TK637xxB/H/S TK637xxH/S 150mA, Capacitor-less, Low IQ, CMOS LDO Regulator IC 1-. DESCRIPTION 4-. PIN CONFIGURATION The TK637xxH/S is a CMOS LDO regulator. The packages are the small and thin SON2017-6, and the extremely versatile SOT23-5. The IC is designed for portable applications with space requirements. The IC can supply 150mA output current. The IC does not require input capacitor, output capacitor, and noise-bypass capacitor. The IC offers low 10A quiescent current and good transient performance. The output voltage is internally fixed from 1.35V to 4.2V. SON2017-6 (TK637xxH) VIn 1 6 VCont GND 2 5 GND 3 4 VOut NC (Top View) 2-. FEATURES Capacitor-less (Without input capacitor, output capacitor, and noisebypass capacitor) Package: SON2017-6 / SOT23-5 Low quiescent current Good transient performance Thermal and over current protection On/Off control High accuracy SOT23-5 (TK637xxS) VIn 1 GND 2 VCont 3 5 VOut 4 NC 3-. APPLICATIONS (Top View) Mobile Communication Battery Powered System Any Electronic Equipment 5-. BLOCK DIAGRAM VIn VOut VRef On/Off Control VCont AP-MS0034-E-00 -1- Thermal & Over Current Protection GND 2011/02 TK637xxB/H/S 6-. ORDERING INFORMATION T K 6 3 7 C Voltage Code (Refer to the following table) Solder Composion Code - G : Lead Free - GH : PB Free & Halogen Free brank : Lead Containing Package Code B : FC-4 H : SON2017-6 Package S : SOT23-5 Package Tape/Reel Code B : Normal type for FC L : Normal type for plastic packages Operating Temp. Range Code C : C Rank(standard) only Output Voltage Voltage Code Output Voltage Voltage Code Output Voltage Voltage Code 02 28 33 1.35V 2.8V 3.3V 1.5V 15 2.85V 01 3.5V 35 18 29 1.8V 2.9V 25 30 2.5V 3.0V 2.6V 26 3.1V 31 27 32 2.7V 3.2V *If you need a voltage other than the value listed in the above table, please contact Asahi Kasei Microdevices. AP-MS0034-E-00 -2- 2011/02 TK637xxB/H/S 7-. ABSOLUTE MAXIMUM RATINGS Ta=25C Parameter Absolute Maximum Ratings Input Voltage Output pin Voltage Control pin Voltage Storage Temperature Range Power Dissipation Symbol Rating Units VIn,MAX VOut,MAX VCont,MAX Tstg -0.3 ~ 7.0 -0.3 ~ VIn+0.3 -0.3 ~ 7.0 -55 ~ 150 V V V PD 500 Conditions C mW TK637xxH (SON2017-6) TK637xxS (SOT23-5) When mounted on a PCB (7mm8mm0.8mm), Internal Limited Tj=150C 2* Operating Condition Operational Temperature Range TOP -40 ~ 85 C Operational Voltage Range VOP 1.8 ~ 6.0 V *2 PD must be decreased at the rate of 4mW for operation above 25C. The maximum ratings are the absolute limitation values with the possibility of the IC being damaged. If the operation exceeds any of these standards, quality cannot be guaranteed. AP-MS0034-E-00 -3- 2011/02 TK637xxB/H/S 8-. ELECTRICAL CHARACTERISTICS The parameters with min. or max. values will be guaranteed at Ta=Tj=25C with test when manufacturing or SQC (Statistical Quality Control) methods. The operation between -40 ~ 85C is guaranteed by design. VIn=VOut,TYP+1V, VCont=1.2V, Ta=Tj=25C Value Parameter Symbol Units Conditions MIN TYP MAX Output Voltage VOut V IOut=5mA Refer to TABLE 1 Line Regulation LinReg 0.0 4.0 mV VIn=1V Load Regulation LoaReg mV Refer to TABLE 2 Refer to TABLE 2 Dropout Voltage *1 VDrop mV Refer to TABLE 2 Refer to TABLE 2 Maximum Load Current *2 IOut,MAX 200 300 mA VOut=VOut,TYP0.9 Quiescent Current IQ 10 20 A IOut=0mA, VCont=VIn Standby Current IStandby 0.01 0.1 A VCont=0V GND Pin Current IGND 25 50 A IOut=50mA, VCont=VIn Control Terminal Control Current ICont 0.3 0.6 A VCont=1.2V 1.2 V VOut On state Control Voltage VCont 0.2 V VOut Off state Reference Value Output Voltage / Temp. Output Noise Voltage (TK63728) Ripple Rejection (TK63728) Rise Time (TK63728) VOut/Ta - 100 - ppm/C VNoise - 45 - Vrms RR - 65 - dB tr - 300 - s IOut=5mA COut=1.0F , IOut=30mA , BPF=400Hz~80kHz COut=1.0F , IOut=10mA , f=1kHz COut=1.0F , VCont : Pulse Wave (100Hz) , VCont On VOut95% point *1: For VOut 1.8V, no regulations. *2: The maximum output current is limited by power dissipation. The maximum load current is the current where the output voltage decreases to 90% by increasing the output current at Tj=25C, compared to the output voltage specified at VIn=VOut,TYP+1V. The maximum load current indicates the current at which over current protection turns on. For all output voltage products, the maximum output current for normal operation without operating any protection is 200mA. Accordingly, LoaReg and VDrop are specified on the condition that IOut is less than 200mA. General Note Parameters with only typical values are just reference. (Not guaranteed) The noise level is dependent on the output voltage, the capacitance and capacitor characteristics. AP-MS0034-E-00 -4- 2011/02 TK637xxB/H/S TABLE 1. Output Voltage Part Number MIN TYP MAX V V V TK63715H/S 1.485 1.500 1.515 TK63718H/S 1.782 1.800 1.818 TK63725H/S 2.475 2.500 2.525 TK63726H/S 2.574 2.600 2.626 TK63727H/S 2.673 2.700 2.727 TK63728H/S 2.772 2.800 2.828 TK63701H/S 2.821 2.850 2.879 TK63729H/S 2.871 2.900 2.929 TK63730H/S 2.970 3.000 3.030 TK63731H/S 3.069 3.100 3.131 TK63732H/S 3.168 3.200 3.232 TK63733H/S 3.267 3.300 3.333 TK63735H/S 3.465 3.500 3.535 Notice. Please contact your authorized Asahi Kasei Microdevices representative for voltage availability. AP-MS0034-E-00 -5- 2011/02 TK637xxB/H/S TABLE 2. Part Number Load Regulation IOut=1 ~ 50mA IOut=1 ~ 100mA IOut=1 ~ 150mA IOut=50mA Dropout Voltage IOut=100mA IOut=150mA TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX TYP MAX TK63715H/S mV 7 mV 28 mV 13 mV 52 mV 20 mV 80 mV 190 mV - mV 380 mV - mV 570 mV - TK63718H/S 7 28 14 56 21 84 145 - 290 - 435 - TK63725H/S 8 32 15 60 22 88 105 155 210 320 315 490 TK63726H/S 8 32 15 60 23 92 100 150 200 310 305 470 TK63727H/S 8 32 15 60 23 92 100 145 195 295 295 460 TK63728H/S 8 32 15 60 23 92 95 140 185 285 280 435 TK63701H/S 8 32 15 60 23 92 95 140 185 285 280 435 TK63729H/S 8 32 15 60 23 92 90 135 180 275 270 420 TK63730H/S 8 32 16 64 24 96 90 135 180 275 270 420 TK63731H/S 8 32 16 64 24 96 90 135 180 275 270 420 TK63732H/S 8 32 16 64 24 96 90 135 180 275 270 420 TK63733H/S 8 32 16 64 24 96 90 135 180 275 270 420 TK63735H/S 8 32 16 64 25 100 90 135 180 275 270 420 AP-MS0034-E-00 -6- 2011/02 TK637xxB/H/S 9-. TEST CIRCUIT Test circuit for electrical characteristic IIn _ VIn VOut A CIn =1.0uF V GND Cont VIn= VOut,TYP+1.0V Notice. COut =1.0uF IOut =5mA _ ICont A _ V VOut VCont VIn VOut CIn =1.0uF V GND Cont VIn COut =1.0uF _ V IOut _ ICont A VOut VCont The limit values of the electrical characteristics are determined when CIn=1.0F(Ceramic) and COut=1.0F(Ceramic). But ceramic and/or tantalum capacitors can both be used for CIn, and COut. This IC does not oscillate without input and output capacitors. The electrical characteristics without input and output capacitors are guaranteed by design., please refer to 12-1 for external capacitor. VOut vs VIn VDrop vs IOut VOut vs IOut VOut vs IOut VOut vs Ta VDrop vs Ta IOut,MAX vs Ta ICont vs VCont , VOut vs VCont ICont vs Ta VCont vs Ta VNoise vs VIn VNoise vs IOut VNoise vs VOut VNoise vs Frequency IIn _ A VIn VOut CIn =1.0uF V GND Cont VIn= VOut,TYP+1.0V IQ vs VIn IStandby vs VIn IQ vs Ta Open COut =1.0uF _ ICont A VCont VIn VOut CIn =1.0uF V GND Cont VIn= VOut,TYP+1.0V _ ICont A IGND IGND vs IOut IGND vs Ta COut =1.0uF _ A IOut VCont AP-MS0034-E-00 -7- 2011/02 TK637xxB/H/S VIn= VOut,TYP+1.5V VIn Vripple= 500mVP-P RR vs VIn RR vs Frequency RR vs Frequency VOut VCont GND COut =1.0uF IOut =10m A VCont =1.2V VOut,TYP+2V VIn VOut,TYP+1V Line Transient VOut VCont GND COut =1.0uF IOut _ V VOut VCont =1.2V VIn VOut CIn =1.0uF V GND Cont VIn= VOut,TYP+1.0V IOut AP-MS0034-E-00 _ V VOut VCont =1.2V VIn VOut CIn =1.0uF V GND Cont VIn= VOut,TYP+1.0V Load Transient COut =1.0uF VCont =0V 1.2V On/Off Transient COut =1.0uF IOut= 30mA _ V VOut -8- 2011/02 TK637xxB/H/S 10-. TYPICAL CHARACTERISTICS 10-1-. DC CHARACTERISTICS VOut vs VIn (TK63715H/S) VOut vs VIn (TK63728H/S) 10 10 IOut=5mA 0 0 -5 -5 -10 -15 -10 -15 -20 -20 -25 -25 -30 0 1 2 3 4 5 IOut=5mA 5 VOut [mV] VOut [mV] 5 -30 6 0 1 2 VIn [V] 6 40 IOut=5mA 5 20 0 IOut=0, 10, 30, 50, 80mA 0 -5 VOut [mV] VOut [mV] 5 VOut vs VIn (TK63715H/S) 10 -10 -15 -20 -40 -60 -20 -80 -25 0 1 2 3 4 5 -100 -100 6 0 VOut vs VIn (TK63728H/S) 200 300 200 300 VOut vs VIn (TK63742H/S) 40 20 100 VIn-VOut [mV] VIn [V] 40 20 IOut=0, 10, 30, 50, 80mA -20 -40 -20 -40 -60 -60 -80 -80 -100 -100 0 100 200 -100 -100 300 VIn-VOut [mV] AP-MS0034-E-00 IOut=0, 10, 30, 50, 80mA 0 VOut [mV] 0 VOut [mV] 4 VIn [V] VOut vs VIn (TK63742H/S) -30 3 0 100 VIn-VOut [mV] -9- 2011/02 TK637xxB/H/S VDrop vs IOut (TK63715H/S) VOut vs IOut (TK63715H/S) 2 0 -50 1.5 -150 VOut [V] VDrop [mV] -100 -200 -250 1 0.5 -300 -350 -400 0 50 100 150 0 200 0 100 0 4 -50 3.5 -100 3 -150 2.5 -200 -250 400 500 400 500 1.5 1 -350 0.5 100 500 2 -300 50 400 VOut vs IOut (TK63728H/S) VOut [V] VDrop [mV] VDrop vs IOut (TK63728H/S) 0 300 IOut [mA] IOut [mA] -400 200 150 0 200 0 100 200 300 IOut [mA] IOut [mA] VDrop vs IOut (TK63742H/S) VOut vs IOut (TK63742H/S) 6 0 -50 5 4 -150 VOut [V] VDrop [mV] -100 -200 -250 3 2 -300 1 -350 -400 0 50 100 150 0 200 100 200 300 IOut [mA] IOut [mA] AP-MS0034-E-00 0 - 10 - 2011/02 TK637xxB/H/S VOut vs Ta (TK63715H/S) 10 100 5 80 0 60 -5 40 VOut [mV] V Out [mV] VOut vs IOut (TK63715H/S) -10 -15 -20 20 0 -20 -25 -40 -30 -60 -35 -40 -80 0 50 100 150 -100 -50 200 -25 0 IOut [mA] 80 0 60 -5 40 VOut [mV] V Out [mV] 100 5 -10 -15 -20 100 50 75 100 50 75 100 20 0 -20 -25 -40 -30 -60 -35 -80 0 50 100 150 -100 -50 200 -25 0 IOut [mA] 25 Ta [C] VOut vs IOut (TK63742H/S) VOut vs Ta (TK63742H/S) 10 100 5 80 0 60 -5 40 VOut [mV] V Out [mV] 75 VOut vs Ta (TK63728H/S) 10 -10 -15 -20 20 0 -20 -25 -40 -30 -60 -35 -40 50 Ta [C] VOut vs IOut (TK63728H/S) -40 25 -80 0 50 100 150 -100 -50 200 IOut [mA] AP-MS0034-E-00 -25 0 25 Ta [C] - 11 - 2011/02 TK637xxB/H/S VDrop vs Ta (TK63715H/S) IOut,MAX vs Ta (TK63715H/S) 0 400 -50 IOut=50mA IOut,MAX [mA] V Drop [mV] -100 -150 -200 -250 -300 300 IOut=80mA -350 -400 -50 -25 0 25 50 75 200 -50 100 -25 0 Ta [C] 50 75 100 50 75 100 50 75 100 Ta [C] VDrop vs Ta (TK63728H/S) IOut,MAX vs Ta (TK63728H/S) 0 -50 25 400 IOut=50mA -150 IOut,MAX [mA] V Drop [mV] -100 IOut=80mA -200 -250 300 -300 -350 -400 -50 -25 0 25 50 75 200 -50 100 -25 0 Ta [C] Ta [C] VDrop vs Ta (TK63742H/S) IOut,MAX vs Ta (TK63742H/S) 0 -50 25 400 IOut=50mA -150 IOut=80mA IOut,MAX [mA] V Drop [mV] -100 -200 -250 300 -300 -350 -400 -50 -25 0 25 50 75 200 -50 100 Ta [C] AP-MS0034-E-00 -25 0 25 Ta [C] - 12 - 2011/02 TK637xxB/H/S IQ vs VIn (TK63715H/S) IStandby vs VIn (TK63715H/S) 20 10 9 VCont=VIn 16 8 14 7 IStandby [nA] IQ [A] 18 12 10 8 6 5 4 6 3 4 2 2 1 0 0 1 2 3 4 5 0 6 VCont=0V 0 1 2 VIn [V] 9 VCont=VIn 16 8 14 7 IStandby [nA] IQ [A] 6 10 18 12 10 8 6 5 4 6 3 4 2 2 1 0 1 2 3 4 5 0 6 VCont=0V 0 1 2 VIn [V] 3 4 5 6 VIn [V] IQ vs VIn (TK63742H/S) IStandby vs VIn (TK63742H/S) 20 10 18 9 VCont=VIn 16 8 14 7 IStandby [nA] IQ [A] 5 IStandby vs VIn (TK63728H/S) 20 12 10 8 5 4 3 4 2 2 1 0 1 2 3 4 5 0 6 VIn [V] AP-MS0034-E-00 VCont=0V 6 6 0 4 VIn [V] IQ vs VIn (TK63728H/S) 0 3 0 1 2 3 4 5 6 VIn [V] - 13 - 2011/02 TK637xxB/H/S IGND vs IOut (TK63715H/S) IQ vs Ta (TK63715H/S) 100 20 VCont=VIn 18 80 VCont=VIn 16 IQ [A] IGND [A] 14 60 40 12 10 8 6 20 4 2 0 0 50 100 150 0 -50 200 -25 0 IOut [mA] 25 50 75 100 Ta [C] IGND vs IOut (TK63728H/S) IQ vs Ta (TK63728H/S) 100 20 VCont=VIn 18 80 VCont=VIn 16 IQ [A] IGND [A] 14 60 40 12 10 8 6 20 4 2 0 0 50 100 150 0 -50 200 -25 0 IOut [mA] 25 50 75 100 Ta [C] IGND vs IOut (TK63742H/S) IQ vs Ta (TK63742H/S) 100 20 VCont=VIn 18 80 VCont=VIn 16 IQ [A] IGND [A] 14 60 40 12 10 8 6 20 4 2 0 0 50 100 150 0 -50 200 IOut [mA] AP-MS0034-E-00 -25 0 25 50 75 100 Ta [C] - 14 - 2011/02 TK637xxB/H/S IGND vs Ta (TK63715H/S) ICont vs VCont, VOut vs VCont (TK63715H/S) 100 1 2 VCont=VIn, IOut=50mA 80 0.75 1.5 40 1 0.25 20 0 -50 0.5 VOut [V] 60 ICont [A] IGND [A] VOut 0.5 ICont -25 0 25 50 75 0 100 0 0.5 1 1.5 2 0 VCont [V] Ta [C] IGND vs Ta (TK63728H/S) ICont vs VCont, VOut vs VCont (TK63728H/S) 100 1 4 0.75 3 60 ICont [A] IGND [A] 80 40 VOut 0.5 2 0.25 20 VOut [V] VCont=VIn, IOut=50mA 1 ICont 0 -50 -25 0 25 50 75 0 100 0 0.5 Ta [C] 1 1.5 20 VCont [V] IGND vs Ta (TK63742H/S) ICont vs VCont, VOut vs VCont (TK63742H/S) 100 1 8 0.75 6 60 ICont [A] IGND [A] 80 40 0.5 4 VOut 0.25 20 VOut [V] VCont=VIn, IOut=50mA 2 ICont 0 -50 -25 0 25 50 75 0 100 Ta [C] AP-MS0034-E-00 0 0.5 1 1.5 2 0 VCont [V] - 15 - 2011/02 TK637xxB/H/S VCont vs Ta (TK63715H/S) ICont vs Ta (TK637xxH/S) 1.4 1 VCont=1.2V 1.2 0.75 ICont [A] VCont [V] 1 0.8 0.6 0.4 0.5 0.25 0.2 0 -50 -25 0 25 50 75 0 -50 100 -25 0 Ta [C] 1.2 1.2 1 1 VCont [V] VCont [V] 1.4 0.8 0.6 0.2 0.2 50 75 0 -50 100 Ta [C] AP-MS0034-E-00 50 75 100 0.6 0.4 25 100 0.8 0.4 0 75 VCont vs Ta (TK63742H/S) 1.4 -25 50 Ta [C] VCont vs Ta (TK63728H/S) 0 -50 25 -25 0 25 Ta [C] - 16 - 2011/02 TK637xxB/H/S 10-2-. AC CHARACTERISTICS RR vs Frequency (TK63715H/S) RR vs VIn (TK63715H/S) 0 0 Vripple=0.1V p-p, f=1kHz -10 -20 -20 -40 -50 RR [dB] RR [dB] -30 IOut=80mA 50mA 30mA 10mA -30 -60 -40 -50 COut=1.0F(tant.) -60 COut=1.0F(cer.) -70 -70 -80 -80 -90 -90 -100 IOut=10mA -10 0 0.5 1 1.5 2 2.5 3 -100 100 3.5 1k 0 0 -20 -20 IOut=80mA 50mA 30mA 10mA -40 -50 -30 RR [dB] -30 RR [dB] IOut=10mA -10 Vripple=0.1V p-p, f=1kHz -10 -60 -40 -50 COut=1.0F(tant.) -60 COut=1.0F(cer.) -70 -70 -80 -80 -90 -90 0 0.5 1 1.5 2 2.5 3 -100 100 3.5 1k 10k 100k 1M Frequency [Hz] VIn-VOut [V] RR vs Frequency (TK63742H/S) RR vs VIn (TK63742H/S) 0 0 -20 IOut=80mA 50mA 30mA 10mA -30 -40 -30 RR [dB] -20 IOut=10mA -10 Vripple=0.1V p-p, f=1kHz -10 RR [dB] 1M RR vs Frequency (TK63728H/S) RR vs VIn (TK63728H/S) -50 -60 -40 -50 COut=1.0F(tant.) -60 COut=1.0F(cer.) -70 -70 -80 -80 -90 -90 -100 100k Frequency [Hz] VIn-VOut [V] -100 10k 0 0.5 1 1.5 2 -100 100 2.5 10k 100k 1M Frequency [Hz] VIn-VOut [V] AP-MS0034-E-00 1k - 17 - 2011/02 TK637xxB/H/S RR vs Frequency (TK63715H/S) The ripple rejection (RR) characteristic depends on the characteristic and the capacitance value of the capacitor connected to the output side. The RR characteristic of 50kHz or more varies greatly with the capacitor on the output side and PCB pattern. If necessary, please confirm stability of your design. 0 IOut=10mA -10 -20 RR [dB] -30 -40 COut=0.47F 0.68F 1.0F -50 -60 -70 -80 -90 -100 100 1k 10k 100k 1M Frequency [Hz] RR vs Frequency (TK63728H/S) 0 IOut=10mA -10 -20 RR [dB] -30 -40 -50 COut=0.47F 0.68F 1.0F -60 -70 -80 -90 -100 100 1k 10k 100k 1M Frequency [Hz] RR vs Frequency (TK63742H/S) 0 IOut=10mA -10 -20 RR [dB] -30 -40 -50 COut=0.47F 0.68F 1.0F -60 -70 -80 -90 -100 100 1k 10k 100k 1M Frequency [Hz] AP-MS0034-E-00 - 18 - 2011/02 TK637xxB/H/S VNoise vs VIn (TK63715H/S) VNoise vs IOut (TK63715H/S) 100 100 IOut=30mA 90 80 80 70 70 VNoise [Vrms] VNoise [Vrms] 90 60 50 40 30 60 50 40 30 20 20 10 10 0 1 2 3 4 5 0 6 0 50 VNoise vs VIn (TK63728H/S) 150 200 150 200 100 IOut=30mA 90 90 80 80 70 70 VNoise [Vrms] VNoise [Vrms] 200 VNoise vs IOut (TK63728H/S) 100 60 50 40 30 60 50 40 30 20 20 10 10 0 2.5 3 3.5 4 4.5 5 5.5 0 6 0 50 VIn [V] 100 IOut [mA] VNoise vs VIn (TK63742H/S) VNoise vs IOut (TK63742H/S) 100 100 90 90 IOut=30mA 80 80 70 70 VNoise [Vrms] VNoise [Vrms] 150 IOut [mA] VIn [V] 60 50 40 30 60 50 40 30 20 20 10 10 0 100 4 4.5 5 5.5 0 6 VIn [V] AP-MS0034-E-00 0 50 100 IOut [mA] - 19 - 2011/02 TK637xxB/H/S VNoise vs VOut,TYP (TK637xxH/S) VNoise vs Frequency (TK63715H/S) 100 10 IOut=30mA 90 IOut=10mA 70 VNoise [V/Hz] VNoise [Vrms] 80 60 50 40 30 1 0.1 20 10 0 1.5 2 2.5 3 3.5 4 0.01 4.5 10 100 1k 10k 100k Frequency [Hz] VOut,TYP [V] VNoise vs Frequency (TK63728H/S) 10 VNoise [V/Hz] IOut=10mA 1 0.1 0.01 10 100 1k 10k 100k Frequency [Hz] VNoise vs Frequency (TK63742H/S) 10 VNoise [V/Hz] IOut=10mA 1 0.1 0.01 10 100 1k 10k 100k Frequency [Hz] AP-MS0034-E-00 - 20 - 2011/02 TK637xxB/H/S 10-3-. TRANSIENT CHARACTERISTICS Line Transient (TK63715H/S) Load Transient (IOut=580mA) (TK63715H/S) 80mA 3.5V VIn 5mA IOut 2.5V 20mV/div VOut 100mA/div VOut 100mV/div IOut=10mA COut=1.0F COut=0.68F IOut=50mA 20sec/div 100sec/div Time Time Line Transient (TK63728H/S) Load Transient (IOut=580mA) (TK63728H/S) 80mA 4.8V 5mA VIn IOut 3.8V VOut 20mV/div 100mA/div VOut 100mV/div COut=1.0F COut=0.68F IOut=10mA IOut=50mA 20sec/div 100sec/div Time Time Line Transient (TK63742H/S) Load Transient (IOut=580mA) (TK63742H/S) 80mA 6.2V 5mA VIn IOut 5.2V VOut 20mV/div 100mA/div VOut 100mV/div COut=1.0F COut=0.68F IOut=10mA IOut=50mA AP-MS0034-E-00 20sec/div 100sec/div Time Time - 21 - 2011/02 TK637xxB/H/S Load Transient (IOut=550mA) (TK63715H/S) 50mA 50mA 5mA IOut 100mA/div IOut 100mA/div 5mA TR=TF=2sec 100mV/div VOut VOut TR=TF=10sec TR=2sec 100mV/div TR=10sec 100sec/div 10sec/div Time Time Load Transient (IOut=550mA) (TK63728H/S) 50mA 50mA 5mA IOut 100mA/div IOut 100mA/div 5mA TR=TF=2sec 100mV/div VOut VOut TR=TF=10sec TR=2sec 100mV/div TR=10sec 100sec/div 10sec/div Time Time Load Transient (IOut=550mA) (TK63742H/S) 50mA 5mA IOut 50mA 100mA/div IOut 100mA/div 5mA TR=TF=2sec 100mV/div VOut TR=TF=10sec AP-MS0034-E-00 VOut TR=2sec 100mV/div TR=10sec 100sec/div 10sec/div Time Time - 22 - 2011/02 TK637xxB/H/S On/Off Transient (VCont=01.2V) (TK63715H/S) VCont VOut On/Off Transient (VCont=1.20V) (TK63715H/S) 1V/div COut=0.47F 0.68F 1.0F IIn VCont COut=0.47F 0.68F 1.0F 0.5V/div 200mA/div VOut 10sec/div 200sec/div Time Time VCont On/Off Transient (VCont=1.20V) (TK63728H/S) VCont 1V/div 1V/div COut=0.47F 0.68F 1.0F COut=0.47F 0.68F 1.0F VOut 1V/div IIn 200mA/div 1V/div IIn 200mA/div IOut=30mA IOut=30mA 50sec/div 200sec/div Time Time On/Off Transient (VCont=01.2V) (TK63742H/S) VCont On/Off Transient (VCont=1.20V) (TK63742H/S) VCont 1V/div 1V/div COut=0.47F 0.68F 1.0F COut=0.47F 0.68F 1.0F VOut 2V/div IIn 200mA/div 2V/div IIn 200mA/div IOut=30mA IOut=30mA AP-MS0034-E-00 200mA/div IOut=30mA On/Off Transient (VCont=01.2V) (TK63728H/S) VOut 0.5V/div IIn IOut=30mA VOut 1V/div 50sec/div 200sec/div Time Time - 23 - 2011/02 TK637xxB/H/S 11-. PIN DESCRIPTION Pin No. TK637xxH 2, 5 TK637xxS 2 Pin Description GND Internal Equivalent Circuit GND Terminal Control Terminal ESD protection 6 3 VCont Description VCont VCont > 1.2V : On VCont < 0.2V : Off The pull-down resistor (about 5M) is built-in. 5M Output Terminal VIn AP-MS0034-E-00 3 5 VOut 1 4 1 4 VIn NC VOut ESD protection Input Terminal No Connected - 24 - 2011/02 TK637xxB/H/S RR vs Frequency (TK63715H/S) 12-. APPLICATIONS INFORMATION 12-1-. External Capacitor 0 -20 RR [dB] -30 Test Circuit (Capacitor-less) -40 -50 -60 -70 -80 -90 -100 100 IOut=10mA 1k 10k 100k 1M Frequency [Hz] RR vs Frequency (TK63728H/S) 0 -10 Capacitor-less -20 -30 RR [dB] General linear regulators require input capacitor and output capacitor in order to maintain the regulator's loop stability. The TK637xxH/S provides stable operation without input and output capacitors. Refer to the following data that measured without input and output capacitors. The other electrical characteristics are equal to the electrical characteristics when using input and output capacitors. Transient characteristics (influence of load deviation) improve by using output capacitor (see the "Load Transient" on page 28). High frequency ripple can not be rejected without input and output capacitors. Therefore, it is recommended that external input and output capacitors be used when high frequency ripple is expected. Because a situation changes with each application, please confirm to operation in your design. VIn Capacitor-less -10 -40 -50 -60 -70 VOut -80 VCont GND VIn -90 IOut _ VOut V -100 100 IOut=10mA 1k 10k 100k 1M VCont Frequency [Hz] RR vs Frequency (TK63742H/S) 0 Capacitor-less -10 -20 RR [dB] -30 -40 -50 -60 -70 -80 -90 -100 100 IOut=10mA 1k 10k 100k 1M Frequency [Hz] AP-MS0034-E-00 - 25 - 2011/02 TK637xxB/H/S VNoise vs IOut (TK63715H/S) Load Transient (IOut=550mA) (TK63715H/S) 100 Capacitor-less 90 Capacitor-less VNoise [Vrms] 80 IOut 50mA 5mA 70 100mA/div 60 50 VOut 40 TR=2sec 100mV/div 30 20 10 0 TR=10sec 0 50 100 150 200 10sec/div IOut [mA] Time VNoise vs IOut (TK63728H/S) Load Transient (IOut=550mA) (TK63728H/S) 100 90 Capacitor-less Capacitor-less VNoise [Vrms] 80 IOut 50mA 5mA 70 100mA/div 60 50 VOut 40 TR=2sec 100mV/div 30 20 10 0 TR=10sec 0 50 100 150 200 10sec/div IOut [mA] Time VNoise vs IOut (TK63742H/S) Load Transient (IOut=550mA) (TK63742H/S) 100 90 Capacitor-less Capacitor-less VNoise [Vrms] 80 IOut 50mA 5mA 70 100mA/div 60 50 VOut 40 TR=2sec 100mV/div 30 20 10 0 TR=10sec 0 50 100 150 200 10sec/div IOut [mA] AP-MS0034-E-00 Time - 26 - 2011/02 TK637xxB/H/S On/Off Transient (VCont=01.2V) (TK63715H/S) VCont On/Off Transient (VCont=1.20V) (TK63715H/S) 1V/div VCont 0.5V/div VOut Capacitor-less 1V/div Capacitor-less VOut IIn 200mA/div 0.5V/div IIn 200mA/div IOut=30mA IOut=30mA 10sec/div 200sec/div Time Time On/Off Transient (VCont=01.2V) (TK63728H/S) VCont On/Off Transient (VCont=1.20V) (TK63728H/S) VCont 1V/div Capacitor-less 1V/div Capacitor-less VOut 1V/div IIn 200mA/div VOut 1V/div IIn 200mA/div IOut=30mA IOut=30mA 50sec/div 200sec/div Time Time On/Off Transient (VCont=01.2V) (TK63742H/S) VCont VOut On/Off Transient (VCont=1.20V) (TK63742H/S) 1V/div VCont 1V/div Capacitor-less Capacitor-less 2V/div IIn 200mA/div VOut 2V/div IIn 200mA/div IOut=30mA AP-MS0034-E-00 IOut=30mA 50sec/div 200sec/div Time Time - 27 - 2011/02 TK637xxB/H/S package unit assumed because of its small size. Heat is carried away from the device by being mounted on the PCB. This value is directly effected by the material and the copper pattern etc. of the PCB. The losses are approximately 500mW (TK637xxH/S). Enduring these losses becomes possible in a lot of applications operating at 25C. 12-2-. Layout Fig12-1: Layout example (TK637xxH) VCont VIn GND GND NC The overheating protection circuit operates when the junction temperature reaches 150C (this happens when the regulator is dissipating excessive power, outside temperature is high, or heat radiation is bad). The output current and the output voltage will drop when the protection circuit operates. However, operation begins again as soon as the output voltage drops and the temperature of the chip decreases. VOut (Top View) PCB Material : Glass epoxy Size : 10mm7mmx0.8mm How to determine the thermal resistance when mounted on PCB The thermal resistance when mounted is expressed as follows: Tj=jaPd+Ta Tj of IC is set around 150C. Pd is the value when the thermal sensor is activated. If the ambient temperature is 25C, then: 150=jaPd+25 ja=125/Pd (C /mW) Fig12-2: Layout example (TK637xxS) VOut GND NC VIn GND VCont (Top View) PCB Material : Glass epoxy Size : 12mm7mmx0.8mm Please do derating with 4mW/C at Pd=500mW (TK637xxH/S), and 25C or more. Thermal resistance (ja) is=250C/W. Fig12-3: Derating Curve (TK637xxH/S) Pd(mW) 500 -4mW/C 25 50 100 (85C) 150C The package loss is limited at the temperature that the internal temperature sensor works (about 150C). Therefore, the package loss is assumed to be an internal limitation. There is no heat radiation characteristic of the AP-MS0034-E-00 - 28 - 2011/02 TK637xxB/H/S Fig12-5: The use of On/Off control Pd is easily calculated. A simple way to determine Pd is to calculate VInIIn when the output side is shorted. Input current gradually falls as output voltage rises after working thermal shutdown. You should use the value when thermal equilibrium is reached. Vsat REG On/Off Cont. Fig12-4: How to determine DPd Control Terminal Voltage ((VCont) VCont > 1.2V VCont < 0.2V Pd (mW) 2 Pd On/Off State On Off Parallel Connected On/Off Control DPd 3 5 Fig12-6: The example of parallel connected IC VIn 4 25 50 75 100 Ta (C) 125 VOut 150 Procedure (When mounted on PCB.) 1. Find Pd (VInIIn when the output side is shortcircuited). 2. Plot Pd against 25C. 3. Connect Pd to the point corresponding to the 150C with a straight line. 4. In design, take a vertical line from the maximum operating temperature (e.g., 75C) to the derating curve. 5. Read off the value of Pd against the point at which the vertical line intersects the derating curve. This is taken as the maximum power dissipation DPd. 6. DPd (VIn,MAXVOut)=IOut (at 75C) The maximum output current at the highest operating temperature will be IOut DPd (VIn,MAXVOut). Please use the device at low temperature with better radiation. The lower temperature provides better quality. 12-3-. On/Off Control TK63742 4.2V TK63733 3.3V TK63715 1.5V On/Off Cont. The above figure is multiple regulators being controlled by a single On/Off control signal. There is concern of overheating, because the power loss of the low voltage side IC (TK63715H/S) is large. The series resistor (R) is put in the input line of the low output voltage regulator in order to prevent over-dissipation. The voltage dropped across the resistor reduces the large input-to-output voltage across the regulator, reducing the power dissipation in the device. When the thermal sensor works, a decrease of the output voltage, oscillation, etc. may be observed. It is recommended to turn the regulator Off when the circuit following the regulator is not operating. A design with little electric power loss can be implemented. We recommend the use of the On/Off control of the regulator without using a high side switch to provide an output from the regulator. A highly accurate output voltage with low voltage drop is obtained. Because the control current is small, it is possible to control it directly by CMOS logic. AP-MS0034-E-00 - 29 - 2011/02 TK637xxB/H/S 12-4-. Definition of term Characteristics Protections Output Voltage (VOut) The output voltage is specified with VIn=(VOutTYP+1V) and IOut=5mA. Maximum Output Current (IOut, MAX) The rated output current is specified under the condition where the output voltage drops to 90% of the value specified with IOut=5mA. The input voltage is set to VOutTYP+1V and the current is pulsed to minimize temperature effect. Dropout Voltage (VDrop) The dropout voltage is the difference between the input voltage and the output voltage at which point the regulator starts to fall out of regulation. Below this value, the output voltage will fall as the input voltage is reduced. It is dependent upon the output voltage, the load current, and the junction temperature. Line Regulation (LinReg) Line regulation is the ability of the regulator to maintain a constant output voltage as the input voltage changes. The line regulation is specified as the input voltage is changed from VIn=VOut,TYP+1V to VIn=6V. It is a pulse measurement to minimize temperature effect. Over Current Sensor The over current sensor protects the device when there is excessive output current. It also protects the device if the output is accidentally connected to ground. Thermal Sensor The thermal sensor protects the device in case the junction temperature exceeds the safe value (Tj=150C). This temperature rise can be caused by external heat, excessive power dissipation caused by large input to output voltage drops, or excessive output current. The regulator will shut off when the temperature exceeds the safe value. As the junction temperatures decrease, the regulator will begin to operate again. Under sustained fault conditions, the regulator output will oscillate as the device turns off then resets. Damage may occur to the device under extreme fault. Please prevent the loss of the regulator when this protection operates, by reducing the input voltage or providing better heat efficiency. ESD MM : 200pF 0 150V or more HBM : 100pF 1.5k 2000V or more Load Regulation (LoaReg) Load regulation is the ability of the regulator to maintain a constant output voltage as the load current changes. It is a pulsed measurement to minimize temperature effects with the input voltage set to VIn=VOut,TYP+1V. The load regulation is specified under an output current step condition of 1mA to 50mA. Ripple Rejection (RR) Ripple rejection is the ability of the regulator to attenuate the ripple content of the input voltage at the output. It is specified with 500mVP-P, 1kHz super-imposed on the input voltage, where VIn=VOut,TYP+1.5V. Ripple rejection is the ratio of the ripple content of the output vs. input and is expressed in dB. Standby Current (IStandby) Standby current is the current which flows into the regulator when the output is turned off by the control function (VCont=0V). AP-MS0034-E-00 - 30 - 2011/02 TK637xxB/H/S 13-. PACKAGE OUTLINE 6-Lead-Small Outline Non-Leaded Package : SON2017-6 0.3 0.6 Mark +0.2 2.0 0.1 Lead Free Mark 4 1 3 1.7 +0.2 0.1 1.8 6 1 Pin Mark 0.65 0.65 Lot No. Reference Mount Pad +0.10 0.20 0.05 0.10 M 2.1 0.2 (0.2) 0.75 0.10 0.125 +0.10 0.05 (0.2) 3 6 4 (0.1) 1 Unit : mm Package Structure and Others Package Material Terminal Material Terminal Finish Solder Composition : : : : Epoxy Resin Copper Alloy Lead Free Solder Plating(5~15m) Sn-2.5Ag Mark Method County of Origin Mass : Laser : Japan : 0.0066g Marking Part Number TK63715H TK63718H TK63725H TK63726H TK63727H TK63728H AP-MS0034-E-00 Marking Code D15 D18 D25 D26 D27 D28 Part Number TK63701H TK63729H TK63730H TK63731H TK63732H TK63733H - 31 - Marking Code D01 D29 D30 D31 D32 D33 Part Number TK63735H Marking Code D35 2011/02 TK637xxB/H/S 5-Lead-Surface Mount Discrete Package: SOT23-5 Mark 0.7 Lead Free Mark 4 2.4 1.6 + 0.2 1.0 5 0.95 3 1 0.4 0.95 +0.10 0.05 0.1 M 0.95 0.95 Reference Mount Pad 0.1 (0.3) +0.10 0.15 0.05 1.1 + 0.1 0 ~0.1 1.3max 2.9 + 0.2 0.4 + 0.2 2.8 + 0.2 Unit : mm Package Structure and Others Package Material Terminal Material Terminal Finish Solder Composition : : : : Epoxy Resin Copper Alloy Lead Free Solder Plating(5~15m) Sn-2.5Ag Mark Method Country of Origin Mass : Laser : Japan : 0.016g Marking Part Number TK63715S TK63718S TK63725S TK63726S TK63727S TK63728S AP-MS0034-E-00 Marking Code D15 D18 D25 D26 D27 D28 Part Number TK63701S TK63729S TK63730S TK63731S TK63732S TK63733S - 32 - Marking Code D01 D29 D30 D31 D32 D33 Part Number TK63735S Marking Code D35 2011/02 TK637xxB/H/S IMPORTANT NOTICE These products and their specifications are subject to change without notice. When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei Microdevices Corporation (AKM) or authorized distributors as to current status of the products. Descriptions of external circuits, application circuits, software and other related information contained in this document are provided only to illustrate the operation and application examples of the semiconductor products. You are fully responsible for the incorporation of these external circuits, application circuits, software and other related information in the design of your equipments. AKM assumes no responsibility for any losses incurred by you or third parties arising from the use of these information herein. AKM assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of such information contained herein. Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials. AKM products are neither intended nor authorized for use as critical componentsNote1) in any safety, life support, or other hazard related device or systemNote2), and AKM assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKM. As used here: Note1) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability. Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property. It is the responsibility of the buyer or distributor of AKM products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification. AP-MS0034-E-00 - 33 - 2011/02