
Lead Free Solder Plating(5~15µm)
Mass
:
0.0066g
Solder Composition
:
Sn-2.5Ag
Marking
Part Number
Marking Code
Part Number
Marking Code
Part Number
Marking Code
TK63715H
D15
TK63701H
D01
TK63735H
D35
TK63718H
D18
TK63729H
D29
TK63725H
D25
TK63730H
D30
TK63726H
D26
TK63731H
D31
TK63727H
D27
TK63732H
D32
TK63728H
D28
TK63733H
D33
TK637xxB/H/S
AP-MS0034-E-00 - 32 - 2011/02
5-Lead-Surface Mount Discrete Package: SOT23-5
2.9
1.6
1.1
0.15
0.4
2.8
Reference Mount Pad
(0.3)
0 ~0.1 0.1
1.3max
0.1
0.2
Mark
0.2
0.2
54
13
+0.10
0.05
+0.10
0.05
0.4 0.2
0.95 0.95
Lead Free Mark
+
M
0.1
+
+
+
+
2.4
1.0
0.7
0.95 0.95
Unit : mm
Package Structure and Others
Package Material
:
Epoxy Resin
Mark Method
:
Laser
Terminal Material
:
Copper Alloy
Country of Origin
:
Japan
Terminal Finish
:
Lead Free Solder Plating(5~15m)
Mass
:
0.016g
Solder Composition
:
Sn-2.5Ag
Marking
Part Number
Marking Code
Part Number
Marking Code
Part Number
Marking Code
TK63715S
D15
TK63701S
D01
TK63735S
D35
TK63718S
D18
TK63729S
D29
TK63725S
D25
TK63730S
D30
TK63726S
D26
TK63731S
D31
TK63727S
D27
TK63732S
D32
TK63728S
D28
TK63733S
D33
TK637xxB/H/S
AP-MS0034-E-00 - 33 - 2011/02
IMPORTANT NOTICE
These products and their specifications are subject to change without notice.
When you consider any use or application of these products, please make inquiries the sales office of
Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the
products.
Descriptions of external circuits, application circuits, software and other related information contained
in this document are provided only to illustrate the operation and application examples of the
semiconductor products. You are fully responsible for the incorporation of these external circuits,
application circuits, software and other related information in the design of your equipments. AKM
assumes no responsibility for any losses incurred by you or third parties arising from the use of these
information herein. AKM assumes no liability for infringement of any patent, intellectual property, or
other rights in the application or use of such information contained herein.
Any export of these products, or devices or systems containing them, may require an export license or
other official approval under the law and regulations of the country of export pertaining to customs
and tariffs, currency exchange, or strategic materials.
AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety,
life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for
such use, except for the use approved with the express written consent by Representative Director of
AKM. As used here:
Note1) A critical component is one whose failure to function or perform may reasonably be expected to
result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system
containing it, and which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of
safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to
function or perform may reasonably be expected to result in loss of life or in significant injury or damage to
person or property.
It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or
otherwise places the product with a third party, to notify such third party in advance of the above
content and conditions, and the buyer or distributor agrees to assume any and all responsibility and
liability for and hold AKM harmless from any and all claims arising from the use of said product in
the absence of such notification.