1/32
OPER ATING FRO M Vcc=2V to 5.5V
STANDBY MODE A CTIV E HIGH (TS419) or
LOW (T S421)
OUTPUT POWER into 16: 367m W @ 5V
with 10% THD+N max or 295mW @5V and
110mW @3.3V with 1% THD+N max.
LOW CURRENT CONS UMPTION: 2.5mA max
High Signal-to-Noise ratio: 95dB(A) at 5V
PSRR: 56dB typ. at 1kHz, 46dB at 217Hz
SHORT CIRCUIT LIMITATION
ON/OFF click reduction circuitry
Available in SO8, MiniSO8 & DFN 3x3
DESCRIPTION
The TS419/TS421 is a monaural audio power am-
plifier driving in BTL mode a 16 or 32 earpiece or
receiver speaker. The main advantage of this con-
figu ration is to get rid of bulky ouput capac itors.
Capable of d escen ding to lo w voltages, it d elivers
up to 220mW per channel (into 16 loads) of con-
tinuous average power with 0.2% THD+N in the
audio bandwidth from a 5V power supply.
An externally controlled standby mode reduces
the supply current to 10nA (typ.). The TS419/
TS 421 can be configu re d by external gain-set ting
resistors or used in a fixed gain vers ion .
APPLICATIONS
16/32 ohm s earpiece or receiver speaker driver
Mobile and cordless phones (analo g / digital)
PDAs & c o mputers
Portable appliances
ORDER CODE
MiniSO & DFN only available in Tape & Reel with T suffix.
SO is available in Tube (D) and in T ape & Reel (DT)
PIN CONNECT IO NS (top view)
Part
Number
Temp.
Range:
I
Package Gain Marking
DS Q
TS419
-40, +85°C
external TS419I
TS421 external TS421I
TS419 ••
external K19A
TS419-2 tba tba x2/6dB K19B
TS419-4 tba tba x4/12dB K19C
TS419-8 tba tba x8/18dB K19D
TS421 ••
external K21A
TS421-2 tba tba x2/6dB K21B
TS421-4 tba tba x4/12dB K21C
TS421-8 tba tba x8/18dB K21D
TS419IDT: SO8
TS419IST, TS419-xIST: MiniSO8
Standby
Bypass
V+
IN
V
IN-
V2
OUT
GND
V
CC
V
OUT1
1
2
3
4
8
7
6
5
TS421 IDT: SO8
TS421IST, TS421-xIST: MiniSO8
TS419IQT, TS419-xIQT: DFN8
TS421IQT, TS421-xIQT: DFN8
1
2
3
45
8
7
6
STANDBY
BYPASS VIN+
Vcc
VOUT 1
GND
VIN-
VOUT 2
1
2
3
45
8
7
6
STANDBY
BYPASS VIN+
Vcc
VOUT 1
GND
VIN-
VOUT 2
1
2
3
45
8
7
6
STANDBY
BYPASS VIN+
Vcc
VOUT 1
GND
VIN-
VOUT 2
1
2
3
45
8
7
6
STANDBY
BYPASS VIN+
Vcc
VOUT 1
GND
VIN-
VOUT 2
TS419
TS421
360mW MONO AMPLI FIER WI TH STANDBY MODE
June 2003
TS419-TS421
2/32
ABSO LUTE MAXIMUM RATING S
OPERATING CONDITIONS
Symbol Parameter Value Unit
VCC Supply voltage 1) 6V
V
i
Input Voltage -0.3V to VCC +0.3V V
Tstg Storage Temperature -65 to +150 °C
TjMaximum Junction Temperature 150 °C
Rthja Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8
175
215
70
°C/W
Pd Power Dissipation 2)
SO8
MiniSO8
DFN8
0.71
0.58
1.79
W
ESD Human Body Model (pin to pin): TS4193), TS421 1.5 kV
ESD Machine Model - 220pF - 240pF (pin to pin) 100 V
Latch-up Latch-up Immunity (All pins) 200 mA
Lead Te mpera ture (solde ring, 10sec ) 250 °C
Output Short-Circuit to Vcc or GND continous 4)
1. All voltage values are measured with respect to the ground pin.
2. Pd has been calculated with Tamb = 25°C, Tjuncti on = 150°C.
3. TS419 stand s 1. 5KV on al l pi ns excep t standby pin which st ands 1K V .
4. Attention mu st be pai d to conti nous power dissipation (VDD x 300mA). Exposure of the IC t o a short circuit f or an extended time period is
dramatica l l y reducing product life ex pectan cy .
Symbol Parameter Value Unit
VCC Supply Voltage 2 to 5.5 V
RLLoad Resistor 16
Toper Operating Free Air Temperature Range -40 to + 85 °C
CL
Load Capacitor
RL = 16 to 100
RL > 100400
100 pF
VICM Common Mode Input Voltage Range GND to VCC-1V V
VSTB Standby Voltage Input
TS421 ACTIVE / TS419 in STANDBY
TS421 in STANDBY / TS419 ACTIVE 1.5 VSTB VCC
GND VSTB 0.4 1) V
RTHJA
Thermal Resistance Junction to Ambient
SO8
MiniSO8
DFN8 2)
150
190
41
°C/W
Twu Wake-up time from standby to active mode (Cb = 1µF) 3) 0.12 s
1. The minimum current consumption (ISTANDBY) is guaranteed at VCC (TS419) or GND (TS421) for the whole temperature r ange.
2. When mount ed on a 4-la yer PCB
3. For more details on TWU, pl ease refer to appli cation note sect ion on Wak e-up tim e page 28.
TS419-TS421
3/32
FIXED GAIN VERSION SPECIFIC ELECTRICAL CHARACTERISTICS
VCC fro m +5V to +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
APPLICATION CO MPONENTS INFO RMATIO N
TYPICAL APPLICATION S CHEMATICS:
Symbol Parameter Min. Typ. Max. Unit
RIN Input Resistance 20 k
GGain value for Gain TS419/TS421-2
Gain value for Gain TS419/TS421-4
Gain value for Gain TS419/TS421-8
6dB
12dB
18dB dB
Components Functional Description
RIN Inverting input resistor which sets the closed loop gain in conjunction with RFEED. This resistor also
forms a high pass filter with CIN (fcl = 1 / (2 x Pi x RIN x CIN)). Not needed in fixed gain versions.
CIN Input coupling capacitor which blocks the DC voltage at the amplifiers input terminal
RFEED Feedback resistor which sets the closed loop gain in conjunction with RIN.
AV= Closed Loop Gain= 2xRFEED/RIN. Not needed in fixed gain versions.
CSSupply Bypass capacitor which provides power supply filtering.
CBBypass capacitor which provides half supply filtering.
TS419-TS421
4/32
ELECTRICAL CHARACTERISTICS
VCC = +5V, GND = 0V, Tamb = 25°C (unless otherwise speci fied)
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.8 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419 10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20k525mV
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 10% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
THD+N = 10% Max, F = 1kHz, RL = 16
166
240
190
207
258
270
295
367
mW
THD + N Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 150mW, 20Hz F 20kHz
RL = 16Ω, Pout = 220mW, 20Hz F 20kHz 0.15
0.2 %
PSRR Power Supply Rejection Ratio (Av=2) 1)
F = 1kHz, Vripple = 200mVpp, input grounded, Cb=1µF
1. Guaranteed by design and evaluation.
50 56 dB
SNR Signal-to-Noise Ratio (Filter Type A, Av=2) 1)
(RL = 32Ω, THD +N < 0.5%, 20Hz F 20kHz) 85 98 dB
ΦMPhase Margin at Unity Gain
RL = 16, CL = 400p F 58 Degrees
GM Gain Margin
RL = 16, CL = 400pF 18 dB
GBP Gain Bandwidth Product
RL = 161.1 MHz
SR Slew Rate
RL = 160.4 V/µS
TS419-TS421
5/32
ELECTRICAL CHARACTERISTICS
VCC = +3.3V, GND = 0V, T amb = 25°C (unless otherwise specified) 1)
1. All electrical values ar e guaranted with correl ation measurements at 2V and 5V
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.8 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419 10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20k525mV
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 10% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
THD+N = 10% Max, F = 1kHz, RL = 16
65
91
75
81
102
104
113
143
mW
THD + N Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 50mW, 20Hz F 20kHz
RL = 16Ω, Pout = 70mW, 20Hz F 20kHz 0.15
0.2 %
PSRR Power Supply Rejection Ratio
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF 50 56 dB
SNR Signal-to-Noise Ratio (Weighted A, Av=2)
(RL = 32Ω, THD +N < 0.5%, 20Hz F 20kHz) 82 94 dB
ΦMPhase Margin at Unity Gain
RL = 16, CL = 400p F 58 Degrees
GM Gain Margin
RL = 16, CL = 400pF 18 dB
GBP Gain Bandwidth Product
RL = 161.1 MHz
SR Slew Rate
RL = 160.4 V/µS
TS419-TS421
6/32
ELECTRICAL CHARACTERISTICS
VCC = +2.5V, GND = 0V, T amb = 25°C (unless otherwise specified)1)
1. All electrical values ar e guaranted with c orrelation measurements at 2V and 5V
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.7 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419 10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20k525mV
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 10% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
THD+N = 10% Max, F = 1kHz, RL = 16
32
44
37
41
52
50
55
70
mW
THD + N Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 30mW, 20Hz F 20kHz
RL = 16Ω, Pout = 40mW, 20Hz F 20kHz 0.15
0.2 %
PSRR Power Supply Rejection Ratio (Av=2)
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF 50 56 dB
SNR Signal-to-Noise Ratio (Weighted A, Av=2)
(RL = 32Ω, THD +N < 0.5%, 20Hz F 20kHz) 80 91 dB
ΦMPhase Margin at Unity Gain
RL = 16, CL = 400p F 58 Degrees
GM Gain Margin
RL = 16, CL = 400pF 18 dB
GBP Gain Bandwidth Product
RL = 161.1 MHz
SR Slew Rate
RL = 160.4 V/µS
TS419-TS421
7/32
ELECTRICAL CHARACTERISTICS
VCC = +2V, GND = 0V, Tamb = 25°C (unless otherwise specified)
Symbol Parameter Min. Typ. Max. Unit
ICC Supply Current
No input signal, no load 1.7 2.5 mA
ISTANDBY
Standby Curre nt
No input signal, VSTANDBY=GND for TS421
No input signal, VSTANDBY=Vcc for TS419 10 1000 nA
Voo Output Offset Voltage
No input signal, RL = 16 or 32Ω, Rfeed=20k525mV
P
O
Output Power
THD+N = 0.1% Max, F = 1kHz, RL = 32
THD+N = 1% Max, F = 1kHz, RL = 32
THD+N = 10% Max, F = 1kHz, RL = 32
THD+N = 0.1% Max, F = 1kHz, RL = 16
THD+N = 1% Max, F = 1kHz, RL = 16
THD+N = 10% Max, F = 1kHz, RL = 16
19
24
20
23
30
26
30
40
mW
THD + N Total Harmonic Distortion + Noise (Av=2)
RL = 32Ω, Pout = 13mW, 20Hz F 20kHz
RL = 16Ω, Pout = 20mW, 20Hz F 20kHz 0.1
0.15 %
PSRR Power Supply Rejection Ratio (Av=2) 1)
inputs grounded, F = 1kHz, Vripple = 200mVpp, Cb=1µF
1. Guaranteed by design and evaluation.
49 54 dB
SNR Signal-to-Noise Ratio (Weighted A, Av=2) 1)
(RL = 32Ω, THD +N < 0.5%, 20Hz F 20kHz) 80 89 dB
ΦMPhase Margin at Unity Gain
RL = 16, CL = 400p F 58 Degrees
GM Gain Margin
RL = 16, CL = 400pF 20 dB
GBP Gain Bandwidth Product
RL = 161.1 MHz
SR Slew Rate
RL = 160.4 V/µS
TS419-TS421
8/32
Index of Graphs
Note : All m easurements made with Rin= 20kΩ, Cb=1µF, and C in=10µF unless otherwise specified.
Description Figure Page
Common Curves
Open Loop Gain and Phase vs Freque ncy 1 to 12 9 to 10
Current Consumption vs Power Supply Voltage 13 11
Current Consumption vs Standby Voltage 14 to 19 11 to 12
Output Power vs Power Supply Voltage 20 to 23 12
Output Power vs Load Resistor 24 to 27 12 to 13
Power Dissipation vs Output Power 28 to 31 13 to 14
Power Derating vs Ambiant Temperature 32 14
Output Voltage Swing vs Supply Voltage 33 14
Low Frequency Cut Off vs Input Capacitor 34 14
Curves With 6dB Gain Setting (Av=2)
THD + N vs Output Power 35 to 43 15 to 16
THD + N vs Frequency 44 to 46 16
Signal to Noise Ratio vs Power Supply Voltage 47 to 48 17
Noise Floor 49 to 50 17
PSRR vs Frequency 51 to 55 17 to 18
Curves With 12dB Gain Setting (Av=4)
THD + N vs Output Power 56 to 64 19 to 20
THD + N vs Frequency 65 to 67 20
Signal to Noise Ratio vs Power Supply Voltage 68 to 69 21
Noise Floor 70 to 71 21
PSRR vs Frequency 72 to 76 21 to 22
Curves With 18dB Gain Setting (Av=8)
THD + N vs Output Power 77 to 85 23 to 24
THD + N vs Frequency 86 to 88 24
Signal to Noise Ratio vs Power Supply Voltage 89 to 90 25
Noise Floor 91 to 92 25
PSRR vs Frequency 93 to 97 25 to 26
TS419-TS421
9/32
Fig. 1: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 3: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 5: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 2: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 4: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 6: Ope n Loop Ga in and Phase vs
Frequency
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 8
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
RL = 16
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 8
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 8
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 16
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS419-TS421
10/32
Fig. 7: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 9: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 11: Open Loop Gai n and Phase vs
Frequency
Fig. 8: Ope n Loop Ga in and Phase vs
Freq uen cy
Fig. 10: Open Lo op Gain and Phas e vs
Freq uen cy
Fig. 12: Open Lo op Gain and Phas e vs
Freq uen cy
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 16
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
RL = 32
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 5V
ZL = 32
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 16
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
RL = 32
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
0.1 1 10 100 1000 10000
-40
-20
0
20
40
60
80
-20
0
20
40
60
80
100
120
140
160
180
Gain (dB)
Frequency (kHz)
Vcc = 2V
ZL = 32
+400pF
Tamb = 25
°
C
Gain
Phase
Phase (Deg)
TS419-TS421
11/32
Fig. 13: Current Consumption vs Power Supply
Vo ltage
Fig. 15: Current Consump tion vs Standb y
Vo ltage
Fig. 17: Current Consump tion vs Standb y
Voltage
Fig. 14: Current Consumption vs Standby
Voltage
Fig. 16: Current Consumption vs Standby
Voltage
Fig. 18: Current Consumption vs Standby
Voltage
012345
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
No load
Ta=-40°C
Current Consumption (mA)
Power Supply Voltage (V)
0123
0.0
0.5
1.0
1.5
2.0
Ta=85
°
C
Ta=25
°
C
TS419
Vcc = 3.3V
No load
Ta=-40
°
C
Current Consumption (mA)
Standby Voltage (V)
012345
0.0
0.5
1.0
1.5
2.0
2.5 Ta=85°CTa=25°C
TS421
Vcc = 5V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012345
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS419
Vcc = 5V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
012
0.0
0.5
1.0
1.5
2.0
Ta=85°C
Ta=25°C
TS419
Vcc = 2V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
0123
0.0
0.5
1.0
1.5
2.0
Ta=85
°
C
Ta=25
°
C
TS421
Vcc = 3.3V
No load
Ta=-40
°
C
Current Consumption (mA)
Standby Voltage (V)
TS419-TS421
12/32
Fig. 19: Current Consump tion vs Standb y
Vo ltage
Fig . 21: Ou tput P ower vs Power S up pl y
Vo ltage
Fig . 23: Ou tput P ower vs Power S up pl y
Voltage
Fig . 20: Ou tput P owe r vs Po wer S up pl y
Voltage
Fig . 22: Ou tput P owe r vs Po wer S up pl y
Voltage
Fig. 24: Output P owe r vs Load Resistor
012
0.0
0.5
1.0
1.5
2.0 Ta=85°C
Ta=25°C
TS421
Vcc = 2V
No load
Ta=-40°C
Current Consumption (mA)
Standby Voltage (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
50
100
150
200
250
300
350
400
450
500
THD+N=10%
THD+N=0.1%
RL = 16
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
50
100
150
200
THD+N=10%
THD+N=0.1%
RL = 64
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
50
100
150
200
250
300
350
400
450
500
550
THD+N=10%
THD+N=0.1%
RL = 8
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5
0
50
100
150
200
250
300
THD+N=10%
THD+N=0.1%
RL = 32
F = 1kHz
BW < 125kHz
Tamb = 25
°
CTHD+N=1%
Output power (mW)
Vcc (V)
8 16243240485664
0
50
100
150
200
250
300
350
400
450
500
THD+N=10%
THD+N=0.1%
Vcc = 5V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
TS419-TS421
13/32
Fig. 25: Output P owe r vs Load Resistor
Fig. 27: Output P owe r vs Load Resistor
Fig. 29: Power Dissipation vs Output Power
Fig. 26: Output P owe r vs Load Resistor
Fig. 28: Power Dissipation vs Output Power
Fig. 30: Power Dissipation vs Output Power
8 16243240485664
0
50
100
150
200
THD+N=10%
THD+N=0.1%
Vcc = 3.3V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
8 16243240485664
0
5
10
15
20
25
30
35
40
45
50
THD+N=10%
THD+N=0.1%
Vcc = 2V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
0 30 60 90 120 150
0
50
100
150
200
250
300
RL=32
RL=8
Vcc=3.3V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (mW)
Output Power (mW)
8 16243240485664
0
10
20
30
40
50
60
70
80
90
100
THD+N=10%
THD+N=0.1%
Vcc = 2.5V
F = 1kHz
BW < 125kHz
Tamb = 25
°
C
THD+N=1%
Output power (mW)
Load Resistance ( )
0 50 100 150 200 250 300 350
0
100
200
300
400
500
600
RL=16
RL=8
Vcc=5V
F=1kHz
THD+N<1%
RL=32
Power Dissipation (mW)
Output Power (mW)
0 102030405060
0
20
40
60
80
100
120
140
RL=32
RL=8
Vcc=2.5V
F=1kHz
THD+N<1%
RL=16
Power Dissipation (mW)
Output Power (mW)
TS419-TS421
14/32
Fig. 31: Power Dissipation vs Output Power
Fig. 33: Output Voltage Swing For One Amp. vs
Power Supply Voltage
Fig. 32: Power Dera ting Curves
Fi g. 34: Low Fr eque ncy Cut Off vs Input
Capacitor for fixed gain versions
0 5 10 15 20 25 30 35
0
20
40
60
80
100
RL=8
RL=16
RL=32
Vcc=2V
F=1kHz
THD+N<1%
Power Dissipation (mW)
Output Power (mW)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
RL=8
RL=32
RL=16
Tamb=25
°
C
Amps. in BTL
VOH & VOL for Vs1 and Vs2 (V)
Power Supply Voltage (V)
TS419-TS421
15/32
Fig. 35: THD + N vs Output Po wer
Fig. 37: THD + N vs Output Po wer
Fig. 39: THD + N vs Output Po wer
Fig. 36: THD + N vs Output Po wer
Fig. 38: THD + N vs Output Po wer
Fig. 40: THD + N vs Output Po wer
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 20Hz
Av = 2
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = 2
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = 2
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 1kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
TS419-TS421
16/32
Fig. 41: THD + N vs Output Po wer
Fig. 43: THD + N vs Output Po wer
Fig. 45: THD + N vs F req uen cy
Fig. 42: THD + N vs Output Po wer
Fig. 44: THD + N vs F req uen cy
Fig. 46: THD + N vs F req uen cy
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 20kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=20mW
Vcc=5V, Po=220mW
RL=16
Av=2
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = 2
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=28mW
Vcc=5V, Po=300mW
RL=8
Av=2
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0.01
0.1
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
RL=32
Av=2
Cb = 1µF
Bw < 125kHz
Tamb=25°C
20k20
THD + N (%)
Frequency (Hz)
TS419-TS421
17/32
Fig. 47: Signal to Noise Ratio vs Po wer Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 49: Noise Floor
Fig. 51: PSRR vs Input Capacitor
Fig. 48: Signal to Noise Ratio vs Po wer Supply
Voltage with Wei ghted Fi lter Type A
Fig. 50: Noise Floor
Fig. 52: PSRR vs Power Supp ly Voltage
2.0 2.5 3.0 3.5 4.0 4.5 5.0
70
75
80
85
90
95
100 Av = 2
Cb = 1
µ
F
THD+N < 0.5%
Tamb = 25
°
CRL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
Standby=OFF
Standby=ON
RL>=16
Vcc=5V
Av=2
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = 2, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
80
85
90
95
100
105 Av = 2
Cb = 1
µ
F
THD+N < 0.5%
Tamb = 25
°
CRL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
Standby=OFF
Standby=ON
RL>=16
Vcc=2V
Av=2
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 100mVrms
Rfeed = 20k
Input = floati ng
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
18/32
Fig. 53: PSRR vs Bypass Capac itor
Fig. 55: PSRR vs Bypass Capac itor
Fig. 54: PSRR vs Bypass Capac itor
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 2
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
19/32
Fig. 56: THD + N vs Output Po wer
Fig. 58: THD + N vs Output Po wer
Fig. 60: THD + N vs Output Po wer
Fig. 57: THD + N vs Output Po wer
Fig. 59: THD + N vs Output Po wer
Fig. 61: THD + N vs Output Po wer
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 20Hz
Av = 4
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = 4
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = 4
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 1kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
1E-3
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
TS419-TS421
20/32
Fig. 62: THD + N vs Output Po wer
Fig. 64: THD + N vs Output Po wer
Fig. 66: THD + N vs F req uen cy
Fig. 63: THD + N vs Output Po wer
Fig. 65: THD + N vs F req uen cy
Fig. 67: THD + N vs F req uen cy
1 10 100
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 20kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=20mW
Vcc=5V, Po=220mW
RL=16
Av=4
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = 4
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=28mW
Vcc=5V, Po=300mW
RL=8
Av=4
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0.01
0.1
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
RL=32
Av=4
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
THD + N (%)
Frequency (Hz)
TS419-TS421
21/32
Fig. 68: Signal to Noise Ratio vs Po wer Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 70: Noise Floor
Fig. 72: PSRR vs Power Supp ly Voltage
Fig. 69: Signal to Noise Ratio vs Po wer Supply
Voltage with Wei ghted Fi lter Type A
Fig. 71: Noise Floor
Fig. 73: PSRR vs Input Capacitor
2.0 2.5 3.0 3.5 4.0 4.5 5.0
70
75
80
85
90 Av = 4
Cb = 1µF
THD+N < 0.5%
Tamb = 25°C
RL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
40
Standby=OFF
Standby=ON
RL>=16
Vcc=5V
Av=4
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-80
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 100mVrms
Rfeed = 40k
Input = floati ng
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
75
80
85
90
95
100 Av = 4
Cb = 1
µ
F
THD+N < 0.5%
Tamb = 25
°
C
RL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
40
Standby=OFF
Standby=ON
RL>=16
Vcc=2V
Av=4
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = 4, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
22/32
Fig. 74: PSRR vs Bypass Capac itor
Fig. 76: PSRR vs Bypass Capac itor
Fig. 75: PSRR vs Bypass Capac itor
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 4
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
23/32
Fig. 77: THD + N vs Output Po wer
Fig. 79: THD + N vs Output Po wer
Fig. 81: THD + N vs Output Po wer
Fig. 78: THD + N vs Output Po wer
Fig. 80: THD + N vs Output Po wer
Fig. 82: THD + N vs Output Po wer
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 20Hz
Av = 8
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20Hz
Av = 8
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 1kHz
Av = 8
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20Hz
Av = 8
Cb = 1
µ
F
BW < 22kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5VVcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
F = 1kHz
Av = 8
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.01
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 1kHz
Av = 8
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
TS419-TS421
24/32
Fig. 83: THD + N vs Output Po wer
Fig. 85: THD + N vs Output Po wer
Fig. 87: THD + N vs F req uen cy
Fig. 84: THD + N vs Output Po wer
Fig. 86: THD + N vs F req uen cy
Fig. 88: THD + N vs F req uen cy
1 10 100
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 8
, F = 20kHz
Av = 8, Cb = 1
µ
F
BW < 125kHz, Tamb = 25
°
C
THD + N (%)
Output Power (mW)
1 10 100
0.1
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 32
F = 20kHz
Av = 8
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.01
0.1
Vcc=2V, Po=20mW
Vcc=5V, Po=220mW
RL=16
Av=8
Cb = 1
µ
F
Bw < 125kHz
Tamb = 25
°
C
20k20
THD + N (%)
Frequency (Hz)
1 10 100
1
10
Vcc=5V
Vcc=3.3V
Vcc=2.5V
Vcc=2V
RL = 16
F = 20kHz
Av = 8
Cb = 1
µ
F
BW < 125kHz
Tamb = 25
°
C
THD + N (%)
Output Power (mW)
100 1000 10000
0.1
Vcc=2V, Po=28mW
Vcc=5V, Po=300mW
RL=8
Av=8
Cb = 1µF
Bw < 125kHz
Tamb = 25°C
20k20
THD + N (%)
Frequency (Hz)
100 1000 10000
0.01
0.1
Vcc=2V, Po=13mW
Vcc=5V, Po=150mW
RL=32
Av=8
Cb = 1
µ
F
Bw < 125kHz
Tamb=25
°
C
20k20
THD + N (%)
Frequency (Hz)
TS419-TS421
25/32
Fig. 89: Signal to Noise Ratio vs Po wer Supply
Voltage with Unweighted Filter (20Hz to 20kHz)
Fig. 91: Noise Floor
Fig. 93: PSRR vs Power Supp ly Voltage
Fig. 90: Signal to Noise Ratio vs Po wer Supply
Voltage with Wei ghted Fi lter Type A
Fig. 92: Noise Floor
Fig. 94: PSRR vs Input Capacitor
2.0 2.5 3.0 3.5 4.0 4.5 5.0
60
65
70
75
80
85
90 Av = 8
Cb = 1µF
THD+N < 0.5%
Tamb = 25°CRL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
40
50
60
70
Standby=OFF
Standby=ON
RL>=16
Vcc=5V
Av=8
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-70
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 100mVrms
Rfeed = 80k
Input = floati ng
Cb = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
2.0 2.5 3.0 3.5 4.0 4.5 5.0
70
75
80
85
90
95 Av = 8
Cb = 1µF
THD+N < 0.5%
Tamb = 25°CRL=32
RL=16
RL=8
Signal to Noise Rati o (dB)
Power Supply Voltage (V)
100 1000 10000
0
10
20
30
40
50
60
70
Standby=OFF
Standby=ON
RL>=16
Vcc=2V
Av=8
Cb = 1
µ
F
Input Grounded
Bw < 125kHz
Tamb=25
°
C
20k20
Noise Floor ( VRms)
Frequency (Hz)
100 1000 10000 100000
-50
-40
-30
-20
-10
0
Cin = 100nF
Cin = 1µF, 220nF
Vripple = 200mVpp
Av = 8, Vcc = 5V
Input = grounded
Cb = 1µF, Rin = 20k
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
26/32
Fig. 95: PSRR vs Bypass Capac itor
Fig. 97: PSRR vs Bypass Capac itor
Fig. 96: PSRR vs Bypass Capac itor
100 1000 10000 100000
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = 10µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
100 1000 10000 100000
-60
-50
-40
-30
-20
-10
0
Vcc = 2V
Vcc = 5V, 3.3V & 2.5V
Vripple = 200mVpp
Av = 8
Input = Grounded
Cb = 4.7µF
Cin = 1µF
RL >= 16
Tamb = 25°C
PSRR (dB)
Frequency (Hz)
TS419-TS421
27/32
APPLICATION INFORMATION
BTL Configuration Principle
The TS419 & TS420 are monolithic power
amplifiers with a BTL output type. BTL (Bridge
Tied Load) means that each end of the load is
connected to two single-ended output amplifiers.
Thus, we have:
Sin gle ended output 1 = Vout1 = Vout (V)
Sin gle ended output 2 = Vout2 = -Vo ut (V)
And Vout1 - Vout2 = 2Vou t (V)
The out put power is :
For the same power supply voltage, the output
power in BTL configuration is four times higher
than the output power in single ended
configuration.
Gain In Typical Application Schematic
(cf. page 3 o f TS419-TS 421 da tashee t)
In the flat region (no CIN e f f ec t ) , t he ou t p ut volt ag e
of the first s tage i s:
For the second stage : Vo ut2 = -Vout1 (V)
The differential output voltage is
The differential gain named gain (Gv) for more
convenient usage is :
Remark : Vo ut2 is in phase with Vin and Vout1 is
phased 180° with Vin. This means that the positive
terminal of the loudspeaker should be connected
to Vout2 and the negat ive to Vout1.
Low and high frequenc y response
In the low frequency region, CIN s tarts t o hav e an
effect. CIN for m s w it h R IN a hig h-pass filter with a
-3dB cut off f requenc y .
In the high frequency region, you can limit the
bandwidth by adding a capacitor (Cfeed) in
parallel with Rf eed. I t forms a low-pass filter with a
-3dB cut off frequency .
Power di ssipation an d efficiency
Hypothesis:
• Load voltage and current are sinusoidal (Vout
and Iout)
• Supply voltage is a pure DC sourc e (Vcc)
Regarding the load we have:
and
and
Then, t he average current delivered by the supply
voltage is:
The power deli vered by the supply voltage is:
Psuppl y = Vcc IccAVG (W)
Then, the power d iss ipated by the amp lifier is:
Pdiss = Psup ply - Pout (W)
and the max im um value is obtained when :
and its value is:
Remark : This maximum value is only dependent
upon power su pply voltage and load values.
)W(
R)Vout2(
Pout L
2
RMS
=
)V(
Rin
Rfeed
Vin1Vout =
)V(
Rin
Rfeed
Vin21Vout2Vout =
Rin
Rfeed
2
Vin 1Vout2Vout
Gv =
=
(Hz)
RinCin2 1
FCL π
=
)Hz(
CfeedRfeed2 1
FCH π
=
)V(tsinVV PEAKOUT ω=
)A(
R
V
IL
OUT
OUT =
)W(
R2
V
PL
2
PEAK
OUT =
)A(
R
V
2Icc L
PEAK
AVG π
=
)W(PP
R
Vcc22
Pdiss OUTOUT
L
π
=
0
P
Pdiss
OUT =
)W(
R
Vcc2
maxPdiss L
2
2
π
=
TS419-TS421
28/32
The efficiency is the ratio between the output
power and the power supply
The maximum theoretical value is reached when
V p e ak = Vcc, so
Decoupli ng of t he c i rcuit
T wo c apacitors are needed to bypass properl y the
TS419/TS421. A power supply bypass capacitor
CS and a bias voltage bypass capacitor C B.
CS has particular influence on the THD+N in the
high frequency region (above 7kHz) and an
indirect inf l uence on power supply disturbances.
With 1µF, you can expect similar THD+N
performances to those shown in the datasheet.
In the high frequency region, if CS is lower than
1µF, it increases THD+ N a nd disturbances on the
power suppl y rail are less filter ed.
On t he ot her h and, if CS i s highe r tha n 1µF, those
disturbances on the power supply rail are more
filtered.
CB has an influence on THD+N at lower
frequencies, but its function is critical to the final
result of PSRR (with input grounded and in the
lower frequency region).
If CB i s lower than 1µF, THD+N increases at lower
frequenc ies and PSRR worsens.
If CB is hig her than 1µF, the benefit on T HD+N at
lower frequencies is small, but the benefit to PSRR
is substanti al.
Note that CIN has a non-negligible effect on PSRR
at lower frequencies. The lower the value of CIN,
the higher the PSRR.
Wake-up Time: TWU
When standby is released to put the device ON,
the bypass capacitor CB will not be charged
immediatly. As CB is di re ctly linked to the bias of
the amplifier, the bias will not work properly until
the CB voltage is correct. The time to reach this
voltage is called wake-up time or TWU and typically
equal to :
TWU=0.15xCB (s) with CB in µF .
Due to process tolerances, the range of the
wake-up time is :
0.12xCb < TWU < 0. 18xCB (s) with CB in µF
Note : When the standby command is set, the time
to put the device in shutdown mode is a few
microseconds.
Pop performance
Pop performance is intimately linked with the size
of the input capacitor Cin and the bias voltage
byp ass capacitor CB.
The size of CIN is dependen t on the l ower cut-off
frequency and PSRR va lues requested. The size
of CB is depend ent on THD+N and PSRR values
reques ted at lower frequencies.
Moreover, CB determines the speed with which the
amplifier turns ON. The slower the speed is, the
softer the turn ON noise is.
The charge time of CB is directly proportional to
the internal generator resistance 150k..
Then, the charge time constant for CB is
τB = 150kxCB (s)
As CB is directly connected to the non-inverting
input (pin 2 & 3) and if we want to minimize, in
amplitude and durat i on, the output spike on Vout1
(pin 5), CIN must be cha rg ed faster than CB. The
equivalent charge ti me cons tant of CIN is:
τIN = (Rin+R feed)xCIN (s)
Thus we hav e the relation:
τIN < τB (s )
Proper respect of this relation allows to minimize
the pop noise.
Remark : Minimizing CIN and CB benefits both the
pop phenomena, and the cost and size of the
application.
Appl ication : Differential i nputs BTL power
amplifier.
The schem atic on figure 98, shows how to design
the TS419 /21 to work in a differential input mode.
The gain of the amplifier is:
In order to reach optimal
performanc es of the differential function, R1 and
R2 should be matched at 1% max.
Vcc4
V
plysupPPPEAKOUT π
==η
%5.78
4=
π
1
2
VDIFF R
R
2G =
TS419-TS421
29/32
Fig. 98 : Differential Input Amplifier
Configuration
Input ca pacitanc e C can be calculated by the
following formula using the -3dB lower frequency
required. (FL is the lower frequency requir ed)
Note : This formula is t rue only if:
i s t e n ti mes l o w e r th an FL.
The following bill of material i s an example of a
differential amplifier with a gain of 2 and a -3dB
lower cuttoff frequency of about 80Hz.
Components :
)(
2
1
1
F
FR
C
L
π
Designator Part Type
R1 20k / 1%
R2 20k / 1%
C100nF
CB=CS1µF
U1 TS419/21
)Hz(
C9420001
FB
CB ×
=
TS419-TS421
30/32
PACKAGE MECHANICAL DATA
DIM. mm. inch
MIN. TYP MAX. MIN. TYP. MAX.
A 1.35 1.75 0.053 0.069
A1 0.10 0.25 0.04 0.010
A2 1.10 1.65 0.043 0.065
B 0.33 0.51 0.013 0.020
C 0.19 0.25 0.007 0.010
D 4.80 5.00 0.189 0.197
E 3.80 4.00 0.150 0.157
e 1.27 0.050
H 5.80 6.20 0.228 0.244
h 0.25 0.50 0.010 0.020
L 0.40 1.27 0.016 0.050
k ˚ (max.)
ddd 0.1 0.04
SO-8 MECHANICAL DATA
0016023/C
8
TS419-TS421
31/32
PACKAGE MECHANICAL DATA
TS419-TS421
32/32
PACKAGE MECHANICAL DATA
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the
conseque nces of use of such information nor for any infringem ent of patents or other rights of third parties whic h may result from
its use. No license is granted by implication or otherwise unde r any patent or patent rights of STMicroelectron ics. S pec ific at ions
mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information
previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or
systems with out expres s written approval of STMicroelec tronics .
The ST logo is a registered trademark of STMicroelectronics
© 2003 STMicroe lectron ics - Pri nted in Italy - All Ri g h ts Reserv ed
STM icroel ectroni cs GROUP OF COM PANIE S
Australia - Braz i l - Canada - Chi na - Finl and - France - Germ any - Hong Kong - India - Israel - Ita l y - J apan - Malaysia
Malta - Morocco - Singapore - Spain - S weden - Switze rl and - Uni ted Kingdom - Uni ted States
http://www.st.com