This is information on a product in full production.
April 2020 DS11929 Rev 7 1/183
STM32WB55xx
Multiprotocol wireless 32-bit MCU Arm®-based Cortex®-M4
with FPU, Bluetooth® 5 and 802.15.4 radio solution
Datasheet - production data
Features
Includes ST state-of-the-art patented
technology
Radio
2.4 GHz
RF transceiver supporting Bluetooth® 5
specification, IEEE 802.15.4-2011 PHY
and MAC, supporting Thread and
ZigBee® 3.0
RX sensitivity: -96 dBm (Bluetooth® Low
Energy at 1 Mbps), -100 dBm (802.15.4)
Programmable output power up to +6 dBm
with 1 dB steps
Integrated balun to reduce BOM
Support for 2 Mbps
Dedicated Arm® 32-bit Cortex® M0 + CPU
for real-time Radio layer
Accurate RSSI to enable power control
Suitable for systems requiring compliance
with radio frequency regulations ETSI EN
300 328, EN 300 440, FCC CFR47 Part 15
and ARIB STD-T66
Support for external PA
Available integrated passive device (IPD)
companion chip for optimized matching
solution (MLPF-WB55-01E3 or
MLPF-WB55-02E3)
Ultra-low-power platform
1.71 to 3.6 V power supply
– 40 °C to 85 / 105 °C temperature ranges
13 nA shutdown mode
600 nA Standby mode + RTC + 32 KB
RAM
2.1 µA Stop mode + RTC + 256 KB RAM
Active-mode MCU: < 53 µA / MHz when RF
and SMPS on
Radio: Rx 4.5 mA / Tx at 0 dBm 5.2 mA
Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
adaptive real-time accelerator (ART
Accelerator) allowing 0-wait-state execution
from Flash memory, frequency up to 64 MHz,
MPU, 80 DMIPS and DSP instructions
Performance benchmark
1.25 DMIPS/MHz (Drystone 2.1)
219.48 CoreMark® (3.43 CoreMark/MHz at
64 MHz)
Energy benckmark
303 ULPMark™ CP score
Supply and reset management
High efficiency embedded SMPS
step-down converter with intelligent bypass
mode
Ultra-safe, low-power BOR (brownout
reset) with five selectable thresholds
Ultra-low-power POR/PDR
Programmable voltage detector (PVD)
–V
BAT mode with RTC and backup registers
Clock sources
32 MHz crystal oscillator with integrated
trimming capacitors (Radio and CPU clock)
32 kHz crystal oscillator for RTC (LSE)
Internal low-power 32 kHz (±5%) RC (LSI1)
Internal low-power 32 kHz (stability
±500 ppm) RC (LSI2)
.
UFQFPN48 VFQFPN68
WLCSP100
0.4 mm pitch
7 x 7 mm solder pad 8 x 8 mm solder pad
UFBGA129
0.5 mm pitch
FBGA
www.st.com
STM32WB55xx
2/183 DS11929 Rev 7
Internal multispeed 100 kHz to 48 MHz
oscillator, auto-trimmed by LSE (better than
±0.25% accuracy)
High speed internal 16 MHz factory
trimmed RC (±1%)
2x PLL for system clock, USB, SAI and
ADC
Memories
Up to 1 MB Flash memory with sector
protection (PCROP) against R/W
operations, enabling authentic Bluetooth®
Low Energy and 802.15.4 SW stack
Up to 256 KB SRAM, including 64 KB with
hardware parity check
20x32-bit backup register
Boot loader supporting USART, SPI, I2C
and USB interfaces
OTA (over the air) Bluetooth® Low Energy
and 802.15.4 update
Quad SPI memory interface with XIP
Rich analog peripherals (down to 1.62 V)
12-bit ADC 4.26 Msps, up to 16-bit with
hardware oversampling, 200 µA/Msps
2x ultra-low-power comparator
Accurate 2.5 V or 2.048 V reference
voltage buffered output
System peripherals
Inter processor communication controller
(IPCC) for communication with Bluetooth®
Low Energy and 802.15.4
HW semaphores for resources sharing
between CPUs
2x DMA controllers (7x channels each)
supporting ADC, SPI, I2C, USART, QSPI,
SAI, AES, timers
1x USART (ISO 7816, IrDA, SPI Master,
Modbus and Smartcard mode)
1x LPUART (low power)
2x SPI 32 Mbit/s
2x I2C (SMBus/PMBus)
1x SAI (dual channel high quality audio)
1x USB 2.0 FS device, crystal-less, BCD
and LPM
Touch sensing controller, up to 18 sensors
LCD 8x40 with step-up converter
1x 16-bit, four channels advanced timer
2x 16-bits, two channels timer
1x 32-bits, four channels timer
2x 16-bits ultra-low-power timer
1x independent Systick
1x independent watchdog
1x window watchdog
Security and ID
Secure firmware installation (SFI) for
Bluetooth® Low Energy and 802.15.4 SW
stack
3x hardware encryption AES maximum
256-bit for the application, the Bluetooth®
Low Energy and IEEE802.15.4
Customer key storage / key manager
services
HW public key authority (PKA)
Cryptographic algorithms: RSA,
Diffie-Helman, ECC over GF(p)
True random number generator (RNG)
Sector protection against R/W operation
(PCROP)
CRC calculation unit
Die information: 96-bit unique ID
IEEE 64-bit unique ID. Possibility to derive
802.15.4 64-bit and Bluetooth® Low Energy
48-bit EUI
Up to 72 fast I/Os, 70 of them 5 V-tolerant
Development support
Serial wire debug (SWD), JTAG for the
Application processor
Application cross trigger with input / output
Embedded Trace Macrocell™ for
application
All packages are ECOPACK2 compliant
Table 1. Device summary
Reference Part numbers
STM32WB55xx
STM32WB55CC, STM32WB55RC, STM32WB55VC
STM32WB55CE, STM32WB55RE, STM32WB55VE
STM32WB55CG, STM32WB55RG, STM32WB55VG
DS11929 Rev 7 3/183
STM32WB55xx Contents
6
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Arm® Cortex®-M4 core with FPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Adaptive real-time memory accelerator (ART Accelerator) . . . . . . . . . . 17
3.3.2 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Security and safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Boot modes and FW update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.6 RF subsystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.1 RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6.2 BLE general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6.3 802.15.4 general description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.4 RF pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6.5 Typical RF application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.1 Power supply distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.7.2 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.7.3 Linear voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.4 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.7.6 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.8 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.9 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.10 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.11 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.12 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.13 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Contents STM32WB55xx
4/183 DS11929 Rev 7
3.13.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 41
3.13.2 Extended interrupts and events controller (EXTI) . . . . . . . . . . . . . . . . . 42
3.14 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.14.1 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.14.2 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.15 Voltage reference buffer (VREFBUF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.16 Comparators (COMP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.17 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.18 Liquid crystal display controller (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.19 True random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.20 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.20.1 Advanced-control timer (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.20.2 General-purpose timers (TIM2, TIM16, TIM17) . . . . . . . . . . . . . . . . . . . 47
3.20.3 Low-power timer (LPTIM1 and LPTIM2) . . . . . . . . . . . . . . . . . . . . . . . . 48
3.20.4 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.20.5 System window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.20.6 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.21 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 49
3.22 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.23 Universal synchronous/asynchronous receiver transmitter (USART) . . . 51
3.24 Low-power universal asynchronous receiver transmitter (LPUART) . . . . 51
3.25 Serial peripheral interface (SPI1, SPI2) . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.26 Serial audio interfaces (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.27 Quad-SPI memory interface (QUADSPI) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.28 Development support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.28.1 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.28.2 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
DS11929 Rev 7 5/183
STM32WB55xx Contents
6
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Summary of main performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.2 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.3 RF BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.3.4 RF 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.5 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 88
6.3.6 Embedded reset and power control block characteristics . . . . . . . . . . . 88
6.3.7 Embedded voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.8 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3.9 Wakeup time from Low-power modes and voltage scaling
transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.10 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.11 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.12 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.13 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.3.14 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
6.3.15 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.3.16 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.3.17 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.3.18 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3.19 Analog switches booster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.3.20 Analog-to-Digital converter characteristics . . . . . . . . . . . . . . . . . . . . . 131
6.3.21 Voltage reference buffer characteristics . . . . . . . . . . . . . . . . . . . . . . . 143
6.3.22 Comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.3.23 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.24 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
6.3.25 SMPS step-down converter characteristics . . . . . . . . . . . . . . . . . . . . . 147
6.3.26 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
6.3.27 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.3.28 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Contents STM32WB55xx
6/183 DS11929 Rev 7
6.3.29 Communication interfaces characteristics . . . . . . . . . . . . . . . . . . . . . . 149
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.1 UFBGA129 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7.2 WLCSP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
7.3 VFQFPN68 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.4 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
7.5 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.5.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
7.5.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 175
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
DS11929 Rev 7 7/183
STM32WB55xx List of tables
9
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Table 2. STM32WB55xx devices features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 3. Access status vs. readout protection level and execution modes . . . . . . . . . . . . . . . . . . . 18
Table 4. RF pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 5. Typical external components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Table 6. Power supply typical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 7. Features over all modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 8. STM32WB55xx modes overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Table 9. STM32WB55xx CPU1 peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 10. DMA implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 11. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 12. Internal voltage reference calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 13. Timer features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 14. I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 15. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 16. STM32WB55xx pin and ball definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 17. Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 18. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 19. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 20. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 21. Main performance at VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 22. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 23. RF transmitter BLE characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 24. RF transmitter BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 25. RF transmitter BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 26. RF receiver BLE characteristics (1 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 27. RF receiver BLE characteristics (2 Mbps) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 28. RF BLE power consumption for VDD = 3.3 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 29. RF transmitter 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 30. RF receiver 802.15.4 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 31. RF 802.15.4 power consumption for VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 32. Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 33. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 34. Embedded internal voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 35. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V . . . . . . . . . . . . 92
Table 36. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 37. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V . . . . . . . . . . . . . 94
Table 38. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 39. Current consumption in Sleep and Low-power sleep modes, Flash memory ON . . . . . . . 96
Table 40. Current consumption in Low-power sleep modes, Flash memory in Power down . . . . . . . 96
Table 41. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 42. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 43. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Table 44. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
List of tables STM32WB55xx
8/183 DS11929 Rev 7
Table 45. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 46. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 47. Current under Reset condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 48. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 49. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Table 50. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 51. Wakeup time using LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table 52. HSE crystal requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 53. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 54. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 55. Low-speed external user clock characteristics – Bypass mode . . . . . . . . . . . . . . . . . . . . 113
Table 56. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 57. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Table 58. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 59. LSI1 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Table 60. LSI2 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 61. PLL, PLLSAI1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Table 62. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 63. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 64. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Table 65. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 66. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Table 67. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 68. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Table 69. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Table 70. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 71. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Table 72. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Table 73. Analog switches booster characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
Table 74. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 75. ADC sampling time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Table 76. ADC accuracy - Limited test conditions 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
Table 77. ADC accuracy - Limited test conditions 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Table 78. ADC accuracy - Limited test conditions 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Table 79. ADC accuracy - Limited test conditions 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Table 80. VREFBUF characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Table 81. COMP characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
Table 82. TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 83. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 84. VBAT charging characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Table 85. LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Table 86. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Table 87. IWDG min/max timeout period at 32 kHz (LSI1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 88. Minimum I2CCLK frequency in all I2C modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Table 89. I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
Table 90. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Table 91. Quad-SPI characteristics in SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
Table 92. Quad-SPI characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Table 93. SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Table 94. USB electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 95. JTAG characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Table 96. SWD characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
DS11929 Rev 7 9/183
STM32WB55xx List of tables
9
Table 97. UFBGA129 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Table 98. UFBGA129 recommended PCB design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Table 99. WLCSP100 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Table 100. WLCSP100 recommended PCB design rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Table 101. VFQFPN68 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Table 102. UFQFPN48 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Table 103. Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
Table 104. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
List of figures STM32WB55xx
10/183 DS11929 Rev 7
List of figures
Figure 1. STM32WB55xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 2. STM32WB55xx RF front-end block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 3. STM32WB55xx external components for the RF part . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 4. Power distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 5. Power-up/down sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 6. Power supply overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 7. Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 8. STM32WB55Cx UFQFPN48 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 9. STM32WB55Rx VFQFPN68 pinout(1) (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 10. STM32WB55Vx WLCSP100 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 11. STM32WB55Vx UFBGA129 ballout(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 12. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 13. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 14. Power supply scheme (all packages except UFBGA129) . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 15. Power supply scheme (UFBGA129 package) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 16. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 17. Typical link quality indicator code vs. Rx level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Figure 18. Typical energy detection (T = 27°C, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Figure 19. VREFINT vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 20. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure 21. Low-speed external clock source AC timing diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 22. HSI16 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 23. Typical current consumption vs. MSI frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 24. HSI48 frequency vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 25. I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 26. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 27. ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Figure 28. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
Figure 29. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 30. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Figure 31. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Figure 32. Quad-SPI timing diagram - SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 33. Quad-SPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Figure 34. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 35. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
Figure 36. UFBGA129 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
Figure 37. UFBGA129 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
Figure 38. UFBGA129 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 39. WLCSP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
Figure 40. WLCSP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
Figure 41. WLCSP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Figure 42. VFQFPN68 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
Figure 43. VFQFPN68 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Figure 44. VFQFPN68 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Figure 45. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Figure 46. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Figure 47. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
DS11929 Rev 7 11/183
STM32WB55xx Introduction
54
1 Introduction
This document provides the ordering information and mechanical device characteristics of
the STM32WB55xx microcontrollers, based on Arm® cores(a).
This document must be read in conjunction with the reference manual (RM0434), available
from the STMicroelectronics website www.st.com.
For information on the Arm® Cortex®-M4 and Cortex®-M0+ cores, refer, respectively, to the
Cortex®-M4 Technical Reference Manual and to the Cortex®-M0+ Technical Reference
Manual, both available on the www.arm.com website.
For information on 802.15.4 refer to the IEEE website (www.ieee.org).
For information on Bluetooth® refer to www.bluetooth.com.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
Description STM32WB55xx
12/183 DS11929 Rev 7
2 Description
The STM32WB55xx multiprotocol wireless and ultra-low-power devices embed a powerful
and ultra-low-power radio compliant with the Bluetooth® Low Energy SIG specification v5.0
and with IEEE 802.15.4-2011. They contain a dedicated Arm® Cortex® -M0+ for performing
all the real-time low layer operation.
The STM32WB55xx devices are designed to be extremely low-power and are based on the
high-performance Arm® Cortex®-M4 32-bit RISC core operating at a frequency of up to
64 MHz. The Cortex®-M4 core features a Floating point unit (FPU) single precision that
supports all Arm® single-precision data-processing instructions and data types. It also
implements a full set of DSP instructions and a memory protection unit (MPU) that
enhances application security.
Enhanced inter-processor communication is provided by the IPCC with six bidirectional
channels. The HSEM provides hardware semaphores used to share common resources
between the two processors.
The STM32WB55xx devices embed high-speed memories (up to 1 Mbyte of Flash memory,
up to 256 Kbyte of SRAM), a Quad-SPI Flash memory interface (available on all packages)
and an extensive range of enhanced I/Os and peripherals.
Direct data transfer between memory and peripherals and from memory to memory is
supported by fourteen DMA channels with a full flexible channel mapping by the DMAMUX
peripheral.
The STM32WB55xx devices feature several mechanisms for embedded Flash memory and
SRAM: readout protection, write protection and proprietary code readout protection.
Portions of the memory can be secured for Cortex® -M0+ exclusive access.
The two AES encryption engines, PKA and RNG enable lower layer MAC and upper layer
cryptography. A customer key storage feature may be used to keep the keys hidden.
The devices offer a fast 12-bit ADC and two ultra-low-power comparators associated with a
high accuracy reference voltage generator.
These devices embed a low-power RTC, one advanced 16-bit timer, one general-purpose
32-bit timer, two general-purpose 16-bit timers, and two 16-bit low-power timers.
In addition, up to 18 capacitive sensing channels are available. The devices also embed an
integrated LCD driver up to 8x40 or 4x44, with internal step-up converter.
The STM32WB55xx devices also feature standard and advanced communication
interfaces, namely one USART (ISO 7816, IrDA, Modbus and Smartcard mode), one
low- power UART (LPUART), two I2Cs (SMBus/PMBus), two SPIs (up to 32 MHz), one
serial audio interface (SAI) with two channels and three PDMs, one USB 2.0 FS device with
embedded crystal-less oscillator, supporting BCD and LPM and one Quad-SPI with
execute-in-place (XIP) capability.
The STM32WB55xx operate in the -40 to +105 °C (+125 °C junction) and -40 to +85 °C
(+105 °C junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive
set of power-saving modes enables the design of low-power applications.
The STM32WB55xx include independent power supplies for analog input for ADC.
The STM32WB55xx integrate a high efficiency SMPS step-down converter with automatic
bypass mode capability when the VDD falls below VBORx (x=1, 2, 3, 4) voltage level (default
DS11929 Rev 7 13/183
STM32WB55xx Description
54
is 2.0 V). It includes independent power supplies for analog input for ADC and comparators,
as well as a 3.3 V dedicated supply input for USB.
A VBAT dedicated supply allows the devices to back up the LSE 32.768KHz oscillator, the
RTC and the backup registers, thus enabling the STM32WB55xx to supply these functions
even if the main VDD is not present through a CR2032-like battery, a Supercap or a small
rechargeable battery.
The STM32WB55xx offers four packages, from 48 to 129 pins.
Table 2. STM32WB55xx devices features and peripheral counts
Feature STM32WB55Cx STM32WB55Rx STM32WB55Vx
Flash memory density 256 KB 512 KB 1 MB 256 KB 512 KB 1 MB 256 KB 512 KB 1 MB
SRAM density 128 KB 256 KB 256 KB 128 KB 256 KB 256 KB 128 KB 256 KB 256 KB
SRAM1 64 KB 192 KB 64 KB 192 KB 64 KB 192 KB
SRAM2 64 KB
BLE V5.0 (2 Mbps)
802.15.4 Yes
Timers
Advanced 1 (16 bits)
General purpose 2 (16 bits) + 1 (32 bits)
Low power 2 (16 bits)
SysTick 1
Comm
interface
SPI 1 2
I2C 2
USART(1) 1
LPUART 1
SAI 2 channels
USB FS Yes
QSPI 1
RTC 1
Tamper pin 1 3
Wakeup pin 2 5
LCD, COMxSEG Yes, 4x13 Yes, 4x28 Yes, 8x40 or 4x44
GPIOs 304972
Capacitive sensing No 6 18
12-bit ADC
Number of channels
13 channels
(incl. 3 internal)
19 channels
(incl. 3 internal)
Internal Vref Yes
Analog comparator 2
Max CPU frequency 64 MHz
Description STM32WB55xx
14/183 DS11929 Rev 7
Operating temperature Ambient :-40 to +85 and -40 to +105 °C
Junction: -40 to +105 and -40 to +125 °C
Operating voltage 1.71 to 3.6 V
Package
UFQFPN48
7 mm x 7 mm
0.5 mm pitch, solder pad
VFQFPN68
8 mm x 8 mm
0.4 mm pitch, solder pad
WLCSP100
0.4 mm pitch
UFBGA129
0.5 mm pitch
1. USART peripheral can be used as SPI.
Table 2. STM32WB55xx devices features and peripheral counts (continued)
Feature STM32WB55Cx STM32WB55Rx STM32WB55Vx
DS11929 Rev 7 15/183
STM32WB55xx Description
54
Figure 1. STM32WB55xx block diagram
MS41407V5
DMA1 7 channels
NVICETM
TIM2
PWR
TIM1
GPIO Ports
A, B, C, D, E, H
EXTI
192 KB SRAM1
Memory
RTC2
I-WDG
LSE
32 kHz
HSE2
32 MHz
MSI up to
48 MHz
HSI 1%
16 MHz
PLL1
&
PLL2
Power Supply POR/
PDR/BOR/PVD/AVD
ADC1 16-bit ULP
4.26 Msps / 19 ch
NVIC
JTAG/SWD
AHB Lite
IPCC
ARBITER
+ ART
1 MB Flash
Shared Memory
BLE IP
RNG
LSI1
32 kHz
BLE / 802.15.4
RF IP
LPTIM2
LPTIM1
AES2
DBG
AHB Lite (Shared)
WKUP
BLE
AHB
asynchronous
CRC
RCC + CSS
SYSCFG/COMP/VREF
APB asynchronous
RCC2
TSC
HSEM
WWDG
SPI2
I2C3
LPUART1
SPI1
I2C1
USART1
CRS RC48
USB FS + RAM
PKA + RAM
LSI2
32 kHz
TIM16, TIM17
MPU
Cortex-M0+
802.15.4
QSPI - XIP
32 kB SRAM2a
Backup Memory
SAI1
Cortex-M4
(DSP)
32 kB SRAM2b
Memory
AES1
LCD
FPU
CTI CTI
TAMP
DMA2 7 channels
DMAMUX
AHB Lite
Temp (oC) sensor
APB
Functional overview STM32WB55xx
16/183 DS11929 Rev 7
3 Functional overview
3.1 Architecture
The STM32WB55xx multiprotocol wireless devices embed a BLE and an 802.15.4
RF subsystem that interfaces with a generic microcontroller subsystem using an Arm®
Cortex®-M4 CPU (called CPU1) on which the host application resides.
The RF subsystem is composed of an RF analog front end, BLE and 802.15.4 digital MAC
blocks as well as of a dedicated Arm® Cortex®-M0+ microcontroller (called CPU2), plus
proprietary peripherals. The RF subsystem performs all of the BLE and 802.15.4 low layer
stack, reducing the interaction with the CPU1 to high level exchanges.
Some functions are shared between the RF subsystem CPU (CPU2) and the Host CPU
(CPU1):
Flash memories
SRAM1, SRAM2a and SRAM2b (SRAM2a can be retained in Standby mode)
Security peripherals (RNG, AES1, PKA)
Clock RCC
Power control (PWR)
The communication and the sharing of peripherals between the RF subsystem and the
Cortex®-M4 CPU is performed through a dedicated inter processor communication
controller (IPCC) and semaphore mechanism (HSEM).
3.2 Arm® Cortex®-M4 core with FPU
The Arm® Cortex®-M4 with FPU is a processor for embedded systems. It has been
developed to provide a low-cost platform that meets the needs of MCU implementation, with
a reduced pin count and low-power consumption, while delivering outstanding
computational performance and an advanced response to interrupts.
The Arm® Cortex®-M4 with FPU 32-bit RISC processor features exceptional
code-efficiency, delivering the high-performance expected from an Arm® core in the
memory size usually associated with 8- and 16-bit devices.
The processor supports a set of DSP instructions which allow efficient signal processing and
complex algorithm execution.
Its single precision FPU speeds up software development by using metalanguage
development tools, while avoiding saturation.
With its embedded Arm® core, the STM32WB55xx are compatible with all Arm® tools and
software.
Figure 1 shows the general block diagram of the STM32WB55xx devices.
DS11929 Rev 7 17/183
STM32WB55xx Functional overview
54
3.3 Memories
3.3.1 Adaptive real-time memory accelerator (ART Accelerator)
The ART Accelerator is a memory accelerator optimized for STM32 industry-standard Arm®
Cortex®-M4 processors. It balances the inherent performance advantage of the Arm®
Cortex®-M4 over Flash memory technologies, that normally require the processor to wait for
the Flash memory at higher frequencies.
To release the processor near 80 DMIPS performance at 64 MHz, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 64-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 64 MHz.
3.3.2 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU1 accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into eight subareas. The protection area sizes are between 32 bytes and the whole
4 Gbytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code must be
protected against the misbehavior of other tasks. It is usually managed by an RTOS
(real-time operating system). If a program accesses a memory location prohibited by the
MPU, the RTOS detects it and takes action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
3.3.3 Embedded Flash memory
The STM32WB55xx devices feature up to1 Mbytes of embedded Flash memory available
for storing programs and data, as well as some customer keys.
Flexible protections can be configured thanks to option bytes:
Readout protection (RDP) to protect the whole memory. Three levels are available:
Level 0: no readout protection
Level 1: memory readout protection: the Flash memory cannot be read from or
written to if either debug features are connected, boot in SRAM or bootloader is
selected
Level 2: chip readout protection: debug features (Cortex®-M4 and Cortex®-M0+
JTAG and serial wire), boot in SRAM and bootloader selection are disabled (JTAG
fuse). This selection is irreversible.
Functional overview STM32WB55xx
18/183 DS11929 Rev 7
Write protection (WRP): the protected area is protected against erasing and
programming. Two areas can be selected, with 4 Kbytes granularity.
Proprietary code readout protection (PCROP): two parts of the Flash memory can be
protected against read and write from third parties. The protected area is execute-only:
it can only be reached by the STM32 CPU, as an instruction code, while all other
accesses (DMA, debug and CPU data read, write and erase) are strictly prohibited.
Two areas can be selected, with 2 Kbytes granularity. An additional option bit
(PCROP_RDP) makes possible to select if the PCROP area is erased or not when the
RDP protection is changed from Level 1 to Level 0.
A section of the Flash memory is secured for the RF subsystem CPU2, and cannot be
accessed by the host CPU1.
The whole non-volatile memory embeds the error correction code (ECC) feature supporting:
single error detection and correction
double error detection
the address of the ECC fail can be read in the ECC register
The embedded Flash memory is shared between CPU1 and CPU2 on a time sharing basis.
A dedicated HW mechanism allows both CPUs to perform Write/Erase operations.
Table 3. Access status vs. readout protection level and execution modes
Area Protection
level
User execution Debug, boot from SRAM or boot
from system memory (loader)
Read Write Erase Read Write Erase
Main
memory
1 Yes Yes Yes No No No
2 Yes Yes Yes N/A N/A N/A
System
memory
1 Yes No No Yes No No
2 Yes No No N/A N/A N/A
Option
bytes
1 Yes Yes Yes Yes Yes Yes
2YesNo
(1)
1. The option byte can be modified by the RF subsystem.
No(1) N/A N/A N/A
Backup
registers
1YesYesN/A
(2)
2. Erased when RDP changes from Level 1 to Level 0.
No No N/A(2)
2 Yes Yes N/A N/A N/A N/A
SRAM2a
SRAM2b
1 Yes Yes Yes(2) No No No(2)
2 Yes Yes Yes N/A N/A N/A
DS11929 Rev 7 19/183
STM32WB55xx Functional overview
54
3.3.4 Embedded SRAM
The STM32WB55xx devices feature up to 256 Kbytes of embedded SRAM, split in three
blocks:
SRAM1: up to 192 Kbytes mapped at address 0x2000 0000
SRAM2a: 32 Kbytes located at address 0x2003 0000 (contiguous to SRAM1) also
mirrored at 0x1000 0000, with hardware parity check (this SRAM can be retained in
Standby mode)
SRAM2b: 32 Kbytes located at address 0x2003 B000 (contiguous with SRAM2a) and
mirrored at 0x1000 8000 with hardware parity check
SRAM2a and SRAM2b can be write-protected, with 1 Kbyte granularity. A section of the
SRAM2a and SRAM2b is secured for the RF sub-system and cannot be accessed by the
host CPU1.
The SRAMs can be accessed in read/write with 0 wait states for all CPU1 and CPU2 clock
speeds.
3.4 Security and safety
The STM32WB55xx contain many security blocks both for the BLE or IEEE 802.14.5 and
the Host application.
It includes:
Customer storage of the BLE and 802.14.5 keys
Secure Flash memory partition for RF subsystem-only access
Secure SRAM partition, that can be accessed only by the RF subsystem
True random number generator (RNG)
Advance encryption standard hardware accelerators (AES-128bit and AES-256bit,
supporting chaining modes ECB, CBC, CTR, GCM, GMAC, CCM)
Private key acceleration (PKA) including:
Modular arithmetic including exponentiation with maximum modulo size of 3136
bits
Elliptic curves over prime field scalar multiplication, ECDSA signature, ECDSA
verification with maximum modulo size of 521 bits
Cyclic redundancy check calculation unit (CRC)
A specific mechanism is in place to ensure that all the code executed by the RF subsystem
CPU2 can be secure, whatever the Host application. For the AES1 a customer key can be
managed by the CPU2 and used by the CPU1 to encrypt/decrypt data.
3.5 Boot modes and FW update
At startup, BOOT0 pin and BOOT1 option bit are used to select one of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
Functional overview STM32WB55xx
20/183 DS11929 Rev 7
The STM32WB55xx always boot on CPU1 core. The embedded bootloader code makes it
possible to boot from various peripherals:
USB
UART
I2C
SPI
Secure Firmware update (especially BLE and 802.15.4) from system boot and over the air is
provided.
3.6 RF subsystem
The STM32WB55xx embed an ultra-low power multi-standard radio Bluetooth® Low Energy
(BLE) and 802.15.4 network processor, compliant with Bluetooth® specification v5.0 and
IEEE® 802.15.4-2011. The BLE features 1 Mbps and 2 Mbps transfer rates, supports
multiple roles simultaneously acting at the same time as Bluetooth® Low Energy sensor and
hub device, embeds Elliptic Curve Diffie-Hellman (ECDH) key agreement protocol, thus
ensuring a secure connection.
The Bluetooth® Low Energy stack and 802.15.4 Low Level layer run on an embedded Arm®
Cortex®-M0+ core (CPU2). The stack is stored on the embedded Flash memory, which is
also shared with the Arm® Cortex®-M4 (CPU1) application, making it possible in-field stack
update.
3.6.1 RF front-end block diagram
The RF front-end is based on a direct modulation of the carrier in Tx, and uses a low IF
architecture in Rx mode.
Thanks to an internal transformer at RF pins, the circuit directly interfaces the antenna
(single ended connection, impedance close to 50 ). The natural bandpass behavior of the
internal transformer, simplifies outside circuitry aimed for harmonic filtering and out of band
interferer rejection.
In Transmit mode, the maximum output power is user selectable through the programmable
LDO voltage of the power amplifier. A linearized, smoothed analog control offers clean
power ramp-up.
In receive mode the circuit can be used in standard high performance or in reduced power
consumption (user programmable). The Automatic gain control (AGC) is able to reduce the
chain gain at both RF and IF locations, for optimized interference rejection. Thanks to the
use of complex filtering and highly accurate I/Q architecture, high sensitivity and excellent
linearity can be achieved.
The bill of material is reduced thanks to the high degree of integration. The radio frequency
source is synthesized form an external 32 MHz crystal that does not need any external
trimming capacitor network thanks to a dual network of user programmable integrated
capacitors.
DS11929 Rev 7 21/183
STM32WB55xx Functional overview
54
Figure 2. STM32WB55xx RF front-end block diagram
3.6.2 BLE general description
The BLE block is a master/slave processor, compliant with Bluetooth® specification 5.0
standard (2 Mbps).
It integrates a 2.4 GHz RF transceiver and a powerful Cortex®-M0+ core, on which a
complete power-optimized stack for Bluetooth® Low Energy protocol runs, providing
master / slave role support
GAP: central, peripheral, observer or broadcaster roles
ATT/GATT: client and server
SM: privacy, authentication and authorization
L2CAP
Link layer: AES-128 encryption and decryption
MS45477V6
Notes:
- UFQFPN48 and VFQFPN68: VSS through exposed pad, and VSSRF pin must be connected to ground plane
- WLCSP100 and UFBGA129: VSSRF pins must be connected to ground plane
PA
BP
filter
ADC ADC
PLL
Modulator
RF1
Adjust
32 MHz
OSC_OUTOSC_IN
PA ramp
generator
AGC
control
BLE
modulator
BLE
demodulator
BLE
controller
802.15.4
MAC
802.15.4
modulator
802.15.4
demodulator
RF control
AGC
Timer and Power
control
LDO LDO LDO
VFBSMPS
Trimmed
bias
VDDRF
Max PA
level
SMPS
VLXSMPS
VDDSMPS VSSSMPS
Adjust
HSE
G
G
LNA
Wakeup
Interrupt
Wakeup
Interrupt
AHB
APB
APB
See
notes
EXT_
PA_TX
Functional overview STM32WB55xx
22/183 DS11929 Rev 7
In addition, according to Bluetooth® specification v5.0, the BLE block provides:
Multiple roles simultaneously support
Master/slave and multiple roles simultaneously
LE data packet length extension (making it possible to reach 800 kbps at application
level)
LE privacy 1.2
LE secure connections
Flexible Internet connectivity options
High data rate (2 Mbps)
The device allows the applications to meet the tight peak current requirements imposed by
the use of standard coin cell batteries. When the high efficiency embedded SMPS
step-down converter is used, the RF front end consumption (Itmax) is only 8.1 mA at the
highest output power (+6 dBm).
The power efficiency of the subsystem is optimized: while running with the radio and the
applicative cores simultaneously using the SMPS, the Cortex®-M4 core consumption
reaches 53 µA / MHz in active mode.
Ultra-low-power sleep modes and very short transition time between operating modes result
in very low average current consumption during real operating conditions, resulting in longer
battery life.
The BLE block integrates a full bandpass balun, thus reducing the need for external
components.
The link between the Cortex®-M4 application processor (CPU1) running the application, and
the BLE stack running on the dedicated Cortex®-M0+ (CPU2) is performed through a
normalized API, using a dedicated IPCC.
DS11929 Rev 7 23/183
STM32WB55xx Functional overview
54
3.6.3 802.15.4 general description
The STM32WB55xx embed a dedicated 802.15.4 hardware MAC:
Support for 802.15.4 release 2011
Advanced MAC frame filtering; hardwired firewall: Programmable filters based on
source/destination addresses, frame version, security enabled, frame type
256-byte RX FIFO; Up to 8 frames capacity, additional frame information (timing, mean
RSSI, LQI)
128-byte TX FIFO with retention
Content not lost, retransmissions possible under CPU2 control
Automatic frame acknowledgment, with programmable delay
Advanced channel access features
Full CSMA-CA support
Superframe timer
Beaconing support (require LSE)
Flexible TX control with programmable delay
Configuration registers with retention available down to Standby mode for
software/auto-restore
Autonomous sniffer, Wakeup based on timer or CPU2 request
Automatic frame transmission/reception/sleep periods, Interrupt to the CPU2 on
particular events
3.6.4 RF pin description
The RF block contains dedicated pins, listed in Table 4.
:
3.6.5 Typical RF application schematic
The schematic in Figure 3 and the external components listed in Table 4 are purely
indicative. For more details refer to the “Reference design” provided in separate documents.
Table 4. RF pin list
Name Type Description
RF1
I/O
RF Input/output, must be connected to the antenna through a low-pass matching network
OSC_OUT
32 MHz main oscillator, also used as HSE source
OSC_IN
RF_TX_
MOD_EXT_PA External PA transmit control
VDDRF VDD Dedicated supply, must be connected to VDD
VSSRF(1) VSS To be connected to GND
1. On packages with exposed pad, this pad must be connected to GND plane for correct RF operation.
Functional overview STM32WB55xx
24/183 DS11929 Rev 7
Figure 3. STM32WB55xx external components for the RF part
Note: For more details refer to AN5165 “Development of RF hardware using STM32WB
microcontrollers” available on www.st.com.
3.7 Power supply management
3.7.1 Power supply distribution
The device integrate an SMPS step-down converter to improve low power performance
when the VDD voltage is high enough. This converter has an intelligent mode that
automatically enters in bypass mode when the VDD voltage falls below a specific BORx
(x = 1, 2, 3 or 4) voltage.
By default, at Reset the SMPS is in bypass mode.
The device can be operated without the SMPS by just wiring its output to VDD. This is the
case for applications where the voltage is low, or where the power consumption is not
critical.
Table 5. Typical external components
Component Description Value
C1 Decoupling capacitance for RF 100 nF // 100 pF
X1 32 MHz crystal(1)
1. e.g. NDK reference: NX2016SA 32 MHz EXS00A-CS06654.
32 MHz
Antenna filter Antenna filter and matching network Refer to AN5165, on www.st.com
Antenna 2.4 GHz band antenna -
MS41408V3
VDD
OSC_IN
OSC_OUT
VDDRF
VSSRF
RF1
Antenna
STM32WB55xx
Cf1 Cf2
Lf1
Lf2
X1
C1
Antenna filter
(including exposed pad)
32 MHz
DS11929 Rev 7 25/183
STM32WB55xx Functional overview
54
Figure 4. Power distribution
The SMPS can also be switched on or set in bypass mode at any time by the application
software, for example when very accurate ADC measurement are needed.
3.7.2 Power supply schemes
The STM32WB55xx devices have different voltage supplies (see Figure 6) and can operate
within the following voltage ranges:
VDD = 1.71 to 3.6 V: external power supply for I/Os (VDDIO), the internal regulator and
system functions such as RF, SMPS, reset, power management and internal clocks. It
is provided externally through VDD pins. VDDRF and VDDSMPS must be always
connected to VDD pins.
VDDA = 1.62 (ADC/COMPs) to 3.6 V: external analog power supply for ADC,
comparators and voltage reference buffer. The VDDA voltage level can be independent
from the VDD voltage. When not used VDDA must be connected to VDD.
VDDUSB = 3.0 to 3.6 V: external independent power supply for USB transceivers. When
not used VDDUSB must be connected to VDD.
VLCD = 2.5 to 3.6 V: the LCD controller can be powered either externally through the
VLCD pin, or internally from an internal voltage generated by the embedded step-up
converter. This converter can generate a VLCD voltage up to 3.6 V if VDD is higher than
2.0 V.
MS41409V4
MR
LPR
RFR
SMPS
(not used)
MR
LPR
RFR
VDD
L1
C2
SMPS configuration LDO configuration
VDD
VDDSMPS
VLXSMPS
VFBSMPS
SMPS
SMPS mode or
BYPASS mode
VDDSMPS
VLXSMPS
VFBSMPS
Table 6. Power supply typical components
Component Description Value
C2 SMPS output capacitor(1)
1. e.g. GRM155R60J475KE19.
4.7 µF
L1(2)
2. An extra 10 nH inductor in series with L1 is needed to improve the receiver performance,
e.g Murata LQG15WZ10NJ02D
SMPS inductance
For 8 MHz(3)
3. e.g. Wurth 74479774222.
2.2 µH
For 4 MHz(4)
4. e.g. Murata LQM21FN100M70L.
10 µH
Functional overview STM32WB55xx
26/183 DS11929 Rev 7
During power up/ down, the following power sequence requirements must be respected:
When VDD is below 1 V the other power supplies (VDDA, VDDUSB, VLCD), must remain
below VDD + 300 mV
When VDD is above 1 V all power supplies are independent.
Figure 5. Power-up/down sequence
1. VDDX refers to any power supply among VDDA, VDDUSB and VLCD.
During the power down phase, VDD can temporarily become lower than other supplies only
if the energy provided to the MCU remains below 1 mJ. This allows the external decoupling
capacitors to be discharged with different time constants during the power down transient
phase.
Note: VDD, VDDRF and VDDSMPS must be wired together, so they follow the same voltage
sequence.
MSv47490V1
0.3
1
VBOR0
3.6
Operating modePower-on Power-down time
V
VDDX
(1)
VDD
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
DS11929 Rev 7 27/183
STM32WB55xx Functional overview
54
Figure 6. Power supply overview
1. The USB transceiver is powered by VDDUSB, and the GPIOs associated with USB are powered by VDDUSB
when USB alternate function (PA11 and PA12) is selected. When USB alternate function is not selected
the GPIOs associated with USB are powered as standard GPIOs.
MS41410V7
VBAT
IOs
Wakeup domain (VDDIO)
Analog domain
Interruptible domain (VDD12I)
Switch domain (VSW)
(CPU1, CPU2,
peripherals,
SRAM1,
SRAM2b)
Level shifter
Power switch
VBAT
ADC
VDDA
VREF+
VREF-
VSSA
VDD HSI, HSE1,
2xPLL,
LSI1, LSI2,
IWDG, RF
IOs
VSS
REF_BUF
VSS
IO
logic
VREF+
VSW
LSE, RTC,
backup
registers
IO
logic
Backup domain
SMPS
Power switch
VSS
VBKP12 SRAM2a
Power
switch
VSS
On domain (VDD12O)
Power
switch
VSS
SysConfig, AIEC,
RCC, PwrCtrl,
LPTIM, LPUSART
=
=
VUSB
IOs
USB domain (VUSB)VSS
VSS
USB
transceiver(1)
VDDUSB
LCD
VLCD
LPR
MR
RFR
VLXSMPS
VFBSMPS
VDDSMPS
RF domain
Radio
VDDRF
VSSRF
(including exposed pad)
VSS
VSSSMPS
VSS
VSS
Functional overview STM32WB55xx
28/183 DS11929 Rev 7
3.7.3 Linear voltage regulator
Three embedded linear voltage regulators supply most of the digital and RF circuitries, the
main regulator (MR), the low-power regulator (LPR) and the RF regulator (RFR).
The MR is used in the Run and Sleep modes and in the Stop 0 mode.
The LPR is used in Low-Power Run, Low-Power Sleep, Stop 1 and Stop 2 modes. It is
also used to supply the SRAM2a in Standby with retention.
The RFR is used to supply the RF analog part, its activity is automatically managed by
the RF subsystem.
All the regulators are in power-down in Standby and Shutdown modes: the regulator output
is in high impedance, and the kernel circuitry is powered down, inducing zero consumption.
The ultralow-power STM32WB55xx supports dynamic voltage scaling to optimize its power
consumption in run mode. The voltage from the main regulator that supplies the logic
(VCORE) can be adjusted according to the system’s maximum operating frequency.
There are two voltage and frequency ranges:
Range 1, with the CPU running up to 64 MHz
Range 2, with a maximum CPU frequency of 16 MHz (note that HSE can be active in
this mode). All peripheral clocks are also limited to 16 MHz.
VCORE can also be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode. In this case the CPU is running at up to
2 MHz, and peripherals with independent clock can be clocked by HSI16 (in this mode the
RF subsystem is not available).
3.7.4 Power supply supervisor
The device has an integrated ultra-low-power brown-out reset (BOR) active in all modes
except Shutdown and ensuring proper operation after power-on and during power down.
The device remains in reset mode when the monitored supply voltage VDD is below a
specified threshold, without the need for an external reset circuit.
The lowest BOR level is 1.71 V at power on, and other higher thresholds can be selected
through option bytes.The device features an embedded programmable voltage detector
(PVD) that monitors the VDD power supply and compares it with the VPVD threshold. An
interrupt can be generated when VDD drops below the VPVD threshold and/or when VDD is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
In addition, the devices embed a peripheral voltage monitor (PVM) that compares the
independent supply voltage VDDA with a fixed threshold to ensure that the peripheral is in its
functional supply range.
Any BOR level can also be used to automatically switch the SMPS step-down converter in
bypass mode when the VDD voltage drops below a given voltage level. The mode of
operation is selectable by register bit, the BOR level is selectable by option byte.
3.7.5 Low-power modes
The ultra-low-power STM32WB55xx support several low-power modes to achieve the best
compromise between low-power consumption, short startup time, available peripherals and
available wakeup sources.
DS11929 Rev 7 29/183
STM32WB55xx Functional overview
54
By default, the microcontroller is in Run mode, Range 1, after a system or a power on
Reset. It is up to the user to select one of the low-power modes described below:
Sleep
In Sleep mode, only the CPU1 is stopped. All peripherals, including the RF subsystem,
continue to operate and can wake up the CPU when an interrupt/event occurs.
Low-power run
This mode is achieved with VCORE supplied by the low-power regulator to minimize
the regulator operating current. The code can be executed from SRAM or from the
Flash memory, and the CPU1 frequency is limited to 2 MHz. The peripherals with
independent clock can be clocked by HSI16. The RF subsystem is not available in this
mode and must be OFF.
Low-power sleep
This mode is entered from the low-power run mode. Only the CPU1 clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the
low-power run mode. The RF subsystem is not available in this mode and must be
OFF.
Stop 0, Stop 1 and Stop 2
Stop modes achieve the lowest power consumption while retaining the content of all
the SRAM and registers. The LSE (or LSI) is still running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wakeup capability can enable the HSI16 RC during Stop modes
to detect their wakeup condition.
Three modes are available: Stop 0, Stop 1 and Stop 2. In Stop 2 mode, most of the
VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
In these modes the RF subsystem can wait for incoming events in all Stop modes.
The system clock when exiting from Stop 0, Stop1 or Stop2 modes can be either MSI
up to 48 MHz or HSI16 if the RF subsystem is disabled. If the RF subsystem or the
SMPS is used the exits must be set to HSI16 only. If used, the SMPS is restarted
automatically.
Standby
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off.
The RTC can remain active (Standby mode with RTC).
The brown-out reset (BOR) always remains active in Standby mode.
The state of each I/O during standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1, SRAM2b and register contents are lost except
for registers in the Backup domain and Standby circuitry. Optionally, SRAM2a can be
retained in Standby mode, supplied by the low-power regulator (Standby with 32 KB
SRAM2a retention mode).
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE, or
from the RF system wakeup).
Functional overview STM32WB55xx
30/183 DS11929 Rev 7
The system clock after wakeup is 16 MHz, derived from the HSI16. If used, the SMPS
is restarted automatically.
In this mode the RF can be used.
Shutdown
The Shutdown mode allows to achieve the ultimate lowest power consumption. The
internal regulator is switched off so that the VCORE domain is powered off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2a, SRAM2b and register contents are lost except for registers in the
Backup domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is 4 MHz, derived from the MSI.
In this mode the RF is no longer operational.
When the RF subsystem is active, it will change the power state according to its needs
(Run, Stop, Standby). This operation is transparent for the CPU1 host application and
managed by a dedicated HW state machine. At any given time the effective power state
reached is the higher one needed by both the CPU1 and RF sub-system.
Table 7 summarizes the peripheral features over all available modes. Wakeup capability is
detailed in gray cells.
Table 7. Features over all modes(1)
Peripheral
Run Range 1
Run Range 2
Sleep
Low-power run
Low-power sleep
Stop0/Stop1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
CPU1 Y - Y - - --------
CPU2 Y - Y - - --------
Radio system
(BLE, 802.15.4) YY
(2) Y- - Y YYYY
(3) Y(3)
Flash memory (up to 1 MB) Y (4) YO
(5) O(5) R-R-R-R-R
SRAM1 (up to 192 KB) Y Y(6) YY
(6) R-R------
SRAM2a (32 KB) Y Y(6) YY
(6) R-R-R
(7) ----
SRAM2b (32 KB) Y Y(6) YY
(6) R-R------
Quad-SPI O O O O - --------
Backup registers Y Y Y Y R -R-R-R-R
Brown-out reset (BOR) Y Y Y Y Y YYYYY- --
DS11929 Rev 7 31/183
STM32WB55xx Functional overview
54
Programmable voltage
detector (PVD) O OOO O OOO-----
Peripheral voltage monitor
PVMx (x=1, 3) O OOO O OOO-----
SMPS O OOOO
(8) --------
DMAx (x = 1, 2) O OOO - --------
High speed internal
(HSI16) O OOOO
(9) -O
(9) ------
Oscillator HSI48 O O - - - --------
High speed external
(HSE)(10) O OOO - --------
Low speed internal
(LSI1 or LSI2) O OOO O -O-O----
Low speed external (LSE) O O O O O -O-O-O-O
Multi-speed internal
(MSI)(11) 48 24 O 48 O - --------
PLLx VCO maximum
frequency 344 128 O - - - --------
Clock security system
(CSS) O OOO OO(12) O O(12) -----
Clock security system on
LSE O OOO O OOOOO- --
RTC / Auto wakeup O O O O O OOOOOOOO
Number of RTC
tamper pins 33333
O3O3O3O3
LCD O OOO O OOO-----
USB FS O - O - - - O-------
USART1 O O O O O(13) O(13) -------
Low-power UART
(LPUART1) O OOOO
(13) O(13) O(13) O(13) -----
I2C1 O OOOO
(14) O(14) -------
I2C3 O OOOO
(14) O(14) O(14) O(14) -----
SPIx (x=1, 2) O O O O - --------
SAI1 O O O O - --------
Table 7. Features over all modes(1) (continued)
Peripheral
Run Range 1
Run Range 2
Sleep
Low-power run
Low-power sleep
Stop0/Stop1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
Functional overview STM32WB55xx
32/183 DS11929 Rev 7
ADC1 O O O O - --------
VREFBUF O O O O O --------
COMPx (x=1, 2) O OOO O OOO-----
Temperature sensor O O O O - --------
Timers TIMx
(x=1, 2, 16, 17) O OOO - --------
Low-power Timer 1
(LPTIM1) O OOO O OOO-----
Low-power Timer 2
(LPTIM2) O OOO O O-------
Independent watchdog
(IWDG) O OOO O OOOOO- --
Window watchdog
(WWDG) O OOO - --------
SysTick timer O O O O - --------
Touch sensing controller
(TSC) O OOO - --------
True random number
generator (RNG) O-O-- - --------
AES2 hardware accelerator O O O O - --------
CRC calculation unit O O O O - --------
IPCC O - O - - --------
HSEM O - O - - --------
PKA O O O O - --------
GPIOs O OOO O OOO(15) 5
pins
(16) 5
pins -
1. Legend: Y = Yes (Enabled), O = Optional (Disabled by default, can be enabled by software), R = Data retained,
- = Not available.
2. Bluetooth® Low Energy not possible in this mode.
3. Standby with SRAM2a retention mode only.
4. Flash memory programming only possible in Range 1 voltage, not in Range 2 and not in Low Power mode.
5. The Flash memory can be configured in Power-down mode. By default, it is not in Power-down mode.
6. The SRAM clock can be gated on or off.
7. SRAM2a content is preserved when the bit RRS is set in PWR_CR3 register.
8. Stop 0 only. SMPS is automatically switched to Bypass or Open mode during Low power operation.
Table 7. Features over all modes(1) (continued)
Peripheral
Run Range 1
Run Range 2
Sleep
Low-power run
Low-power sleep
Stop0/Stop1 Stop 2 Standby Shutdown
VBAT
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
-
Wakeup capability
DS11929 Rev 7 33/183
STM32WB55xx Functional overview
54
9. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
10. The HSE can be used by the RF subsystem according with the need to perform RF operation (Tx or Rx).
11. MSI maximum frequency.
12. In case RF will be used and HSE will fail.
13. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
14. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
15. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
16. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
Functional overview STM32WB55xx
34/183 DS11929 Rev 7
Table 8. STM32WB55xx modes overview
Mode Regulator CPU1 Flash SRAM Clocks DMA and Peripherals Wakeup source Consumption(1) Wakeup time
Run
Range 1
Yes ON(2)(3) ON Any
All
N/A
107 µA/MHz
N/A
Range 2 All except RNG and USB-FS 100 µA/MHz
LPRun LPR Yes ON(2) ON
Any
except
PLL
All except RF, RNG and USB-FS N/A 103 µA/MHz 15.33 µs
Sleep
Range 1
No ON(2) ON(4) Any
All Any interrupt
or event
41 µA/MHz
9 cycles
Range 2 All except RNG and USB-FS 46 µA/MHz
LPSleep LPR No ON(2) ON(4)
Any
except
PLL
All except RF, RNG and USB-FS Any interrupt
or event 45 µA/MHz 9 cycles
Stop 0
Range 1
No OFF ON
LSE,
LSI,
HSE(5),
HSI16(6)
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1(7)
LPUART1(7)
I2Cx (x=1, 3)(8)
LPTIMx (x=1, 2), SMPS
All other peripherals are frozen.
Reset pin, all I/Os,
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1
LPUART1
I2Cx (x=1, 3)
LPTIMx (x=1, 2)
USB
100 µA 1.7 µs
Range 2
Stop 1 LPR No OFF ON
LSE,
LSI,
HSE(5),
HSI16(6)
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1(7)
LPUART1(7)
I2Cx (x=1, 3)(8)
LPTIMx (x=1, 2)
All other peripherals are frozen.
Reset pin, all I/Os
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
USART1
LPUART1
I2Cx (x=1, 3)
LPTIMx (x=1, 2)
USB
9.2 µA w/o RTC
9.6 µA w RTC 4.7 µs
STM32WB55xx Functional overview
DS11929 Rev 7 35/183
Stop 2 LPR No OFF ON LSE,
LSI
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
LPUART1(7)
I2C3(8)
LPTIM1
All other peripherals are frozen.
Reset pin, all I/Os
RF, BOR, PVD, PVM
RTC, LCD, IWDG
COMPx (x=1, 2)
LPUART1
I2C3
LPTIM1
1.85 µA w/o RTC
2.1 µA w RTC 5.71 µs
Standby
LPR
No OFF
SRAM2a
ON(9)
LSE,
LSI
RF, BOR, RTC, IWDG
All other peripherals are
powered off.
I/O configuration can be floating,
pull-up or pull-down
RF, Reset pin
5 I/Os (WKUPx)(10)
BOR, RTC, IWDG
0.32 µA w/o RTC
0.60 µA w RTC
51 µs
OFF OFF 0.11 µA w/o RTC
0.390 µA w RTC
Shutdown OFF No OFF OFF LSE
RTC
All other peripherals are
powered off.
I/O configuration can be floating,
pull-up or pull-down(11)
5 I/Os (WKUPx)(10),
RTC
0.028 µA w/o RTC
0.315 µA w/ RTC -
1. Typical current at VDD = 1.8 V, 25 °C. for STOPx, SHUTDOWN and Standby, else VDD = 3.3 V, 25 °C.
2. The Flash memory controller can be placed in power-down mode if the RF subsystem is not in use and all the program is run from the SRAM.
3. Flash memory programming is only possible in Range 2 voltage.
4. The SRAM1 and SRAM2 clocks can be gated off independently.
5. HSE (32 MHz) automatically used when RF activity is needed by the RF subsystem.
6. HSI16 (16 MHz) automatically used by some peripherals.
7. U(S)ART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, Address match or Received frame event.
8. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
9. SRAM1 and SRAM2b are OFF.
10. I/Os with wakeup from Standby/Shutdown capability: PA0, PC13, PC12, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating but the configuration is lost immediately when exiting the Shutdown mode.
Table 8. STM32WB55xx modes overview (continued)
Mode Regulator CPU1 Flash SRAM Clocks DMA and Peripherals Wakeup source Consumption(1) Wakeup time
Functional overview STM32WB55xx
36/183 DS11929 Rev 7
3.7.6 Reset mode
To improve the consumption under reset, the I/Os state under and after reset is “analog
state” (the I/O Schmitt trigger is disabled). In addition, the internal reset pull-up is
deactivated when the reset source is internal.
3.8 VBAT operation
The VBAT pin allows to power the device VBAT domain (RTC, LSE and Backup registers)
from an external battery, an external supercapacitor, or from VDD when no external battery
nor an external supercapacitor are present. Three anti-tamper detection pins are available
in VBAT mode.
VBAT operation is automatically activated when VDD is not present.
An internal VBAT battery charging circuit is embedded and can be activated when VDD is
present.
Note: When the microcontroller is supplied only from VBAT, external interrupts and RTC
alarm/events do not exit it from VBAT operation.
3.9 Interconnect matrix
Several peripherals have direct connections between them. This allows autonomous
communication between peripherals, saving CPU1 resources and, consequently, reducing
power supply consumption. In addition, these hardware connections result in fast and
predictable latency.
Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power
run and Sleep, Stop 0, Stop 1 and Stop 2 modes.
Table 9. STM32WB55xx CPU1 peripherals interconnect matrix
Source Destination Action
Run
Sleep
Low-power run
Low-power
Stop 0 / Stop 1
Stop 2
TIMx
TIMx Timers synchronization or chaining Y Y Y Y - -
ADC1 Conversion triggers Y Y Y Y - -
DMA Memory to memory transfer trigger Y Y Y Y - -
COMPx Comparator output blanking Y Y Y Y - -
COMPx
TIM1
TIM2
Timer input channel, trigger, break
from analog signals comparison YYYY - -
LPTIMERx Low-power timer triggered by analog
signals comparison YYYYYY
(1)
ADCx TIM1 Timer triggered by analog watchdog Y Y Y Y - -
DS11929 Rev 7 37/183
STM32WB55xx Functional overview
54
RTC
TIM16 Timer input channel from RTC events Y Y Y Y - -
LPTIMERx Low-power timer triggered by RTC
alarms or tampers YYYYYY
(1)
All clocks sources
(internal and external)
TIM2
TIM16, 17
Clock source used as input channel
for RC measurement and trimming YYYY - -
USB TIM2 Timer triggered by USB SOF Y Y - - - -
CSS
CPU (hard fault)
SRAM (parity error)
Flash memory (ECC error)
COMPx
PVD
TIM1
TIM16,17 Timer break Y Y Y Y - -
GPIO
TIMx External trigger Y Y Y Y - -
LPTIMERxExternal trigger YYYYYY
(1)
ADC1 Conversion external trigger Y Y Y Y - -
1. LPTIM1 only.
Table 9. STM32WB55xx CPU1 peripherals interconnect matrix (continued)
Source Destination Action
Run
Sleep
Low-power run
Low-power
Stop 0 / Stop 1
Stop 2
Functional overview STM32WB55xx
38/183 DS11929 Rev 7
3.10 Clocks and startup
The STM32WB55xx devices integrate many sources of clocks:
LSE: 32.768KHz external oscillator, for accurate RTC and calibration with other
embedded RC oscillators
LSI1: 32 KHz on-chip low-consumption RC oscillator
LSI2: almost 32 KHz on-chip high-stability RC oscillator, used by the RF subsystem
HSE: high quality 32 MHz external oscillator with trimming, needed by the RF
subsystem
HSI16: 16 MHz high accuracy on-chip RC oscillator
MSI: 100 KHz to 48 MHz multiple speed on-chip low power oscillator, can be trimmed
using the LSE signal
HSI48: 48 MHz on-chip RC oscillator, for USB crystal-less purpose
The clock controller (see Figure 7) distributes the clocks coming from the different
oscillators to the core and the peripherals including the RF subsystem. It also manages
clock gating for low power modes and ensures clock robustness. It features:
Clock prescaler: to get the best trade-off between speed and current consumption,
the clock frequency to the CPU and peripherals can be adjusted by a programmable
prescaler
Safe clock switching: clock sources can be changed safely on the fly in run mode
through a configuration register.
Clock management: to reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
System clock source: four different clock sources can be used to drive the master
clock SYSCLK:
16 MHz high-speed internal RC oscillator (HSI16), trimmable by software, that can
supply a PLL
Multispeed internal RC oscillator (MSI), trimmable by software, able to generate
12 frequencies from 100 kHz to 48 MHz. When a 32.768 kHz clock source is
available in the system (LSE), the MSI frequency can be automatically trimmed by
hardware to reach better than ±0.25% accuracy. The MSI can supply a PLL.
System PLL that can be fed by HSE, HSI16 or MSI, with a maximum frequency of
64 MHz.
Auxiliary clock source: two ultralow-power clock sources that can be used to drive
the LCD controller and the real-time clock:
32.768 kHz low-speed external crystal (LSE), supporting four drive capability
modes. The LSE can also be configured in bypass mode for an external clock.
32 kHz low-speed internal RC (LSI), also used to drive the independent watchdog.
The LSI clock accuracy is ±5%. The LSI source can be either the LSI1 or the LSI2
on-chip oscillator.
Peripheral clock sources: Several peripherals (RNG, SAI, USARTs, I2Cs, LPTimers,
ADC) have their own independent clock whatever the system clock. Two PLLs, each
DS11929 Rev 7 39/183
STM32WB55xx Functional overview
54
having three independent outputs for the highest flexibility, can generate independent
clocks for the ADC, the RNG and the SAI.
Startup clock: after reset, the microcontroller restarts by default with an internal 4 MHz
clock (MSI). The prescaler ratio and clock source can be changed by the application
program as soon as the code execution starts.
Clock security system (CSS): this feature can be enabled by software. If an HSE
clock failure occurs, the master clock is automatically switched to HSI16 and a software
interrupt is generated if enabled. LSE failure can also be detected and an interrupt
generated.
Clock-out capability:
MCO: microcontroller clock output: it outputs one of the internal clocks for
external use by the application. Low frequency clocks (LSIx, LSE) are available
down to Stop 1 low power state.
LSCO: low speed clock output: it outputs LSI or LSE in all low-power modes
down to Standby.
Several prescalers allow the user to configure the AHB frequencies, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and
the APB domains is 64 MHz.
Functional overview STM32WB55xx
40/183 DS11929 Rev 7
Figure 7. Clock tree
3.11 General-purpose inputs/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as
input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the
GPIO pins are shared with digital or analog alternate functions. Fast I/O toggling can be
achieved thanks to their mapping on the AHB2 bus.
The I/Os alternate function configuration can be locked, if needed, following a specific
sequence in order to avoid spurious writing to the I/Os registers.
MS45402V6
SMPS clock
source control
LSI1 RCC 32 kHz
LSI2 RCC 32 kHz
LSE OSC
32.768 kHz
LSCO
LSI to IWDG
HSE OSC
32 MHz
HSE CSS
OSC_IN
OSC_OUT
HSI16 RC
16 MHz
MSI RC
100 kHz - 48 MHz
MCO /1 - 16
/32
HSI48 RC
48 MHz
LSE CSS
/32
PLL
/P
/R
/Q
PLLSAI1
/P
/R
/Q
/M
SYSCLK
MSI
MSI
HSI16
HSI16
HSE
HSE
PLLRCLK
PLLRCLK
RC48
LSE
LSI2
LSI1
SYS clock
source control
SYSCLK
MSI
HSI16
HCLK1
HCLK2
HCLK4
APB1
PPRE1
/1,2,4,8,16
to CPU1, AHB1, AHB2, AHB3, and SRAM1
to CPU1 FCLK
/8 to CPU1 system timer
APB2
PPRE2
/1,2,4,8,16
PCLK1
PCLK2
to CPU2
to CPU2 FCLK
/8 to CPU2 system timer
to AHB4, Flash memory, SRAM2
to APB1 TIMx
to APB2 TIMx
to USART1
to LPTIMx
to LPUART1
to SAI1
to ADC
to RTC and LCD
x1 or
x2
x1 or
x2
to I2Cx
PCLKn
SYSCLK
HSI16
HSI16
PCLKn
LSI
LSE
HSI16
SAI1_EXTCLK
PLLSAI1PCLK
PLLPCLK
SYSCLK
PCLKn
LSE
to 802.15.4 wakeup
HCLK5
HSI16
HSE
to AHB5
to APB3
to APB2
to APB1
to RF
PLLSAI1RCLK
SYSCLK
to USB
HSI48
MSI
to RNG
PLLQCLK
PLLRCLK
PLLSAI1QCLK
OSC32_IN
OSC32_OUT
LSI
LSE
LSE
MSI
HSI16
HSE
SMPSDIV
/1,2,3,4,6,8,12
to
SMPS
/2xN
xN
to BLE wakeup
CPU1
HPRE
/1,2,...,512
AHB4
SHDHPRE
/1,2,...,512
CPU2
C2HPRE
1,2,...,512
HSI16
HSEPRE/1,2
/3
LSI
LSE
/2
DS11929 Rev 7 41/183
STM32WB55xx Functional overview
54
3.12 Direct memory access controller (DMA)
The device embeds two DMAs. Refer to Table 10 for the features implementation.
Direct memory access (DMA) is used to provide high-speed data transfer between
peripherals and memory as well as between memories. Data can be quickly moved by DMA
without any CPU action. This keeps CPU resources free for other operations.
The two DMA controllers have fourteen channels in total, a full cross matrix allows any
peripheral to be mapped on any of the available DMA channels. Each has an arbiter for
handling the priority between DMA requests.
The DMA supports:
fourteen independently configurable channels (requests)
A full cross matrix between peripherals and all the DMA channels exist. There is also a
HW trigger possibility through the DMAMUX.
Priorities between requests from channels of one DMA are software programmable
(four levels consisting in very high, high, medium and low) or hardware in case of
equality (request 1 has priority over request 2, etc.).
Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.
Support for circular buffer management.
Three event flags (DMA half transfer, DMA transfer complete and DMA transfer error)
logically OR-ed together in a single interrupt request for each channel.
Memory-to-memory transfer.
Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers.
Access to Flash memory, SRAM, APB and AHB peripherals as source and destination.
Programmable number of data to be transferred: up to 65536.
A DMAMUX block makes it possible to route any peripheral source to any DMA channel.
3.13 Interrupts and events
3.13.1 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 63 maskable interrupt channels plus the 16 interrupt lines of the
Cortex®-M4 with FPU.
Table 10. DMA implementation
DMA features DMA1 DMA2
Number of regular channels 7 7
Functional overview STM32WB55xx
42/183 DS11929 Rev 7
The NVIC benefits are the following:
Closely coupled NVIC gives low latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving higher priority interrupts
Support for tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
The NVIC hardware block provides flexible interrupt management features with minimal
interrupt latency.
3.13.2 Extended interrupts and events controller (EXTI)
The EXTI manages wakeup through configurable and direct event inputs. It provides
wake-up requests to the Power control, and generates interrupt requests to the CPUx NVIC
and events to the CPUx event input.
Configurable events/interrupts come from peripherals able to generate a pulse, and make it
possible to select the Event/Interrupt trigger edge and/or a SW trigger.
Direct events/interrupts are coming from peripherals having their own clearing mechanism.
3.14 Analog to digital converter (ADC)
The device embeds a successive approximation analog-to-digital converter with the
following features:
12-bit native resolution, with built-in calibration
Up to 16-bit resolution with 64 decimation ratio
4.26 Msps maximum conversion rate with full resolution
Down to 39 ns sampling time
Increased conversion rate for lower resolution (up to 7.11 Msps for 6-bit
resolution)
Up to sixteen external channels and three internal channels: internal reference
voltages, temperature sensor
Single-ended and differential mode inputs
Low-power design
Capable of low-current operation at low conversion rate (consumption decreases
linearly with speed)
Dual clock domain architecture: ADC speed independent from CPU frequency
Highly versatile digital interface
Single-shot or continuous/discontinuous sequencer-based scan mode: two groups
of analog signals conversions can be programmed to differentiate background and
high-priority real-time conversions
The ADC supports multiple trigger inputs for synchronization with on-chip timers
and external signals
Results stored into three data register or in SRAM with DMA controller support
DS11929 Rev 7 43/183
STM32WB55xx Functional overview
54
Data pre-processing: left/right alignment and per channel offset compensation
Built-in oversampling unit for enhanced SNR
Channel-wise programmable sampling time
Three analog watchdog for automatic voltage monitoring, generating interrupts
and trigger for selected timers
Hardware assistant to prepare the context of the injected channels to allow fast
context switching
3.14.1 Temperature sensor
The temperature sensor (TS) generates a voltage VTS that varies linearly with temperature.
The temperature sensor is internally connected to the ADC1_IN17 input channel, which is
used to convert the sensor output voltage into a digital value.
To improve the accuracy of the temperature sensor measurement, each device is
individually factory-calibrated by ST. The temperature sensor factory calibration data are
stored in the system memory area, accessible in read-only mode.
3.14.2 Internal voltage reference (VREFINT)
The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for
the ADC and comparators. VREFINT is internally connected to the ADC1_IN0 input
channel. The precise voltage of VREFINT is individually measured for each part by ST
during production test and stored in the system memory area. It is accessible in read-only
mode.
Table 11. Temperature sensor calibration values
Calibration value name Description Memory address
TS_CAL1
TS ADC raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75A8 - 0x1FFF 75A9
TS_CAL2
TS ADC raw data acquired at a
temperature of 130 °C (± 5 °C),
VDDA = VREF+ = 3.0 V (± 10 mV)
0x1FFF 75CA - 0x1FFF 75CB
Table 12. Internal voltage reference calibration values
Calibration value name Description Memory address
VREFINT
Raw data acquired at a
temperature of 30 °C (± 5 °C),
VDDA = VREF+ = 3.6 V (± 10 mV)
0x1FFF 75AA - 0x1FFF 75AB
Functional overview STM32WB55xx
44/183 DS11929 Rev 7
3.15 Voltage reference buffer (VREFBUF)
The STM32WB55xx devices embed an voltage reference buffer that can be used as voltage
reference for the ADC and also as voltage reference for external components through the
VREF+ pin. The internal voltage reference buffer supports two voltages:
2.048 V
2.5 V.
An external voltage reference can be provided through the VREF+ pin when the internal
voltage reference buffer is off. The VREF+ pin is double-bonded with VDDA on UFQFPN48
package, hence the internal voltage reference buffer is not available on a dedicated pin, but
user can still use the VDDA value.
3.16 Comparators (COMP)
The STM32WB55xx devices embed two rail-to-rail comparators with programmable
reference voltage (internal or external), hysteresis and speed (low speed for low-power) and
with selectable output polarity.
The reference voltage can be one of the following:
External I/O
Internal reference voltage or submultiple (1/4, 1/2, 3/4).
All comparators can wake up from Stop mode, generate interrupts and breaks for the timers
and can be also combined into a window comparator.
3.17 Touch sensing controller (TSC)
The touch sensing controller provides a simple solution for adding capacitive sensing
functionality to any application. Capacitive sensing technology is able to detect finger
presence near an electrode which is protected from direct touch by a dielectric such as
glass or plastic. The capacitive variation introduced by the finger (or any conductive object)
is measured using a proven implementation based on a surface charge transfer acquisition
principle.
The touch sensing controller is fully supported by the STMTouch touch sensing firmware
library (free to use) and enables reliable touch sensing functionality in the end application.
DS11929 Rev 7 45/183
STM32WB55xx Functional overview
54
The main features of the touch sensing controller are the following:
Proven and robust surface charge transfer acquisition principle
Supports up to 18 capacitive sensing channels
Up to six capacitive sensing channels can be acquired in parallel offering a very good
response time
Spread spectrum feature to improve system robustness in noisy environments
Full hardware management of the charge transfer acquisition sequence
Programmable charge transfer frequency
Programmable sampling capacitor I/O pin
Programmable channel I/O pin
Programmable max count value to avoid long acquisition when a channel is faulty
Dedicated end of acquisition and max count error flags with interrupt capability
One sampling capacitor for up to three capacitive sensing channels to reduce the
system components
Compatible with proximity, touchkey, linear and rotary touch sensor implementation
Designed to operate with STMTouch touch sensing firmware library
Note: The number of capacitive sensing channels is dependent on the size of the packages and
subject to I/O availability.
Functional overview STM32WB55xx
46/183 DS11929 Rev 7
3.18 Liquid crystal display controller (LCD)
All device embed an LCD controller with the following characteristics:
Highly flexible frame rate control.
Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.
Supports Static, 1/2, 1/3 and 1/4 bias.
Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.
LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)
Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.
No need for external analog components:
A step-up converter is embedded to generate an internal VLCD voltage higher
than VDD (up to 3.6 V if VDD > 2.0 V)
Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption
A resistive network is embedded to generate intermediate VLCD voltages
The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel
Integrated voltage output buffers for higher LCD driving capability.
The contrast can be adjusted using two different methods:
When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax
Programmable dead time (up to eight phase periods) between frames.
Full support of low-power modes: the LCD controller can be displayed in Sleep,
Low-power run, Low-power sleep and Stop modes, or can be fully disabled to reduce
power consumption.
Built in phase inversion for reduced power consumption and EMI (electromagnetic
interference).
Start of frame interrupt to synchronize the software when updating the LCD data RAM.
Blink capability:
1, 2, 3, 4, 8 or all pixels can be programmed to blink at a configurable frequency
Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.
Used LCD segment and common pins should be configured as GPIO alternate functions
and unused segment and common pins can be used for general purpose I/O or for another
peripheral alternate function.
Note: When the LCD relies on the internal step-up converter, the VLCD pin should be connected
to VSS with a capacitor. Its typical value is 1 μF.
3.19 True random number generator (RNG)
The devices embed a true RNG that delivers 32-bit random numbers generated by an
integrated analog circuit.
DS11929 Rev 7 47/183
STM32WB55xx Functional overview
54
3.20 Timers and watchdogs
The STM32WB55xx include one advanced 16-bit timer, one general-purpose 32-bit timer,
two 16-bit basic timers, two low-power timers, two watchdog timers and a SysTick timer.
Table 13 compares the features of the advanced control, general purpose and basic timers.
3.20.1 Advanced-control timer (TIM1)
The advanced-control timer can be seen as a three-phase PWM multiplexed on six
channels. They have complementary PWM outputs with programmable inserted
dead-times. They can also be seen as complete general-purpose timers. The four
independent channels can be used for:
Input capture
Output compare
PWM generation (edge or center-aligned modes) with full modulation capability (0 to
100%)
One-pulse mode output
In debug mode, the advanced-control timer counter can be frozen and the PWM outputs
disabled to turn off any power switches driven by these outputs.
Many features are shared with those of the general-purpose TIMx timers (described in
Section 3.20.2) using the same architecture, so the advanced-control timers can work
together with the TIMx timers via the Timer Link feature for synchronization or event
chaining.
3.20.2 General-purpose timers (TIM2, TIM16, TIM17)
There are up to three synchronizable general-purpose timers embedded in the
STM32WB55xx (see Table 13 for differences). Each general-purpose timer can be used to
generate PWM outputs, or act as a simple time base.
TIM2
Full-featured general-purpose timer
Table 13. Timer features
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complementary
outputs
Advanced
control TIM1 16-bits Up, down,
Up/down
Any integer
between 1
and 65536
Yes
43
General
purpose TIM2 32-bits Up, down,
Up/down 4No
General
purpose TIM16 16-bits Up 2 1
General
purpose TIM17 16-bits Up 2 1
Low power LPTIM1
LPTIM2 16-bits Up 1 1
Functional overview STM32WB55xx
48/183 DS11929 Rev 7
Features four independent channels for input capture/output compare, PWM or
one-pulse mode output. Can work together, or with the other general-purpose
timers via the Timer Link feature for synchronization or event chaining.
The counter can be frozen in debug mode.
Independent DMA request generation, support of quadrature encoders.
TIM16 and TIM17
General-purpose timers with mid-range features:
16-bit auto-reload upcounters and 16-bit prescalers.
1 channel and 1 complementary channel.
All channels can be used for input capture/output compare, PWM or one-pulse
mode output.
The timers can work together via the Timer Link feature for synchronization or
event chaining. The timers have independent DMA request generation.
The counters can be frozen in debug mode.
3.20.3 Low-power timer (LPTIM1 and LPTIM2)
The devices embed two low-power timers, having an independent clock running in Stop
mode if they are clocked by LSE, LSIx or by an external clock. They are able to wakeup the
system from Stop mode.
LPTIM1 is active in Stop 0, Stop 1 and Stop 2 modes.
LPTIM2 is active in Stop 0 and Stop 1 modes.
The low-power timers support the following features:
16-bit up counter with 16-bit autoreload register
16-bit compare register
Configurable output: pulse, PWM
Continuous/ one shot mode
Selectable software/hardware input trigger
Selectable clock source
Internal clock sources: LSE, either LSI1 or LSI2, HSI16 or APB clock
External clock source over LPTIM input (working even with no internal clock
source running, used by pulse counter application)
Programmable digital glitch filter
Encoder mode (LPTIM1 only)
3.20.4 Independent watchdog (IWDG)
The independent watchdog is based on a 12-bit downcounter and an 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC (LSI) and as it operates independently
from the main clock, it can operate in Stop and Standby modes. It can be used either as a
watchdog to reset the device when a problem occurs, or as a free running timer for
application timeout management. It is hardware or software configurable through the option
bytes. The counter can be frozen in debug mode.
DS11929 Rev 7 49/183
STM32WB55xx Functional overview
54
3.20.5 System window watchdog (WWDG)
The window watchdog is based on a 7-bit downcounter that can be set as free running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
3.20.6 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
down counter. It features:
a 24-bit down counter
autoreload capability
a maskable system interrupt generation when the counter reaches 0
a programmable clock source.
3.21 Real-time clock (RTC) and backup registers
The RTC is an independent BCD timer/counter, supporting the following features:
Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date,
month, year, in BCD (binary-coded decimal) format.
Automatic correction for 28, 29 (leap year), 30, and 31 days of the month.
Two programmable alarms.
On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to
synchronize it with a master clock.
Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.
Digital calibration circuit with 0.95 ppm resolution, to compensate for quartz crystal
inaccuracy.
Three anti-tamper detection pins with programmable filter.
Timestamp feature, which can be used to save the calendar content. This function can
be triggered by an event on the timestamp pin, or by a tamper event, or by a switch to
VBAT mode.
17-bit auto-reload wakeup timer (WUT) for periodic events with programmable
resolution and period.
The RTC and the 20 backup registers are supplied through a switch that takes power either
from the VDD supply (when present) or from the VBAT pin.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. They are not reset by a system or power reset, or when the
device wakes up from Standby or Shutdown mode.
The RTC clock sources can be:
a 32.768 kHz external crystal (LSE)
an external resonator or oscillator (LSE)
one of the internal low power RC oscillators (LSI1 or LSI2, with typical frequency of
32 kHz)
the high-speed external clock (HSE) divided by 32.
Functional overview STM32WB55xx
50/183 DS11929 Rev 7
The RTC is functional in VBAT mode and in all low-power modes when it is clocked by the
LSE. When clocked by one of the LSIs, the RTC is not functional in VBAT mode, but is
functional in all low-power modes except Shutdown mode.
All RTC events (Alarm, WakeUp Timer, Timestamp or Tamper) can generate an interrupt
and wakeup the device from the low-power modes.
3.22 Inter-integrated circuit interface (I2C)
The device embeds two I2Cs. Refer to Table 14 for the features implementation.
The I2C bus interface handles communications between the microcontroller and the serial
I2C bus. It controls all I2C bus-specific sequencing, protocol, arbitration and timing.
The I2C peripheral supports:
I2C-bus specification and user manual rev. 5 compatibility:
Slave and master modes, multimaster capability
Standard-mode (Sm), with a bitrate up to 100 kbit/s
Fast-mode (Fm), with a bitrate up to 400 kbit/s
Fast-mode Plus (Fm+), with a bitrate up to 1 Mbit/s and 20 mA output drive I/Os
7-bit and 10-bit addressing mode, multiple 7-bit slave addresses
Programmable setup and hold times
Optional clock stretching
System Management Bus (SMBus) specification rev 2.0 compatibility:
Hardware PEC (packet error checking) generation and verification with ACK
control
Address resolution protocol (ARP) support
SMBus alert
Power System Management Protocol (PMBus) specification rev 1.1 compatibility
Independent clock: a choice of independent clock sources allowing the I2C
communication speed to be independent from the PCLK reprogramming. Refer to
Figure 7: Clock tree.
Wakeup from Stop mode on address match
Programmable analog and digital noise filters
1-byte buffer with DMA capability
Table 14. I2C implementation
I2C features(1) I2C1 I2C3
Standard-mode (up to 100 kbit/s) X X
Fast-mode (up to 400 kbit/s) X X
Fast-mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X
Programmable analog and digital noise filters X X
SMBus/PMBus hardware support X X
DS11929 Rev 7 51/183
STM32WB55xx Functional overview
54
3.23 Universal synchronous/asynchronous receiver transmitter
(USART)
The STM32WB55xx devices feature one universal synchronous receiver transmitter.
This interface provides asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and has
LIN Master/Slave capability. It provides hardware management of the CTS and RTS signals,
and RS485 driver enable.
The USART is able to communicate at speeds of up to 4 Mbit/s, and also provides Smart
Card mode (ISO 7816 compliant) and SPI-like communication capability.
The USART supports synchronous operation (SPI mode), and can be used as an SPI
master.
The USART has a clock domain independent from the CPU clock, allowing it to wake up the
MCU from Stop mode using baudrates up to 200 Kbaud.The wake up events from Stop
mode are programmable and can be:
the start bit detection
any received data frame
aspecific programmed data frame.
The USART interface can be served by the DMA controller.
3.24 Low-power universal asynchronous receiver transmitter
(LPUART)
The device embeds one Low-Power UART, enabling asynchronous serial communication
with minimum power consumption. The LPUART supports half duplex single wire
communication and modem operations (CTS/RTS), allowing multiprocessor
communication.
The LPUART has a clock domain independent from the CPU clock, and can wakeup the
system from Stop mode using baudrates up to 220 Kbaud. The wake up events from Stop
mode are programmable and can be:
the start bit detection
any received data frame
a specific programmed data frame.
Only a 32.768 kHz clock (LSE) is needed for LPUART communication up to 9600 baud.
Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an
Independent clock X X
Wakeup from Stop 0 / Stop 1 mode on address match X X
Wakeup from Stop 2 mode on address match - X
1. X: supported
Table 14. I2C implementation (continued)
I2C features(1) I2C1 I2C3
Functional overview STM32WB55xx
52/183 DS11929 Rev 7
extremely low energy consumption. Higher speed clock can be used to reach higher
baudrates.
The LPUART interfaces can be served by the DMA controller.
3.25 Serial peripheral interface (SPI1, SPI2)
Two SPI interfaces enable communication up to 32 Mbit/s in master and up to 24 Mbit/s in
slave modes, in half-duplex, full-duplex and simplex modes. The 3-bit prescaler gives 8
master mode frequencies and the frame size is configurable from 4 bits to 16 bits. The SPI
interfaces support NSS pulse mode, TI mode and Hardware CRC calculation.
The SPI interfaces can be served by the DMA controller.
3.26 Serial audio interfaces (SAI1)
The device embeds a dual channel SAI peripheral that supports full duplex audio operation.
The SAI bus interface handles communications between the microcontroller and the serial
audio protocol.
The SAI peripheral supports:
One independent audio sub-block that can be a transmitter or a receiver, with the
respective FIFO
8-word integrated FIFOs
Synchronous or asynchronous mode
Master or slave configuration
Clock generator to target independent audio frequency sampling when audio sub-block
is configured in master mode
Data size configurable: 8-, 10-, 16-, 20-, 24-, 32-bit
Peripheral with large configurability and flexibility allowing to target as example the
following audio protocol: I2S, LSB or MSB-justified, PCM/DSP, TDM, AC’97 and SPDIF
out
Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame
Number of bits by frame may be configurable
Frame synchronization active level configurable (offset, bit length, level)
First active bit position in the slot is configurable
LSB first or MSB first for data transfer
Mute mode
Stereo/Mono audio frame capability
Communication clock strobing edge configurable (SCK)
Error flags with associated interrupts if enabled respectively
Overrun and underrun detection
Anticipated frame synchronization signal detection in slave mode
Late frame synchronization signal detection in slave mode
Codec not ready for the AC’97 mode in reception
DS11929 Rev 7 53/183
STM32WB55xx Functional overview
54
Interruption sources when enabled:
–Errors
FIFO requests
DMA interface with two dedicated channels to handle access to the dedicated
integrated FIFO of the SAI audio sub-block.
The PDM (Pulse Density Modulation) block allows the user to manage up to three digital
microphone pairs (with two different clocks). This block performs Right and Left microphone
de-interleaving and time alignment through programmable delay lines in order to properly
feed the SAI.
3.27 Quad-SPI memory interface (QUADSPI)
The Quad-SPI is a specialized communication interface targeting single, dual or quad SPI
Flash memories. It can operate in any of the three following modes:
Indirect mode: all the operations are performed using the QUADSPI registers
Status polling mode: the external memory status register is periodically read and an
interrupt can be generated in case of flag setting
Memory-mapped mode: the external Flash memory is mapped and is seen by the
system as if it were an internal memory. This mode can be used for the Execute In
Place (XIP)
The Quad-SPI interface supports:
Three functional modes: indirect, status-polling, and memory-mapped
SDR and DDR support
Fully programmable opcode for both indirect and memory mapped mode
Fully programmable frame format for both indirect and memory mapped mode
Each of the five following phases can be configured independently (enable, length,
single/dual/quad communication)
Instruction phase
Address phase
Alternate bytes phase
Dummy cycles phase
Data phase
Integrated FIFO for reception and transmission
8, 16, and 32-bit data accesses are allowed
DMA channel for indirect mode operations
Programmable masking for external Flash memory flag management
Timeout management
Interrupt generation on FIFO threshold, timeout, status match, operation complete, and
access error
Functional overview STM32WB55xx
54/183 DS11929 Rev 7
3.28 Development support
3.28.1 Serial wire JTAG debug port (SWJ-DP)
The Arm® SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using only two pins instead of the five required by the JTAG (JTAG pins
can then be reused as GPIOs with alternate function): the JTAG TMS and TCK pins are
shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is
used to switch between JTAG-DP and SW-DP.
3.28.2 Embedded Trace Macrocell™
The Arm® Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32WB55xx through a small number of ETM pins to an external hardware trace port
analyzer (TPA) device. Real-time instruction and data flow activity be recorded and then
formatted for display on the host computer that runs the debugger software. TPA hardware
is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
DS11929 Rev 7 55/183
STM32WB55xx Pinouts and pin description
72
4 Pinouts and pin description
Figure 8. STM32WB55Cx UFQFPN48 pinout(1)(2)
1. The above figure shows the package top view.
2. The exposed pad must be connected to ground plane.
Figure 9. STM32WB55Rx VFQFPN68 pinout(1)(2)
1. The above figure shows the package top view.
2. The exposed pad must be connected to ground plane.
MS42406V3
UFQFPN48
1
2
3
4
5
6
7
8
9
10
11
12
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH3-BOOT0
PB8
PB9
NRST
VDDA
PA0
PA1
PA2
PA3
36
35
34
33
32
31
30
29
28
27
26
25
39
37
40
38
45
43
41
48
47
46
44
42
22
24
21
23
16
18
20
13
14
15
17
19
PA4
PA5
PA8
VDD
OSC_OUT
PA6
PA7
RF1
PA9
PB2
VSSRF
VDDRF
PA10
VDD
VDDSMPS
VLXSMPS
VSSSMPS
VFBSMPS
PE4
PB1
PB0
AT1
AT0
OSC_IN
VDD
PB7
PB4
PA14
PA11
PB6
PB5
VDDUSB
PB3
PA15
PA13
PA12
MS45417V2
VFQFPN68
48
46
45
44
43
42
41
40
39
38
37
36
35
47
55
53
52
56
54
61
59
57
64
63
62
60
58
PA3
PA6
PA9
PB10
PA4
PA5
PC4
VDD
PA7
PA8
RF1
PC5
PB2
PB11
VSSRF
PB14
PB12
VDD
VDDSMPS
VLXSMPS
VSSSMPS
VFBSMPS
PE4
PB1
PB0
AT1
AT0
OSC_IN
PB13
PB4
PB3
PC12
PA15
PA12
PD1
PD0
PA14
PC11
PC10
VDDUSB
PA13
PA11
34
VBAT
PC14-OSC32_IN
PC15-OSC32_OUT
PH3-BOOT0
PB8
PB9
NRST
PC0
PC1
PC2
PC3
VREF+
VDDA
PA0
PA1
PC13
PA2
1
3
4
5
6
7
8
9
10
11
12
13
14
15
16
2
17
26
28
29
30
31
32
25
27
20
22
24
18
19
21
23
33VDDRF
OSC_OUT
49
50
51 PA10
PB15
PC6
PB5
PB6
PB7
VDD
65
66
67
68
Pinouts and pin description STM32WB55xx
56/183 DS11929 Rev 7
Figure 10. STM32WB55Vx WLCSP100 ballout(1)
1. The above figure shows the package top view.
Figure 11. STM32WB55Vx UFBGA129 ballout(1)
1. The above figure shows the package top view.
MS42407V3
PA11 PA12 PA14 PA15 PA13 PC10 PD2 PD7 PB3 VDD
12345678910
A
B
C
D
E
F
G
H
J
K
VDD VSS VDDUSB PC9 PA10 PC11 PD5 PD12 VSS PE1
PB13 PD3 PD1 PD0 PC12 PE0 PD13 VBAT
VDDSMPS PC6 PD4 PC14-
OSC32_IN
VLXSMPS PB14 PC7 PH0
VSSSMPS VFBSMPS
PE4 PE3
PB1 PB0 AT0 VSSA
OSC_IN OSC_OUT VDDRF VDD
VSSRF VSSRF VSSRF RF1 VDD PA9 PA5 PA 4
PD8 PD9 PB5 PB7
PD6 PB4
PD14 PC15-
OSC32_OUT
PD10 PD11 PE2 PD15 PH3-BOOT0 PH1
PB15 PC8 PB6 PA2 PB8 PC0 NRST
PB12 PC4 PC13 PA1 PA0 PC1 PC2
PB9
PC3
AT1 PC5 PA7 PA6 VREF+ VDDA
VSSRF VSS PB11 PA8 PA3 VSS
PB10 PB2
VSSRadio USB VDDSMPS
MS51777V3
PE1 PB6
PE2
PD13 PD15
PC15-
OSC32_OUT
PH0
PH3-BOOT0 PH1
PC1
PC2
VREF+ PA1
PA0
PA2 PA5
PB5
PB4
PB7
PD14
PC14-
OSC32_IN
VSS
_DCAP1
PB8
PC0
PC3
VDDA
PA4
PA6
PA7
PD12 PD11
PB3 PD7
PD9
PC13
PB9
VSS
PA9 PC5
PA8 PC4
PD5
PD8
PD4
PD6
PB10
PB11
PB2
PD10 VDD
_DCAP4
PD2 VSS
_DCAP4
PD1 PC11
PD3
VSSRF VSSRF
VSS
_DCAP2 VSSRF
VDD
_DCAP2 VSSRF
PC10
PA15
VSS
VSSRF
RF1
PA13
PC12 PD0
PA14 VSS
PC6 PC8
PB14
PB15 VLXSMPS
VLXSMPS
PB12 VFBSMPS
VSS
VSSRF AT0
VSSRF VSSRF
VSSRF VSSRF
VSSRF
VDDUSB
VSS
PA10
PC7
PB13
VDDSMPS
VSSSMPS
PE3
VDDCAP
AT1
PB1
VSSRF
VDDRF
PA12
PA11
PC9
VDDSMPS
VSSSMPS
PE4
PB0
OSC_IN
OSC_OUT
12345678910111213
A
B
C
D
E
F
G
H
J
K
L
M
N
PE0
VBAT
VDD VDD
VSS VSS
VSSVSS VDD
VSSVSS
VDD VDD
VSS VSSRF
VDD
_DCAP1
NRST
VSSA
PA3
VSS
No pin Power supply SMPS USB Radio
DS11929 Rev 7 57/183
STM32WB55xx Pinouts and pin description
72
Table 15. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input / output pin
I/O structure
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
RF RF I/O
RST Bidirectional reset pin with weak pull-up resistor
Option for TT or FT I/Os
_f (1) I/O, Fm+ capable
_l (2) I/O, with LCD function supplied by VLCD
_u(3) I/O, with USB function supplied by VDDUSB
_a(4) (5) I/O, with Analog switch function supplied by VDDA
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Pin
functions
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
1. The related I/O structures in Table 16 are: FT_f, FT_fa, FT_fl, FT_fla.
2. The related I/O structures in Table 16 are: FT_l, FT_fl, FT_lu.
3. The related I/O structures in Table 16 are: FT_u, FT_lu.
4. The related I/O structures in Table 16 are: FT_a, FT_la, FT_fa, FT_fla, TT_a, TT_la.
5. Analog switch for the TSC function is supplied by VDDIO.
Pinouts and pin description STM32WB55xx
58/183 DS11929 Rev 7
Table 16. STM32WB55xx pin and ball definitions
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
- - C8 B2 PE0 I/O FT_l -
TIM1_ETR, TSC_G7_IO3,
LCD_SEG36, TIM16_CH1,
CM4_EVENTOUT
-
- - B10 A1 PE1 I/O FT_l -
TSC_G7_IO2, LCD_SEG37,
TIM17_CH1,
CM4_EVENTOUT
-
- - E6 B1 PE2 I/O FT_l -
TRACECK, SAI1_PDM_CK1,
TSC_G7_IO1, LCD_SEG38,
SAI1_MCLK_A,
CM4_EVENTOUT
-
- - C9 C1 PD13 I/O FT_l -
TSC_G6_IO4, LCD_SEG33,
LPTIM2_OUT,
CM4_EVENTOUT
-
- - D8 D3 PD14 I/O FT_l - TIM1_CH1, LCD_SEG34,
CM4_EVENTOUT -
- - E7 C2 PD15 I/O FT_l - TIM1_CH2, LCD_SEG35,
CM4_EVENTOUT -
1 1 C10 D2 VBAT S - - - -
- 2 G5 F4 PC13 I/O FT
(1)
(2) CM4_EVENTOUT RTC_TAMP1/RTC_TS/
RTC_OUT/WKUP2
23D10E3 PC14-
OSC32_IN I/O FT
(1)
(2) CM4_EVENTOUT OSC32_IN
34D9E2 PC15-
OSC32_OUT I/O FT
(1)
(2) CM4_EVENTOUT OSC32_OUT
- - - E5 VSS S - - - -
-- - F6 VDD S - - - -
- - E10 F1 PH0 I/O FT - CM4_EVENTOUT -
- - E9 G2 PH1 I/O FT - CM4_EVENTOUT -
4 5 E8 G1 PH3-BOOT0 I/O FT - CM4_EVENTOUT, LSCO -
5 6 F7 G3 PB8 I/O FT_fl -
TIM1_CH2N,
SAI1_PDM_CK1, I2C1_SCL,
QUADSPI_BK1_IO1,
LCD_SEG16, SAI1_MCLK_A,
TIM16_CH1,
CM4_EVENTOUT
-
DS11929 Rev 7 59/183
STM32WB55xx Pinouts and pin description
72
6 7 F10 H4 PB9 I/O FT_fla -
TIM1_CH3N, SAI1_PDM_DI2,
I2C1_SDA, SPI2_NSS,
IR_OUT, TSC_G7_IO4,
QUADSPI_BK1_IO0,
LCD_COM3, SAI1_FS_A,
TIM17_CH1,
CM4_EVENTOUT
-
7 8 F9 H2 NRST I/O RST - - -
-9F8H3 PC0 I/OFT_fla-
LPTIM1_IN1, I2C3_SCL,
LPUART1_RX, LCD_SEG18,
LPTIM2_IN1,
CM4_EVENTOUT
ADC1_IN1
-10G8H1 PC1 I/OFT_fla-
LPTIM1_OUT, SPI2_MOSI,
I2C3_SDA, LPUART1_TX,
LCD_SEG19,
CM4_EVENTOUT
ADC1_IN2
- 11 G9 J2 PC2 I/O FT_la -
LPTIM1_IN2, SPI2_MISO,
LCD_SEG20,
CM4_EVENTOUT
ADC1_IN3
- - - E7 VSS S - - - -
-- - H6 VDD S - - - -
- 12 G10 J3 PC3 I/O FT_a -
LPTIM1_ETR,
SAI1_PDM_DI1, SPI2_MOSI,
LCD_VLCD, SAI1_SD_A,
LPTIM2_ETR,
CM4_EVENTOUT
ADC1_IN4
- - H10 K2 VSSA S - - - -
- 13 H8 L1 VREF+ S - - - VREFBUF_OUT
814H9 K3 VDDA S - (3) --
- - J9 E9 VSS S - - - -
--J10F8 VDD S - - - -
915G7 M1 PA0 I/OFT_a -
TIM2_CH1, COMP1_OUT,
SAI1_EXTCLK, TIM2_ETR,
CM4_EVENTOUT
COMP1_INM, ADC1_IN5,
RTC_TAMP2/WKUP1
10 16 G6 L2 PA1 I/O FT_la -
TIM2_CH2, I2C1_SMBA,
SPI1_SCK, LCD_SEG0,
CM4_EVENTOUT
COMP1_INP, ADC1_IN6
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
Pinouts and pin description STM32WB55xx
60/183 DS11929 Rev 7
11 17 F6 N1 PA2 I/O FT_la -
LSCO, TIM2_CH3,
LPUART1_TX,
QUADSPI_BK1_NCS,
LCD_SEG1, COMP2_OUT,
CM4_EVENTOUT
COMP2_INM, ADC1_IN7,
WKUP4
12 18 J8 M2 PA3 I/O FT_la -
TIM2_CH4, SAI1_PDM_CK1,
LPUART1_RX,
QUADSPI_CLK, LCD_SEG2,
SAI1_MCLK_A,
CM4_EVENTOUT
COMP2_INP, ADC1_IN8
13 19 K10 L3 PA4 I/O FT_a -
SPI1_NSS, SAI1_FS_B,
LPTIM2_OUT, LCD_SEG5,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN9
14 20 K9 N2 PA5 I/O FT_a -
TIM2_CH1, TIM2_ETR,
SPI1_SCK, LPTIM2_ETR,
SAI1_SD_B,
CM4_EVENTOUT
COMP1_INM,
COMP2_INM, ADC1_IN10
15 21 H7 M3 PA6 I/O FT_la -
TIM1_BKIN, SPI1_MISO,
LPUART1_CTS,
QUADSPI_BK1_IO3,
LCD_SEG3, TIM16_CH1,
CM4_EVENTOUT
ADC1_IN11
16 22 H6 N3 PA7 I/O FT_fla -
TIM1_CH1N, I2C3_SCL,
SPI1_MOSI,
QUADSPI_BK1_IO2,
LCD_SEG4, COMP2_OUT,
TIM17_CH1,
CM4_EVENTOUT
ADC1_IN12
17 23 J7 M4 PA8 I/O FT_la -
MCO, TIM1_CH1,
SAI1_PDM_CK2,
USART1_CK, LCD_COM0,
SAI1_SCK_A, LPTIM2_OUT,
CM4_EVENTOUT
ADC1_IN15
18 24 K8 L4 PA9 I/O FT_fla -
TIM1_CH2, SAI1_PDM_DI2,
I2C1_SCL, SPI2_SCK,
USART1_TX, LCD_COM1,
SAI1_FS_A,
CM4_EVENTOUT
COMP1_INM, ADC1_IN16
- 25 G4 M5 PC4 I/O FT_la - LCD_SEG22,
CM4_EVENTOUT COMP1_INM, ADC1_IN13
- - - F3 VSS_DCAP1 S - - - -
-- - G7 VDD S - - - -
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
DS11929 Rev 7 61/183
STM32WB55xx Pinouts and pin description
72
- 26 H5 L5 PC5 I/O FT_la -
SAI1_PDM_DI3,
LCD_SEG23,
CM4_EVENTOUT
COMP1_INP, ADC1_IN14,
WKUP5
19 27 K7 N6 PB2 I/O FT_a -
RTC_OUT, LPTIM1_OUT,
I2C3_SMBA, SPI1_NSS,
LCD_VLCD, SAI1_EXTCLK,
CM4_EVENTOUT
COMP1_INP
- 28 K6 L6 PB10 I/O FT_fl -
TIM2_CH3, I2C3_SCL,
SPI2_SCK, LPUART1_RX,
TSC_SYNC, QUADSPI_CLK,
LCD_SEG10, COMP1_OUT,
SAI1_SCK_A,
CM4_EVENTOUT
-
-29J6 M6 PB11 I/OFT_fl -
TIM2_CH4, I2C3_SDA,
LPUART1_TX,
QUADSPI_BK1_NCS,
LCD_SEG11, COMP2_OUT,
CM4_EVENTOUT
-
- - - G5 VSS S - - - -
- - - G9 VSS S - - - -
20 30 K5 H8 VDD S - - - -
- - - N8 VSSRF S - - - -
- - J4 L7 VSSRF S - - - -
- - - L8 VSSRF S - - - -
- - - M8 VSSRF S - - - -
21 31 K4 M9 RF1 I/O RF (4) --
22 32 K3 M10 VSSRF S - - - -
- - K2 M11 VSSRF S - - - -
- - - K8 VSSRF S - - - -
- - - L9 VSSRF S - - - -
- - - L10 VSSRF S - - - -
- - - N11 VSSRF S - - - -
23 33 J3 N12 VDDRF S - - - -
- - K1 K10 VSSRF S - - - -
- - - M12 VSSRF S - - - -
24 34 J2 N13 OSC_OUT O RF (5) --
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
Pinouts and pin description STM32WB55xx
62/183 DS11929 Rev 7
25 35 J1 M13 OSC_IN I RF (5) --
- - - L11 VSSRF S - - - -
26 36 H3 K11 AT0 O RF (6) --
27 37 H4 K12 AT1 O RF (6) --
28 38 H2 L13 PB0 I/O TT (7)
COMP1_OUT,
CM4_EVENTOUT,
EXT_PA_TX
-
29 39 H1 L12 PB1 I/O TT (7)
LPUART1_RTS_DE,
LPTIM2_IN1,
CM4_EVENTOUT
-
- - J5 - VSS S - - - -
- - - M7 VSS_DCAP2 S - - - -
- - G2 H12 PE3 I/O FT - CM4_EVENTOUT -
30 40 G1 H13 PE4 I/O FT - CM4_EVENTOUT -
31 41 F2 H11 VFBSMPS S - - - -
- - - G13 VSSSMPS S - - - -
32 42 F1 G12 VSSSMPS S - - - -
33 43 E1 F11 VLXSMPS S - - - -
- - - G11 VLXSMPS S - - - -
34 44 D1 F12 VDDSMPS S - - - -
- - - F13 VDDSMPS S - - - -
- - - K4 VSS S - - - -
35 45 B1 - VDD S - - - -
- 46 G3 H10 PB12 I/O FT_l -
TIM1_BKIN, I2C3_SMBA,
SPI2_NSS, LPUART1_RTS,
TSC_G1_IO1, LCD_SEG12,
SAI1_FS_A,
CM4_EVENTOUT
-
- 47 C1 E12 PB13 I/O FT_fl -
TIM1_CH1N, I2C3_SCL,
SPI2_SCK, LPUART1_CTS,
TSC_G1_IO2, LCD_SEG13,
SAI1_SCK_A,
CM4_EVENTOUT
-
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
DS11929 Rev 7 63/183
STM32WB55xx Pinouts and pin description
72
- 48 E2 E11 PB14 I/O FT_fl -
TIM1_CH2N, I2C3_SDA,
SPI2_MISO, TSC_G1_IO3,
LCD_SEG14, SAI1_MCLK_A,
CM4_EVENTOUT
-
- 49 F3 F10 PB15 I/O FT_l -
RTC_REFIN, TIM1_CH3N,
SPI2_MOSI, TSC_G1_IO4,
LCD_SEG15, SAI1_SD_A,
CM4_EVENTOUT
-
- 50 D2 D10 PC6 I/O FT_l - TSC_G4_IO1, LCD_SEG24,
CM4_EVENTOUT -
- - E3 D12 PC7 I/O FT_l - TSC_G4_IO2, LCD_SEG25,
CM4_EVENTOUT -
- - F4 D11 PC8 I/O FT_l - TSC_G4_IO3, LCD_SEG26,
CM4_EVENTOUT -
- - B4 C13 PC9 I/O FT_l -
TIM1_BKIN, TSC_G4_IO4,
USB_NOE, LCD_SEG27,
SAI1_SCK_B,
CM4_EVENTOUT
-
- - - K6 VSS S - - - -
- - B2 - VSS S - - - -
36 51 B5 C12 PA10 I/O FT_fl -
TIM1_CH3, SAI1_PDM_DI1,
I2C1_SDA, USART1_RX,
USB_CRS_SYNC,
LCD_COM2, SAI1_SD_A,
TIM17_BKIN,
CM4_EVENTOUT
-
37 52 A1 B13 PA11 I/O FT_u -
TIM1_CH4, TIM1_BKIN2,
SPI1_MISO, USART1_CTS,
USB_DM, CM4_EVENTOUT
-
38 53 A2 A13 PA12 I/O FT_u -
TIM1_ETR, SPI1_MOSI,
LPUART1_RX,
USART1_RTS_DE, USB_DP,
CM4_EVENTOUT
-
39 54 A5 A11 PA13
(JTMS_SWDIO) I/O FT_u (8)
JTMS-SWDIO, IR_OUT,
USB_NOE, SAI1_SD_B,
CM4_EVENTOUT
-
40 55 B3 A12 VDDUSB S - - - -
- - - C11 VSS S - - - -
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
Pinouts and pin description STM32WB55xx
64/183 DS11929 Rev 7
41 56 A3 C10 PA14
(JTCK_SWCLK) I/O FT_l (8)
JTCK-SWCLK, LPTIM1_OUT,
I2C1_SMBA, LCD_SEG5,
SAI1_FS_B,
CM4_EVENTOUT
-
42 57 A4 C9 PA15
(JTDI) I/O FT_l (8)
JTDI, TIM2_CH1, TIM2_ETR,
SPI1_NSS, TSC_G3_IO1,
LCD_SEG17,
CM4_EVENTOUT, MCO
-
- - - J11 VSS_DCAP3 S - - - -
-58A6 B9 PC10 I/OFT_l -
TRACED1, TSC_G3_IO2,
LCD_COM4/LCD_SEG28/
LCD_SEG40,
CM4_EVENTOUT
-
-59B6 C8 PC11 I/OFT_l -
TSC_G3_IO3,
LCD_COM5/LCD_SEG29/
LCD_SEG41,
CM4_EVENTOUT
-
- 60 C5 B10 PC12 I/O FT_l -
LSCO, TRACED3,
TSC_G3_IO4,
LCD_COM6/LCD_SEG30/
LCD_SEG42,
CM4_EVENTOUT
RTC_TAMP3/WKUP3
- 61 C4 B11 PD0 I/O FT - SPI2_NSS, CM4_EVENTOUT -
- 62 C3 C7 PD1 I/O FT - SPI2_SCK, CM4_EVENTOUT -
- - A7 B7 PD2 I/O FT_l -
TRACED2, TSC_SYNC,
LCD_COM7/LCD_SEG31/LC
D_SEG43, CM4_EVENTOUT
-
- - C2 D8 PD3 I/O FT -
SPI2_SCK, SPI2_MISO,
QUADSPI_BK1_NCS,
CM4_EVENTOUT
-
- - D3 C6 PD4 I/O FT -
SPI2_MOSI, TSC_G5_IO1,
QUADSPI_BK1_IO0,
CM4_EVENTOUT
-
- - B7 A6 PD5 I/O FT -
TSC_G5_IO2,
QUADSPI_BK1_IO1,
SAI1_MCLK_B,
CM4_EVENTOUT
-
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
DS11929 Rev 7 65/183
STM32WB55xx Pinouts and pin description
72
- - C6 D6 PD6 I/O FT -
SAI1_PDM_DI1,
TSC_G5_IO3,
QUADSPI_BK1_IO2,
SAI1_SD_A,
CM4_EVENTOUT
-
- - A8 C5 PD7 I/O FT_l -
TSC_G5_IO4,
QUADSPI_BK1_IO3,
LCD_SEG39,
CM4_EVENTOUT
-
- - B9 B12 VSS S - - - -
- - D4 B6 PD8 I/O FT_l - TIM1_BKIN2, LCD_SEG28,
CM4_EVENTOUT -
- - D5 D4 PD9 I/O FT_l - TRACED0, LCD_SEG29,
CM4_EVENTOUT -
- - E4 A7 PD10 I/O FT_l -
TRIG_INOUT, TSC_G6_IO1,
LCD_SEG30,
CM4_EVENTOUT
-
- - E5 B5 PD11 I/O FT_l -
TSC_G6_IO2, LCD_SEG31,
LPTIM2_ETR,
CM4_EVENTOUT
-
- - B8 B4 PD12 I/O FT_l -
TSC_G6_IO3, LCD_SEG32,
LPTIM2_IN1,
CM4_EVENTOUT
-
43 63 A9 C4 PB3
(JTDO) I/O FT_la (8)
JTDO-TRACESWO,
TIM2_CH2, SPI1_SCK,
USART1_RTS_DE,
LCD_SEG7, SAI1_SCK_B,
CM4_EVENTOUT
COMP2_INM
44 64 C7 B3 PB4
(NJTRST) I/O FT_fla (8)
NJTRST, I2C3_SDA,
SPI1_MISO, USART1_CTS,
TSC_G2_IO1, LCD_SEG8,
SAI1_MCLK_B, TIM17_BKIN,
CM4_EVENTOUT
COMP2_INP
45 65 D6 A3 PB5 I/O FT_l -
LPTIM1_IN1, I2C1_SMBA,
SPI1_MOSI, USART1_CK,
LPUART1_TX, TSC_G2_IO2,
LCD_SEG9, COMP2_OUT,
SAI1_SD_B, TIM16_BKIN,
CM4_EVENTOUT
-
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
Pinouts and pin description STM32WB55xx
66/183 DS11929 Rev 7
46 66 F5 A2 PB6 I/O FT_fla -
LPTIM1_ETR, I2C1_SCL,
USART1_TX, TSC_G2_IO3,
LCD_SEG6, SAI1_FS_B,
TIM16_CH1N, MCO,
CM4_EVENTOUT
COMP2_INP
47 67 D7 C3 PB7 I/O FT_fla -
LPTIM1_IN2, TIM1_BKIN,
I2C1_SDA, USART1_RX,
TSC_G2_IO4, LCD_SEG21,
TIM17_CH1N,
CM4_EVENTOUT
COMP2_INM, PVD_IN
- - - J5 VSS S - - - -
- - - J7 VSS S - - - -
- - - J9 VSS S - - - -
- - - B8 VSS_DCAP4 S - - - -
48 68 A10 - VDD S - - - -
- - - A8 VDD_DCAP4 S - - - -
- - - F2 VDD_DCAP1 S - - - -
- - - J12 VDD_DCAP3 S - - - -
- - - N7 VDD_DCAP2 S - - - -
1. PC13, PC14 and PC15 are supplied through the power switch. As this switch only sinks a limited amount of current (3 mA),
the use of the PC13, PC14 and PC15 GPIOs in output mode is limited:
- the speed should not exceed 2 MHz with a maximum load of 30 pF
- these GPIOs must not be used as current sources (e.g. to drive an LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of
the RTC registers that are not reset by the system reset. For details on how to manage these GPIOs, refer to the Backup
domain and RTC register descriptions in the reference manual RM0351, available on www.st.com.
3. On UFQFPN48 VDDA is connected to VREF+.
4. RF pin, use the nominal PCB layout.
5. 32 MHz oscillator pins, use the nominal PCB layout according to reference design (see AN5165).
6. Reserved, must be kept unconnected.
7. High frequency (above 100 KHz) may impact the RF performances.
8. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13 and
PB4 pins and the internal pull-down on PA14 pin are activated.
Table 16. STM32WB55xx pin and ball definitions (continued)
Pin number
Pin name
(function after
reset)
Pin type
I/O structures
Notes
Alternate functions Additional functions
UFQFPN48
VFQFPN68
WLCSP100
UFBGA129
STM32WB55xx Pinouts and pin description
DS11929 Rev 7 67/183
Table 17. Alternate functions
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2 RF USART1 LPUART1 TSC USB/
QUADSPI LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
A
PA0 -TIM2_
CH1 ------ - - - -
COMP1_
OUT
SAI1_
EXTCLK
TIM2_
ETR
CM4_
EVENTOUT
PA1 -TIM2_
CH2 --
I2C1_
SMBA
SPI1_
SCK - - - - LCD_SEG0 - - - CM4_
EVENTOUT
PA2 LSCO TIM2_
CH3 ------
LPUART1
_TX -QUADSPI_
BK1_NCS LCD_SEG1 COMP2_
OUT --
CM4_
EVENTOUT
PA3 -TIM2_
CH4 -SAI1_
PDM_CK1 ----
LPUART1
_RX -QUADSPI_
CLK LCD_SEG2 - SAI1
_MCLK_A -CM4_
EVENTOUT
PA4 ---- SPI1_
NSS - - - - - LCD_SEG5 - SAI1
_FS_B
LPTIM2_
OUT
CM4_
EVENTOUT
PA5 -TIM2_
CH1
TIM2_
ETR -SPI1_
SCK -- - - - - -
SAI1
_SD_B
LPTIM2_
ETR
CM4_
EVENTOUT
PA6 -TIM1_
BKIN -- SPI1_
MISO --
LPUART1
_CTS -QUADSPI_
BK1_IO3 LCD_SEG3 TIM1_
BKIN -TIM16
_CH1
CM4_
EVENTOUT
PA7 -TIM1_
CH1N --
I2C3_
SCL
SPI1_
MOSI -- - -
QUADSPI_
BK1_IO2 LCD_SEG4 COMP2_
OUT -TIM17
_CH1
CM4_
EVENTOUT
PA8 MCO TIM1_
CH1 -SAI1_
PDM_CK2 ---
USART1_
CK -- LCD_COM0-
SAI1
_SCK_A
LPTIM2_
OUT
CM4_
EVENTOUT
PA9 -TIM1_
CH2 -SAI1_
PDM_DI2
I2C1_
SCL
SPI2_
SCK -USART1_
TX -- LCD_COM1-
SAI1
_FS_A -CM4_
EVENTOUT
PA10 -TIM1_
CH3 -SAI1_
PDM_DI1
I2C1_
SDA -USART1_
RX --
USB_CRS
_SYNC LCD_COM2 - SAI1
_SD_A
TIM17
_BKIN
CM4_
EVENTOUT
PA11 -TIM1_
CH4
TIM1_
BKIN2 --
SPI1_
MISO -USART1_
CTS - - USB_DM - TIM1_
BKIN2 --
CM4_
EVENTOUT
PA12 -TIM1_
ETR ---
SPI1_
MOSI -USART1_
RTS_DE
LPUART1
_RX -USB_DP- ---
CM4_
EVENTOUT
PA13 JTMS-
SWDIO - - - - - - - IR_OUT - USB_NOE - - SAI1
_SD_B -CM4_
EVENTOUT
PA14 JTCK-
SWCLK
LPTIM1_
OUT --
I2C1_
SMBA - - - - - - LCD_SEG5 - SAI1
_FS_B -CM4_
EVENTOUT
PA15 JTDI TIM2_
CH1
TIM2_
ETR -SPI1_
NSS MCO - - TSC_G3
_IO1 - LCD_SEG17 - - - CM4_
EVENTOUT
Pinouts and pin description STM32WB55xx
68/183 DS11929 Rev 7
B
PB0 ------
EXT
_PA
_TX
----
COMP1_
OUT --
CM4_
EVENTOUT
PB1 --------
LPUART1
_RTS_DE -- - --
LPTIM2_
IN1
CM4_
EVENTOUT
PB2 RTC_
OUT
LPTIM1_
OUT --
I2C3_
SMBA
SPI1_
NSS - - - - - LCD_VLCD - SAI1_
EXTCLK -CM4_
EVENTOUT
PB3
JTDO-
TRACE
SWO
TIM2_
CH2 ---
SPI1_
SCK -USART1_
RTS_DE - - - LCD_SEG7 - SAI1_
SCK_B -CM4_
EVENTOUT
PB4 NJTRST - - - I2C3_
SDA
SPI1_
MISO -USART1_
CTS -TSC_G2
_IO1 - LCD_SEG8 - SAI1_
MCLK_B
TIM17_
BKIN
CM4_
EVENTOUT
PB5 -LPTIM1_
IN1 --
I2C1_
SMBA
SPI1_
MOSI -USART1_
CK
LPUART1
_TX
TSC_G2
_IO2 - LCD_SEG9 COMP2_
OUT
SAI1_
SD_B
TIM16_
BKIN
CM4_
EVENTOUT
PB6 MCO LPTIM1_
ETR --
I2C1_
SCL --
USART1_
TX -TSC_G2
_IO3 - LCD_SEG6 - SAI1_
FS_B
TIM16_
CH1N
CM4_
EVENTOUT
PB7 -LPTIM1_
IN2 -TIM1_
BKIN
I2C1_
SDA --
USART1_
RX -TSC_G2
_IO4 - LCD_SEG21 - - TIM17_
CH1N
CM4_
EVENTOUT
PB8 -TIM1_
CH2N -SAI1_
PDM_CK1
I2C1_
SCL -- - - -
QUADSPI_
BK1_IO1 LCD_SEG16 - SAI1_
MCLK_A
TIM16_
CH1
CM4_
EVENTOUT
PB9 -TIM1_
CH3N -SAI1_
PDM_DI2
I2C1_
SDA
SPI2_
NSS --IR_OUT
TSC_G7
_IO4
QUADSPI_
BK1_IO0 LCD_COM3 - SAI1_
FS_A
TIM17_
CH1
CM4_
EVENTOUT
PB10 -TIM2_
CH3 --
I2C3_
SCL
SPI2_SC
K--
LPUART1
_RX
TSC
_SYNC
QUADSPI_
CLK LCD_SEG10 COMP1_
OUT
SAI1_
SCK_A -CM4_
EVENTOUT
PB11 -TIM2_
CH4 --
I2C3_
SDA -- -
LPUART1
_TX -QUADSPI_
BK1_NCS LCD_SEG11 COMP2_
OUT --
CM4_
EVENTOUT
PB12 -TIM1_
BKIN -TIM1_
BKIN
I2C3_
SMBA
SPI2_
NSS --
LPUART1
_RTS
TSC_G1
_IO1 - LCD_SEG12 - SAI1_
FS_A -CM4_
EVENTOUT
PB13 -TIM1_
CH1N --
I2C3_
SCL
SPI2_
SCK --
LPUART1
_CTS
TSC_G1
_IO2 - LCD_SEG13 - SAI1_
SCK_A -CM4_
EVENTOUT
PB14 -TIM1_
CH2N --
I2C3_
SDA
SPI2_
MISO -- -
TSC_G1
_IO3 - LCD_SEG14 - SAI1_
MCLK_A -CM4_
EVENTOUT
PB15 RTC_
REFIN
TIM1_
CH3N ---
SPI2_
MOSI -- -
TSC_G1
_IO4 - LCD_SEG15 - SAI1_
SD_A -CM4_
EVENTOUT
Table 17. Alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2 RF USART1 LPUART1 TSC USB/
QUADSPI LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
STM32WB55xx Pinouts and pin description
DS11929 Rev 7 69/183
C
PC0 -LPTIM1_
IN1 --
I2C3
_SCL -- -
LPUART1
_RX - - LCD_SEG18 - - LPTIM2_
IN1
CM4_
EVENTOUT
PC1 -LPTIM1_
OUT -SPI2_
MOSI
I2C3
_SDA --
LPUART1
_TX - - LCD_SEG19 - - - CM4_
EVENTOUT
PC2 -LPTIM1_
IN2 ---
SPI2_
MISO - - - - - LCD_SEG20 - - - CM4_
EVENTOUT
PC3 -LPTIM1_
ETR -SAI1_
PDM_DI1 -SPI2_
MOSI - - - - - LCD_VLCD - SAI1
_SD_A
LPTIM2_
ETR
CM4_
EVENTOUT
PC4 - - - - - - - - - - - LCD_SEG22 - - - CM4_
EVENTOUT
PC5 ---
SAI1_
PDM_DI3 - - - - - - - LCD_SEG23 - - - CM4_
EVENTOUT
PC6 -------- -
TSC_G4
_IO1 - LCD_SEG24 - - - CM4_
EVENTOUT
PC7 -------- -
TSC_G4
_IO2 - LCD_SEG25 - - - CM4_
EVENTOUT
PC8 -------- -
TSC_G4
_IO3 - LCD_SEG26 - - - CM4_
EVENTOUT
PC9 ---
TIM1
_BKIN ---- -
TSC_G4
_IO4 USB_NOE LCD_SEG27 - SAI1
_SCK_B -CM4_
EVENTOUT
PC10 TRACE
D1 -- - ---- -
TSC_G3
_IO2 -
LCD_COM4
LCD_SEG28
LCD_SEG40
---
CM4_
EVENTOUT
PC11 -------- -
TSC_G3
_IO3 -
LCD_COM5
LCD_SEG29
LCD_SEG41
---
CM4_
EVENTOUT
PC12 TRACE
D3 -- - --LSCO- -
TSC_G3
_IO4 -
LCD_COM6
LCD_SEG30
LCD_SEG42
---
CM4_
EVENTOUT
PC13 -------- -- - - ---
CM4_
EVENTOUT
PC14 -------- -- - - ---
CM4_
EVENTOUT
PC15 -------- -- - - ---
CM4_
EVENTOUT
Table 17. Alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2 RF USART1 LPUART1 TSC USB/
QUADSPI LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
Pinouts and pin description STM32WB55xx
70/183 DS11929 Rev 7
D
PD0 -----
SPI2_
NSS -- -- - - ---
CM4_
EVENTOUT
PD1 -----
SPI2_
SCK -- -- - - ---
CM4_
EVENTOUT
PD2 TRACE
D2 -- - ---- -
TSC_
SYNC -
LCD_COM7
LCD_SEG31
LCD_SEG43
---
CM4_
EVENTOUT
PD3 - - - SPI2_SCK - SPI2_
MISO -- - -
QUADSPI_
BK1_NCS - ---
CM4_
EVENTOUT
PD4 -----
SPI2_
MOSI -- -
TSC_
G5_IO1
QUADSPI_
BK1_IO0 - ---
CM4_
EVENTOUT
PD5 -------- -
TSC_
G5_IO2
QUADSPI_
BK1_IO1 --
SAI1_
MCLK_B -CM4_
EVENTOUT
PD6 ---
SAI1_
PDM_DI1 ---- -
TSC_
G5_IO3
QUADSPI_
BK1_IO2 --
SAI1_
SD_A -CM4_
EVENTOUT
PD7 -------- -
TSC_
G5_IO4
QUADSPI_
BK1_IO3 LCD_SEG39 - - - CM4_
EVENTOUT
PD8 --
TIM1
_BKIN2 - - - - - - - - LCD_SEG28 - - - CM4_
EVENTOUT
PD9 TRACE
D0 - - - - - - - - - - LCD_SEG29 - - - CM4_
EVENTOUT
PD10 TRIG
_INOUT -- - ---- -
TSC_
G6_IO1 - LCD_SEG30 - - - CM4_
EVENTOUT
PD11 -------- -
TSC_
G6_IO2 - LCD_SEG31 - - LPTIM2_
ETR
CM4_
EVENTOUT
PD12 -------- -
TSC_
G6_IO3 - LCD_SEG32 - - LPTIM2_
IN1
CM4_
EVENTOUT
PD13 -------- -
TSC_
G6_IO4 - LCD_SEG33 - - LPTIM2_
OUT
CM4_
EVENTOUT
PD14 -TIM1_
CH1 - - - - - - - - - LCD_SEG34 - - - CM4_
EVENTOUT
PD15 -TIM1_
CH2 - - - - - - - - - LCD_SEG35 - - - CM4_
EVENTOUT
Table 17. Alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2 RF USART1 LPUART1 TSC USB/
QUADSPI LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
STM32WB55xx Pinouts and pin description
DS11929 Rev 7 71/183
E
PE0 -TIM1_
ETR ------ -
TSC_
G7_IO3 - LCD_SEG36 - - TIM16_
CH1
CM4_
EVENTOUT
PE1 -------- -
TSC_
G7_IO2 - LCD_SEG37 - - TIM17_
CH1
CM4_
EVENTOUT
PE2 TRACECK - - SAI1_
PDM_CK1 ---- -
TSC_
G7_IO1 - LCD_SEG38 - SAI1_
MCLK_A -CM4_
EVENTOUT
PE3 -------- -- - - ---
CM4_
EVENTOUT
PE4 -------- -- - - ---
CM4_
EVENTOUT
H
PH0 -------- -- - - ---
CM4_
EVENTOUT
PH1 -------- -- - - ---
CM4_
EVENTOUT
PH3 LSCO------- -- - - ---
CM4_
EVENTOUT
Table 17. Alternate functions (continued)
Port
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF
TIM1/
TIM2/
LPTIM1
TIM1/
TIM2
SPI2/
SAI1/
TIM1
I2C1/
I2C3
SPI1/
SPI2 RF USART1 LPUART1 TSC USB/
QUADSPI LCD
COMP1/
COMP2/
TIM1
SAI1
TIM2/
TIM16/
TIM17/
LPTIM2
EVENTOUT
Memory mapping STM32WB55xx
72/183 DS11929 Rev 7
5 Memory mapping
The STM32WB55xx devices feature a single physical address space that can be accessed
by the application processor and by the RF subsystem.
A part of the Flash memory and of the SRAM2a and SRAM2b memories are made secure,
exclusively accessible by the CPU2, protected against execution, read and write from CPU1
and DMA.
In case of shared resources the SW should implement arbitration mechanism to avoid
access conflicts. This happens for peripherals Reset and Clock Controller (RCC), Power
Controller (PWC), EXTI and Flash interface, and can be implemented using the built-in
semaphore block (HSEM).
By default the RF subsystem and CPU2 operate in secure mode. This implies that part of
the Flash and of the SRAM2 memories can only be accessed by the RF subsystem and by
the CPU2. In this case the Host processor (CPU1) has no access to these resources.
The detailed memory map and the peripheral mapping of the STM32WB55xx devices can
be found in the reference manual RM0434.
DS11929 Rev 7 73/183
STM32WB55xx Electrical characteristics
160
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified, the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = VDDA = 3 V. They
are given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ± 2).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 12.
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 13.
Figure 12. Pin loading conditions Figure 13. Pin input voltage
MS19210V1
MCU pin
C = 50 pF
Electrical characteristics STM32WB55xx
74/183 DS11929 Rev 7
6.1.6 Power supply scheme
Figure 14. Power supply scheme (all packages except UFBGA129)
1. The value of L1 depends upon the frequency, as indicated in Table 6.
MS53167V2
VDD
Backup circuitry
(LSE, RTC and
backup registers)
Kernel logic
(CPU, digital
and memories
Level shifter
IO
logic
IN
OUT
Regulator
GPIOs
1.55 V to 3.6 V
n x 100 nF + 1 x 4.7 μF
n x VSS
n x VDD
VBAT
VCORE
Power switch
VDDIO1
ADC
COMPs
VREF+
VREF-
VDDA
10 nF + 1 μF
VDDA
VSSA
SMPS Regulator
VDDSMPS
VLXSMPS
VFBSMPS
VSSSMPS
4.7 μF
VDD
L1(1)
Exposed pad
4.7 μF
To all modules
SMPS
USB
transceiver
Radio
100 nF
VDDUSB
100 nF
+ 100 pF
VDDRF
VSSRF
VDD
VDD
DS11929 Rev 7 75/183
STM32WB55xx Electrical characteristics
160
Figure 15. Power supply scheme (UFBGA129 package)
1. The value of L1 depends upon the frequency, as indicated in Table 6.
2. VDD_DCAPx and VSS_DCAPx balls are connected to VDD and VSS internally. They simplify the 2-layer
board layout and especially the ground plane below the BGA.
VDD power supply can be done with a single connection to the center of the BGA on the bottom layer of the
board. The decoupling 100 nF capacitors are connected between VDDCAPx and VSSCAPx without cutting
the board ground plane.
MS53132V1
VDD
Backup circuitry
(LSE, RTC and
backup registers)
Kernel logic
(CPU, digital
and memories
Level shifter
IO
logic
IN
OUT
Regulator
GPIOs
1.55 V to 3.6 V
1 x 4.7 μF
n x VSS
n x VDD
VBAT
VCORE
Power switch
VDDIO1
ADCs
OPAMPs
COMPs
VREFBUF
VREF+
VREF-
VDDA
10 nF + 1 μF
VDDA
VSSA
VREF
100 nF 1 μF
SMPS Regulator
VDDSMPS
VLXSMPS
VFBSMPS
VSSSMPS
4.7 μF
VDD
L1(1)
Exposed pad
4.7 μF
To all modules
SMPS
VSS_DCAPx(2)
VDD_DCAPx(2)
1 x 100 nF
Electrical characteristics STM32WB55xx
76/183 DS11929 Rev 7
Caution: Each power supply pair (VDD / VSS, VDDA / VSSA etc.) must be decoupled with filtering
ceramic capacitors as shown in Figure 14. These capacitors must be placed as close as
possible to (or below) the appropriate pins on the underside of the PCB to ensure the good
functionality of the device.
6.1.7 Current consumption measurement
Figure 16. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 18, Table 19 and Table 20
may cause permanent damage to the device. These are stress ratings only and functional
operation of the device at these conditions is not implied. Exposure to maximum rating
conditions for extended periods may affect device reliability.
Device mission profile (application conditions) is compliant with JEDEC JESD47
Qualification Standard, extended mission profiles are available on demand.
MS45416V1
IDDUSB
VDDUSB
IDDVBAT
VBAT
IDD
IDDA
VDD
VDDA
IDDRF
VDDRF
IDDSMPS
VDDSMPS
DS11929 Rev 7 77/183
STM32WB55xx Electrical characteristics
160
Table 18. Voltage characteristics(1)
Symbol Ratings Min Max Unit
VDDX - VSS
External main supply voltage
(including VDD, VDDA, VDDUSB, VLCD, VDDRF,
VDDSMPS, VBAT, VREF+)
-0.3 4.0
V
VIN(2)
Input voltage on FT_xxx pins
VSS-0.3
min (VDD, VDDA, VDDUSB, VLCD,
VDDRF, VDDSMPS) + 4.0(3)(4)
Input voltage on TT_xx pins 4.0
Input voltage on any other pin 4.0
|VDDx|Variations between different VDDX power pins
of the same domain -50
mV
|VSSx-VSS|Variations between all the different ground
pins(5) -50
VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA -0.4V
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VLCD, VBAT) and ground (VSS, VSSA) pins must always be connected to the
external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 19 for the maximum allowed injected current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
Table 19. Current characteristics
Symbol Ratings Max Unit
IVDD Total current into sum of all VDD power lines (source)(1) 130
mA
IVSS Total current out of sum of all VSS ground lines (sink)(1) 130
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100
IIO(PIN)
Output current sunk by any I/O and control pin except FT_f 20
Output current sunk by any FT_f pin 20
Output current sourced by any I/O and control pin 20
IIO(PIN)
Total output current sunk by sum of all I/Os and control pins(2) 100
Total output current sourced by sum of all I/Os and control pins(2) 100
IINJ(PIN)(3) Injected current on FT_xxx, TT_xx, RST and B pins, except PB0 and PB1 –5 / +0(4)
Injected current on PB0 and PB1 -5/0
|IINJ(PIN)|Total injected current (sum of all I/Os and control pins)(5) 25
1. All main power (VDD, VDDRF, VDDA, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be connected to the external
power supplies, in the permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count packages.
3. Positive injection (when VIN > VDD) is not possible on these I/Os and does not occur for input voltages lower than the
specified maximum value.
4. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 18: Voltage
characteristics for the maximum allowed input voltage values.
Electrical characteristics STM32WB55xx
78/183 DS11929 Rev 7
5. When several inputs are submitted to a current injection, the maximum |IINJ(PIN)| is the absolute sum of the negative
injected currents (instantaneous values).
Table 20. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150
°C
TJMaximum junction temperature 130
DS11929 Rev 7 79/183
STM32WB55xx Electrical characteristics
160
6.3 Operating conditions
6.3.1 Summary of main performance
6.3.2 General operating conditions
Table 21. Main performance at VDD = 3.3 V
Parameter Test conditions Typ Unit
ICORE
Core current
consumption
VBAT (VBAT = 1.8 V, VDD = 0 V) 0.002
µA
Shutdown (VDD = 1.8 V) 0.013
Standby (VDD = 1.8 V, 32 Kbytes RAM retention) 0.320
Stop2 1.85
Sleep (16 MHz) 740
LP run (2 MHz) 320
Run (64 MHz) 5000
Radio RX 4500
Radio TX 0 dBm output power 5200
IPERI
Peripheral
current
consumption
BLE
Advertising
(Tx = 0 dBm; Period 1.28 s; 31 bytes, 3 channels) 13
Advertising
(Tx = 0 dBm, 6 bytes; period 10.24 s, 3 channels) 4
LP timers - 6
I2C3 - 7.1
LPUART - 7.7
RTC - 2.5
Table 22. General operating conditions
Symbol Parameter Conditions Min Max Unit
fHCLK Internal AHB clock frequency - 0 64
MHzfPCLK1 Internal APB1 clock frequency - 0 64
fPCLK2 Internal APB2 clock frequency - 0 64
VDD Standard operating voltage - 1.71(1) 3.6
VVDDA Analog supply voltage
ADC or COMP used 1.62
3.6
VREFBUF used 2.4
ADC, COMP, VREFBUF
not used 0
VBAT Backup operating voltage - 1.55 3.6
Electrical characteristics STM32WB55xx
80/183 DS11929 Rev 7
6.3.3 RF BLE characteristics
RF characteristics are given at 1 Mbps, unless otherwise specified.
VFBSMPS SMPS Feedback voltage - 1.4 3.6
V
VDDRF Minimum RF voltage - 1.71 3.6
VDDUSB USB supply voltage
USB used 3.0 3.6
USB not used 0 3.6
VIN I/O input voltage
TT_xx I/O –0.3 VDD + 0.3
All I/O except TT_xx –0.3
min (min (VDD, VDDA,
VDDUSB, VLCD) + 3.6 V,
5.5 V)(2)(3)
PD
Power dissipation at
TA = 85 °C for suffix 6
or
TA = 105 °C for suffix 7(4)
UFQFPN48 - 803
mW
VFQFPN68 - 425
WLCSP100 - 558
UFBGA129 - 481
TA
Ambient temperature for the
suffix 6 version
Maximum power dissipation
–40
85
°C
Low-power dissipation(5) 105
Ambient temperature for the
suffix 7 version
Maximum power dissipation
–40
105
Low-power dissipation(5) 125
TJ Junction temperature range
Suffix 6 version
–40
105
Suffix 7 version 125
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. This formula has to be applied only on the power supplies related to the IO structure described by the pin definition table.
Maximum I/O input voltage is the smallest value between min (VDD, VDDA, VDDUSB, VLCD) + 3.6 V and 5.5V.
3. For operation with voltage higher than min (VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors
must be disabled.
4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.5: Thermal
characteristics).
5. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 7.5:
Thermal characteristics).
Table 22. General operating conditions (continued)
Symbol Parameter Conditions Min Max Unit
Table 23. RF transmitter BLE characteristics
Symbol Parameter Test conditions Min Typ Max Unit
Fop Frequency operating range - 2402 - 2480
MHz
Fxtal Crystal frequency --32-
F Delta frequency --250-
KHz
Rgfsk On Air data rate --12
Mbps
PLLres RF channel spacing --2-
MHz
DS11929 Rev 7 81/183
STM32WB55xx Electrical characteristics
160
Table 24. RF transmitter BLE characteristics (1 Mbps)(1)
Symbol Parameter Test conditions Min Typ Max Unit
Prf
Maximum output power
SMPS Bypass or ON
(VFBSMPS = 1.7 V and
VDD > 1.95 V)
-6.0-
dBm
SMPS Bypass or ON
(VFBSMPS = 1.4 V and
VDD > 1.71 V), Code 29
-3.7-
0 dBm output power --0-
Minimum output power ---20-
Pband Output power variation over the band Tx = 0 dBm - Typical -0.5 - 0.4 dB
BW20dB 20 dB signal bandwidth --670-KHz
IBSE In band spurious emission
2 MHz Bluetooth® Low Energy: -20 dBm - -50 -
dBm
3 MHz Bluetooth® Low Energy: -30 dBm - -53 -
fdFrequency drift Bluetooth® Low Energy: ±50 kHz -50 - +50 KHz
maxdr Maximum drift rate Bluetooth® Low Energy:
±20 KHz / 50 µs -20 - +20 KHz/
50 µs
fo Frequency offset Bluetooth® Low Energy:
±150 kHz -150 - +150
KHz
f1 Frequency deviation average Bluetooth® Low Energy:
between 225 and 275 kHz 225 - 275
fa Frequency deviation
f2 (average) / f1 (average) Bluetooth® Low Energy:> 0.80 0.80 - - -
OBSE(2) Out of band
spurious emission
< 1 GHz - - -61 -
dBm
1 GHz - - -46 -
1. :Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and
impedance matching networks to interface with a 50 antenna.
2. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).
Electrical characteristics STM32WB55xx
82/183 DS11929 Rev 7
Table 25. RF transmitter BLE characteristics (2 Mbps)(1)
Symbol Parameter Test conditions Min Typ Max Unit
Prf
Maximum output power
SMPS Bypass or ON
(VFBSMPS = 1.7 V and
VDD > 1.95 V)
-6.0-
dBm
SMPS Bypass or ON
(VFBSMPS = 1.4 V and
VDD > 1.71 V), Code 29
-3.7-
0 dBm output power --0-
Minimum output power ---20-
Pband Output power variation over the band Tx = 0 dBm - Typical -0.5 - 0.4 dB
BW20dB 20 dB signal bandwidth --670-KHz
IBSE In band spurious emission
4 MHz Bluetooth® Low Energy: -20 dBm - -56 -
dBm5 MHz Bluetooth® Low Energy: -20 dBm - -57 -
6 MHz Bluetooth® Low Energy: -30 dBm -58
fdFrequency drift Bluetooth® Low Energy: ±50 kHz -50 - 50 KHz
maxdr Maximum drift rate Bluetooth® Low Energy:
±20 KHz / 50 µs -20 - 20 KHz/
50 µs
fo Frequency offset Bluetooth® Low Energy: ±150 kHz -150 - 150
KHz
f1 Frequency deviation average Bluetooth® Low Energy:
between 450 and 550 kHz 450 - 550
fa Frequency deviation
f2 (average) / f1 (average) Bluetooth® Low Energy:> 0.80 0.80 - - -
OBSE(2) Out of band
spurious emission
< 1 GHz - - -61 -
dBm
1 GHz - - -46 -
1. :Measured in conducted mode, based on reference design (see AN5165), using output power specific external RF filter and
impedance matching networks to interface with a 50 antenna.
2. Suitable for systems targeting compliance with worldwide radio-frequency regulations ETSI EN 300 328 and EN 300 440
Class 2 (Europe), FCC CFR47 Part 15 (US), and ARIB STD-T66 (Japan).
DS11929 Rev 7 83/183
STM32WB55xx Electrical characteristics
160
Table 26. RF receiver BLE characteristics (1 Mbps)
Symbol Parameter Test conditions Typ Unit
Prx_max Maximum input signal PER <30.8%
Bluetooth® Low Energy: min -10 dBm 0
dBm
Psens(1)
High sensitivity mode (SMPS Bypass) PER <30.8%
Bluetooth® Low Energy: max -70 dBm
-96
High sensitivity mode (SMPS ON) -95.5
Rssimaxrange RSSI maximum value - -7
Rssiminrange RSSI minimum value - -94
Rssiaccu RSSI accuracy - 2
dB
C/Ico Co-channel rejection Bluetooth® Low Energy: 21 dB 8
C/I Adjacent channel interference
Adj 5 MHz
Bluetooth® Low Energy: -27 dB -53
Adj -5 MHz
Bluetooth® Low Energy: -27 dB -53
Adj = 4 MHz
Bluetooth® Low Energy: -27 dB -48
Adj = -4 MHz
Bluetooth® Low Energy: -15 dB -33
Adj = 3 MHz
Bluetooth® Low Energy: -27 dB -46
Adj = 2 MHz
Bluetooth® Low Energy: -17 dB -39
Adj = -2 MHz
Bluetooth® Low Energy: -15 dB -35
Adj = 1 MHz
Bluetooth® Low Energy: 15 dB -2
Adj = -1 MHz
Bluetooth® Low Energy: 15 dB 2
C/Image Image rejection (Fimage = -3 MHz) Bluetooth® Low Energy: -9 dB -29
P_IMD Intermodulation
|f2-f1| = 3 MHz
Bluetooth® Low Energy: -50 dBm -34
dBm
|f2-f1| = 4 MHz
Bluetooth® Low Energy: -50 dBm -30
|f2-f1| = 5 MHz
Bluetooth® Low Energy: -50 dBm -32
Electrical characteristics STM32WB55xx
84/183 DS11929 Rev 7
P_OBB Out of band blocking
30 to 2000 MHz
Bluetooth® Low Energy: -30 dBm -3
dBm
2003 to 2399 MHz
Bluetooth® Low Energy: -35 dBm -5
2484 to 2997 MHz
Bluetooth® Low Energy: -35 dBm -2
3 to 12.75 GHz
Bluetooth® Low Energy: -30 dBm 7
1. With ideal TX.
Table 26. RF receiver BLE characteristics (1 Mbps) (continued)
Symbol Parameter Test conditions Typ Unit
Table 27. RF receiver BLE characteristics (2 Mbps)
Symbol Parameter Test conditions Typ Unit
Prx_max Maximum input signal PER <30.8%
Bluetooth® Low Energy: min -10 dBm 0
dBm
Psens(1)
High sensitivity mode (SMPS Bypass) PER <30.8%
Bluetooth® Low Energy: max -70 dBm
-93
High sensitivity mode (SMPS ON) -92.5
Rssimaxrange RSSI maximum value - -7
Rssiminrange RSSI minimum value - -94
Rssiaccu RSSI accuracy - 2
dB
C/Ico Co-channel rejection Bluetooth® Low Energy spec: 21 dB 9
C/I Adjacent channel interference
Adj 8MHz
Bluetooth® Low Energy: -27 dB -53
Adj -8 MHz
Bluetooth® Low Energy: -27 dB -50
Adj = 6 MHz
Bluetooth® Low Energy: -27 dB -49
Adj = -6 MHz
Bluetooth® Low Energy: -15 dB -46
Adj = 4 MHz
Bluetooth® Low Energy: -17 dB -42
Adj = 2 MHz
Bluetooth® Low Energy:15 dB -3
Adj = -2 MHz
Bluetooth® Low Energy:15 dB -3
C/Image Image rejection (Fimage = -4 MHz) Bluetooth® Low Energy: -9 dB -26
DS11929 Rev 7 85/183
STM32WB55xx Electrical characteristics
160
6.3.4 RF 802.15.4 characteristics
P_IMD Intermodulation
|f2-f1| = 6 MHz
Bluetooth® Low Energy: -50 dBm -29
dBm
|f2-f1| = 8 MHz
Bluetooth® Low Energy: -50 dBm -30
|f2-f1| = 10 MHz
Bluetooth® Low Energy: -50 dBm -29
P_OBB Out of band blocking
30 to 2000 MHz
Bluetooth® Low Energy: -30 dBm -3
2003 to 2399 MHz
Bluetooth® Low Energy: -35 dBm -9
2484 to 2997 MHz
Bluetooth® Low Energy: -35 dBm -3
3 to 12.75 GHz
Bluetooth® Low Energy: -30 dBm 4
1. With ideal TX.
Table 27. RF receiver BLE characteristics (2 Mbps) (continued)
Symbol Parameter Test conditions Typ Unit
Table 28. RF BLE power consumption for VDD = 3.3 V
Symbol Parameter Typ Unit
Itxmax
TX maximum output power consumption (SMPS Bypass) 12.7
mA
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V) 7.8
Itx0dbm
TX 0 dBm output power consumption (SMPS Bypass) 8.8
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V) 5.2
Irxlo
Rx consumption (SMPS Bypass) 7.9
Rx consumption (SMPS On, VFBSMPS = 1.4 V) 4.5
Table 29. RF transmitter 802.15.4 characteristics
Symbol Parameter Conditions Min Typ Max Unit
Fop Frequency operating range - 2405 - 2480
MHzFxtal Crystal frequency - - 32 -
F Delta frequency - - 5 -
Roqpsk On Air data rate - - 250 - Kbps
PLLres RF channel spacing - - 5 - MHz
Electrical characteristics STM32WB55xx
86/183 DS11929 Rev 7
Figure 17. Typical link quality indicator code vs. Rx level
Prf
Maximum output power(1)
SMPS Bypass or ON
(VFBSMPS = 1.7 V) and
VDD > 1.95 V)
-5.7-
dBm
SMPS Bypass or ON
(VFBSMPS = 1.4 V and
VDD > 1.71 V)
-3.7-
0 dBm output power - - 0 -
Minimum output power - - -20 -
Pband Output power variation over the band Tx = 0 dBm - Typical -0.5 - 0.4 dB
EVMrms EVM rms Pmax - 8 - %
Txpd Transmit power density |f - > 3.5 MHz - -35 - dB
1. Measured in conducted mode, based on reference design (see AN5165), using output power specific
external RF filter and impedance matching networks to interface with a 50 antenna.
Table 30. RF receiver 802.15.4 characteristics
Symbol Parameter Conditions Typ Unit
Prx_max Maximum input signal Min: -20 dBm and PER < 1% -10
dBm
Rsens
Sensitivity (SMPS Bypass)
Max: -85 dBm and PER < 1%
-100
Sensitivity (SMPS ON) -98
C/adj Adjacent channel rejection - 35
dB
C/alt Alternate channel rejection - 46
Table 29. RF transmitter 802.15.4 characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
0
20
40
60
80
100
120
140
160
180
200
220
240
-120-115-110-105-100 -95 -90 -85 -80 -75 -70 -65 -60 -55 -50 -45 -40 -35 -30 -25 -20
LQI
P
in
(dBm)
TP/154/PHY24/RECEIVERͲ06/Ch11(2405MHz)
TP/154/PHY24/RECEIVERͲ06/Ch19(2445MHz)
TP/154/PHY24/RECEIVERͲ06/Ch26(2480MHz)
TEST_NAME
PARAM2
DS11929 Rev 7 87/183
STM32WB55xx Electrical characteristics
160
Figure 18. Typical energy detection (T = 27°C, VDD = 3.3 V)
Table 31. RF 802.15.4 power consumption for VDD = 3.3 V
Symbol Parameter Typ Unit
Itxmax
TX maximum output power consumption (SMPS Bypass) 11.7
mA
TX maximum output power consumption (SMPS On, VFBSMPS = 1.7 V) 6.5
Itx0dbm
TX 0 dBm output power consumption (SMPS Bypass) 9.1
TX 0 dBm output power consumption (SMPS On, VFBSMPS = 1.4 V) 4.5
Irxlo
Rx consumption (SMPS Bypass) 9.2
Rx consumption (SMPS On) 4.5
0
16
32
48
64
80
96
112
128
144
160
176
192
208
224
240
ED
Input power
Electrical characteristics STM32WB55xx
88/183 DS11929 Rev 7
6.3.5 Operating conditions at power-up / power-down
The parameters given in Table 32 are derived from tests performed under the ambient
temperature condition summarized in Table 22.
6.3.6 Embedded reset and power control block characteristics
The parameters given in Table 33 are derived from tests performed under the ambient
temperature conditions summarized in Table 22: General operating conditions.
Table 32. Operating conditions at power-up / power-down
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate
-
-
µs/V
VDD fall time rate 10
tVDDA
VDDA rise time rate
-
0
VDDA fall time rate 10
tVDDUSB
VDDUSB rise time rate
-
0
VDDUSB fall time rate 10
tVDDRF
VDDRF rise time rate
-
-
VDDRF fall time rate -
Table 33. Embedded reset and power control block characteristics
Symbol Parameter Conditions(1) Min Typ Max Unit
tRSTTEMPO(2) Reset temporization after BOR0 is detected VDD rising - 250 400 s
VBOR0(2) Brown-out reset threshold 0
Rising edge 1.62 1.66 1.70
V
Falling edge 1.60 1.64 1.69
VBOR1 Brown-out reset threshold 1
Rising edge 2.06 2.10 2.14
Falling edge 1.96 2.00 2.04
VBOR2 Brown-out reset threshold 2
Rising edge 2.26 2.31 2.35
Falling edge 2.16 2.20 2.24
VBOR3 Brown-out reset threshold 3
Rising edge 2.56 2.61 2.66
Falling edge 2.47 2.52 2.57
VBOR4 Brown-out reset threshold 4
Rising edge 2.85 2.90 2.95
Falling edge 2.76 2.81 2.86
VPVD0 Programmable voltage detector threshold 0
Rising edge 2.10 2.15 2.19
Falling edge 2.00 2.05 2.10
VPVD1 PVD threshold 1
Rising edge 2.26 2.31 2.36
Falling edge 2.15 2.20 2.25
VPVD2 PVD threshold 2
Rising edge 2.41 2.46 2.51
Falling edge 2.31 2.36 2.41
DS11929 Rev 7 89/183
STM32WB55xx Electrical characteristics
160
VPVD3 PVD threshold 3
Rising edge 2.56 2.61 2.66
V
Falling edge 2.47 2.52 2.57
VPVD4 PVD threshold 4
Rising edge 2.69 2.74 2.79
Falling edge 2.59 2.64 2.69
VPVD5 PVD threshold 5
Rising edge 2.85 2.91 2.96
Falling edge 2.75 2.81 2.86
VPVD6 PVD threshold 6
Rising edge 2.92 2.98 3.04
Falling edge 2.84 2.90 2.96
Vhyst_BORH0 Hysteresis voltage of BORH0
Hysteresis in
continuous mode -20-
mV
Hysteresis in
other mode -30-
Vhyst_BOR_PVD
Hysteresis voltage of BORH (except
BORH0) and PVD - - 100 -
IDD (BOR_PVD)(2) BOR(3) (except BOR0) and PVD
consumption from VDD
- - 1.1 1.6 µA
VPVM1 VDDUSB peripheral voltage monitoring - 1.18 1.22 1.26
V
VPVM3 VDDA peripheral voltage monitoring
Rising edge 1.61 1.65 1.69
Falling edge 1.6 1.64 1.68
Vhyst_PVM3 PVM3 hysteresis - - 10 -
mV
Vhyst_PVM1 PVM1 hysteresis - - 10 -
IDD (PVM1)(2) PVM1 consumption from VDD --0.2-
µA
IDD (PVM3)(2) PVM3 consumption from VDD --2-
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply current
characteristics tables.
Table 33. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
Electrical characteristics STM32WB55xx
90/183 DS11929 Rev 7
6.3.7 Embedded voltage reference
The parameters given in Table 34 are derived from tests performed under the ambient
temperature and supply voltage conditions summarized in Table 22: General operating
conditions.
Figure 19. VREFINT vs. temperature
Table 34. Embedded internal voltage reference
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < +125 °C 1.182 1.212 1.232 V
tS_vrefint (1) ADC sampling time when reading
the internal reference voltage -4
(2) --
µs
tstart_vrefint
Start time of reference voltage
buffer when ADC is enable --812
(2)
IDD(VREFINTBUF)VREFINT buffer consumption from
VDD when converted by ADC - - 12.5 20(2) µA
VREFINT
Internal reference voltage spread
over the temperature range VDD = 3 V - 5 7.5(2) mV
TCoeff Temperature coefficient –40 °C < TA < +125 °C - 30 50(2) ppm/°C
ACoeff Long term stability 1000 hours, T = 25 °C - 300 1000(2) ppm
VDDCoeff Voltage coefficient 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V
VREFINT_DIV1 1/4 reference voltage
-
24 25 26
%
VREFINT
VREFINT_DIV2 1/2 reference voltage 49 50 51
VREFINT_DIV3 3/4 reference voltage 74 75 76
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
MSv40169V1
1.185
1.19
1.195
1.2
1.205
1.21
1.215
1.22
1.225
1.23
1.235
-40 -20 0 20 40 60 80 100 120
V
°C
Mean Min Max
DS11929 Rev 7 91/183
STM32WB55xx Electrical characteristics
160
6.3.8 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 16: Current consumption
measurement scheme.
Typical and maximum current consumption
The MCU is put under the following conditions:
All I/O pins are in analog input mode
All peripherals are disabled except when explicitly mentioned
The Flash memory access time is adjusted with the minimum wait states number,
depending on the fHCLK frequency (refer to the table “Number of wait states according
to CPU clock (HCLK) frequency” available in the reference manual).
When the peripherals are enabled fPCLK = fHCLK
For Flash memory and shared peripherals fPCLK = fHCLK = fHCLKS
The parameters given in Table 35 to Table 46 are derived from tests performed under
ambient temperature and supply voltage conditions summarized in Table 22: General
operating conditions.
Electrical characteristics STM32WB55xx
92/183 DS11929 Rev 7
Table 35. Current consumption in Run and Low-power run modes, code with data processing
running from Flash, ART enable (Cache ON Prefetch OFF), VDD = 3.3 V
Symbol Parameter
Conditions Typ Max(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD(Run)
Supply
current in
Run mode
fHCLK = fHSI16 up to
16 MHz included,
fHCLK = fHSE = 32 MHz
fHSI16 + PLL ON
above 32 MHz
All peripherals
disabled
Range 2
16 MHz 1.90 1.90 2.00 2.20 2.40 2.52 2.96
mA
2 MHz 0.960 0.985 1.10 1.25 1.25 1.57 2.05
Range 1
64 MHz 8.15 8.25 8.40 8.60 9.30 9.60 10.02
32 MHz 4.20 4.25 4.40 4.65 4.25 4.63 5.17
16 MHz 2.25 2.30 2.40 2.65 2.65 2.91 3.52
SMPS
Range 1
64 MHz 5.00 5.00 5.10 5.20 - - -
32 MHz 3.15 3.15 3.25 3.35 - - -
16 MHz 2.30 2.30 2.35 2.45 - - -
IDD(LPRun)
Supply
current in
Low-power
run mode
fHCLK = fMSI
All peripherals disabled
2 MHz 0.335 0.360 0.470 0.670 0.480 0.910 1.47
1 MHz 0.170 0.210 0.325 0.520 0.270 0.730 1.31
400 kHz 0.0815 0.120 0.230 0.425 0.140 0.590 1.18
100 kHz 0.0415 0.076 0.190 0.385 0.070 0.550 1.14
STM32WB55xx Electrical characteristics
DS11929 Rev 7 93/183
Table 36. Current consumption in Run and Low-power run modes, code with data processing
running from SRAM1, VDD = 3.3 V
Symbol Parameter
Conditions Typ Max(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD(Run)
Supply
current in
Run mode
fHCLK = fHSI16 up to
16 MHz included,
fHCLK = fHSE = 32 MHz
fHSI16 + PLL ON
above 32 MHz
All peripherals
disabled
Range 2
16 MHz2.002.052.152.302.573.043.64
mA
2 MHz 0.970 1.00 1.10 1.25 1.62 1.90 2.55
Range 1
64 MHz 8.80 8.90 9.00 9.20 10.50 10.80 11.30
32 MHz4.504.554.704.904.634.895.62
16 MHz2.402.402.552.702.502.703.21
SMPS
Range 1
64 MHz 5.25 5.30 5.35 5.45 - - -
32 MHz 3.25 3.25 3.35 3.45 - - -
16 MHz 2.35 2.35 2.40 2.45 - - -
IDD(LPRun)
Supply
current in
Low-power
run mode
fHCLK = fMSI
All peripherals disabled
2 MHz 0.265 0.285 0.385 0.550 0.440 0.940 1.620
1 MHz 0.135 0.170 0.270 0.430 0.290 0.760 1.480
400 kHz 0.066 0.097 0.195 0.360 0.200 0.670 1.380
100 kHz 0.031 0.0625 0.160 0.325 0.170 0.470 1.330
Electrical characteristics STM32WB55xx
94/183 DS11929 Rev 7
Table 37. Typical current consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V
Symbol Parameter
Conditions TYP
Unit
TYP
Unit
-Voltage
scaling Code 25 °C 25 °C
IDD(Run) Supply current in
Run mode
fHCLK = fHSI16 up to 16 MHz included, fHSI16 + PLL ON above 32 MHz
All peripherals disable
Range 2
fHCLK = 16 MHz
Reduced code(1) 1.90
mA
119
µA/MHz
Coremark 1.85 116
Dhrystone 2.1 1.85 116
Fibonacci 1.75 109
While(1) 1.60 100
Range 1
fHCLK = 64 MHz
Reduced code(1) 8.15
mA
127
µA/MHz
Coremark 8.00 125
Dhrystone 2.1 8.10 127
Fibonacci 7.60 119
While(1) 6.85 107
Range 1, SMPS On
fHCLK = 64 MHz
Reduced code(1) 5.00
mA
78
µA/MHz
Coremark 4.95 77
Dhrystone 2.1 4.95 77
Fibonacci 4.75 74
While(1) 4.40 69
Range 1, SMPS On
fHCLK = 64 MHz,
When RF Tx
level = 0 dBm(2)
Reduced code(1) 4.07
mA
64
µA/MHz
Coremark 3.99 62
Dhrystone 2.1 4.04 63
Fibonacci 3.79 59
While(1) 3.42 53
IDD(LPRun) Supply current in
Low-power run
fHCLK = fMSI = 2 MHz
All peripherals disable
Reduced code(1) 320
µA
160
µA/MHz
Coremark 350 175
Dhrystone 2.1 350 175
Fibonacci 390 195
While(1) 225 113
1. Reduced code used for characterization results provided in Table 35 and Table 36.
2. Value computed. MCU consumption when RF TX and SMPS are ON.
DS11929 Rev 7 95/183
STM32WB55xx Electrical characteristics
160
Table 38. Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V
Symbol Parameter
Conditions TYP
Unit
TYP
Unit
-Voltage
scaling Code 25 °C 25 °C
IDD(Run) Supply current in
Run mode
fHCLK = fHSI16 up to 16 MHz included, fHSI16 + PLL ON above 32 MHz
All peripherals disable
Range 2
fHCLK = 16 MHz
Reduced code(1) 2.00
mA
125
µA/MHz
Coremark 1.75 109
Dhrystone 2.1 1.95 122
Fibonacci 1.85 116
While(1) 1.85 116
Range 1
fHCLK = 64 MHz
Reduced code(1) 8.80
mA
138
µA/MHz
Coremark 7.50 117
Dhrystone 2.1 8.60 134
Fibonacci 7.90 123
While(1) 8.00 125
Range 1, SMPS On
fHCLK = 64 MHz
Reduced code(1) 5.25
mA
82
µA/MHz
Coremark 4.65 73
Dhrystone 2.1 5.15 80
Fibonacci 4.85 76
While(1) 4.90 77
Range 1, SMPS On
fHCLK = 64 MHz,
When RF Tx
level = 0 dBm(2)
Reduced code(1) 4.39
mA
69
µA/MHz
Coremark 3.74 58
Dhrystone 2.1 4.29 67
Fibonacci 3.94 62
While(1) 3.99 62
IDD(LPRun) Supply current in
Low-power run
fHCLK = fMSI = 2 MHz
All peripherals disable
Reduced code(1) 255
µA
128
µA/MHz
Coremark 205 103
Dhrystone 2.1 250 125
Fibonacci 230 115
While(1) 220 110
1. Reduced code used for characterization results provided in Table 35 and Table 36.
2. Value computed. MCU consumption when RF TX and SMPS are ON.
Electrical characteristics STM32WB55xx
96/183 DS11929 Rev 7
Table 39. Current consumption in Sleep and Low-power sleep modes, Flash memory ON
Symbol Parameter
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-Voltage
scaling fHCLK 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD(Sleep)
Supply
current in
sleep mode,
fHCLK = fHSI16 up
to 16 MHz
included,
fHCLK = fHSE up
to 32 MHz
fHSI16 + PLL ON
above 32 MHz
All peripherals
disabled
Range 2 16 MHz 0.740 0.765 0.865 1.05 0.840 1.210 1.810
mA
Range 1
64 MHz 2.65 2.70 2.80 3.00 3.00 3.33 3.91
32 MHz 1.40 1.45 1.60 1.80 1.55 1.86 2.49
16 MHz 0.845 0.875 0.990 1.20 0.970 1.40 2.02
SMPS
Range 1
64 MHz 2.60 2.60 2.65 2.75 - - -
32 MHz 1.90 1.95 2.00 2.10 - - -
16 MHz 1.70 1.70 1.75 1.80 - - -
IDD(LPSleep)
Supply
current in
low-power
sleep mode
fHCLK = fMSI
All peripherals disabled
2 MHz 0.090 0.125 0.235 0.430 0.130 0.600 1.19
1 MHz 0.058 0.093 0.205 0.400 0.090 0.570 1.16
400 kHz 0.044 0.0725 0.185 0.380 0.070 0.540 1.11
100 kHz 0.0315 0.0635 0.0175 0.370 0.055 0.530 1.13
Table 40. Current consumption in Low-power sleep modes, Flash memory in Power down
Symbol Paramet
er
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-f
HCLK 25 °C 55 °C 85 °C 105 °C 25 °C 85 °C 105 °C
IDD(LPSl
eep)
Supply
current in
low-
power
sleep
fHCLK =
fMSI
All
periphera
2 MHz 94.0 115 200 335 135 610 1201
µA
1 MHz 56.5 86.0 170 305 94.2 560 1171
400 kHz 40.5 66.5 150 285 68.0 540 1129
100 kHz 27.5 57.5 140 275 54.6 539 1131
STM32WB55xx Electrical characteristics
DS11929 Rev 7 97/183
Table 41. Current consumption in Stop 2 mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
IDD
(Stop 2)
Supply current
in Stop 2
mode, RTC
disabled
LCD disabled
BLE disabled
1.8 V 1.00 1.85 3.15 5.95 21.5 50.0 1.58 4.12 56.9 132.7
µA
2.4 V 1.10 1.85 3.20 6.00 22.0 51.0 - - - -
3.0 V 1.10 1.85 3.25 6.10 22.0 52.0 1.60 4.17 57.9 135.6
3.6 V 1.15 1.95 3.35 6.25 23.0 53.0 1.69 4.40 58.6 135.7
LCD enabled(2)
and clocked
by LSI
BLE disabled
1.8 V 1.20 2.00 3.35 6.10 22.0 50.5 1.76 4.30 57.1 133.3
2.4 V 1.20 2.00 3.40 6.20 22.0 51.0 - - - -
3.0 V 1.25 2.10 3.45 6.30 22.5 52.0 1.85 4.41 58.1 135.8
3.6 V 1.30 2.15 3.60 6.55 23.0 53.5 1.97 4.66 59.4 136.6
IDD
(Stop 2
with
RTC)
Supply current
in Stop 2
mode, RTC
enabled, BLE
disabled
RTC clocked
by LSI,
LCD disabled
1.8 V 1.30 2.10 3.45 6.25 22.0 50.5 1.91 4.50 57.2 133.0
2.4 V 1.45 2.25 3.55 6.40 22.5 51.5 - - - -
3.0 V 1.50 2.30 3.70 6.55 22.5 52.5 2.11 4.64 58.3 136.1
3.6 V 1.75 2.50 3.95 6.85 23.5 53.5 2.26 5.12 59.7 136.9
RTC clocked
by LSI,
LCD enabled(2)
1.8 V 1.35 2.20 3.55 6.30 22.0 50.5 1.99 4.57 57.4 133.8
2.4 V 1.50 2.35 3.65 6.50 22.5 51.5 - - - -
3.0 V 1.70 2.45 3.85 6.65 23.0 52.5 2.17 4.87 58.4 136.3
3.6 V 1.80 2.60 4.05 6.95 23.5 54.0 2.41 5.11 59.9 137.1
RTC clocked by
LSE quartz(3)
in low drive
mode
1.8 V 1.35 2.20 3.50 6.25 22.0 50.5 1.91 4.29 57.1 133.5
2.4 V 1.45 2.25 3.65 6.40 22.5 51.5 - - - -
3.0 V 1.55 2.45 3.80 6.65 23.0 52.5 2.01 4.31 58.0 135.9
3.6 V 1.70 2.55 4.05 6.95 23.5 54.0 2.16 4.40 81.6 137.0
Electrical characteristics STM32WB55xx
98/183 DS11929 Rev 7
IDD
(wakeup
from
Stop 2)
Supply current
during
wakeup from
Stop 2 mode
bypass mode
Wakeup clock is
HSI16, voltage
Range 2. See(4).
3.0 V - 389 - - - - - - - -
µA
Wakeup clock is
MSI = 32 MHz,
voltage
Range 1. See(4).
3.0 V - 320 - - - - - - - -
Wakeup clock is
MSI = 4 MHz,
voltage
Range 2. See(4).
3.0 V - 528 - - - - - - - -
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading
capacitors.
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode
wakeup timings.
Table 41. Current consumption in Stop 2 mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
STM32WB55xx Electrical characteristics
DS11929 Rev 7 99/183
Table 42. Current consumption in Stop 1 mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
IDD
(Stop 1)
Supply
current in
Stop 1 mode,
RTC
disabled
BLE disabled
LCD disabled
1.8 V 5.05 9.20 15.5 28.0 96.0 210 7.00 28.4 343.7 738.6
µA
2.4 V 5.10 9.25 15.5 28.5 96.5 215 - - - -
3.0 V 5.15 9.30 15.5 28.5 97.0 215 7.07 28.5 346.8 746.0
3.6 V 5.25 9.45 16.0 29.0 97.5 215 7.30 28.8 351.0 749.4
BLE disabled
LCD enabled(2),
clocked by LSI
1.8 V 5.05 9.30 15.5 28.5 96.0 210 7.10 28.7 344.4 739.0
2.4 V 5.10 9.35 16.0 28.5 96.5 215 - - - -
3.0 V 5.20 9.65 16.0 28.5 97.0 215 7.26 29.6 345.0 747.0
3.6 V 5.55 9.85 16.0 29.0 98.5 215 7.62 29.8 349.0 750.8
IDD
(Stop 1
with
RTC)
Supply
current in
Stop 1 mode,
RTC
enabled,
BLE disabled
RTC clocked by LSI
LCD disabled
1.8 V 5.30 9.35 16.0 28.5 96.5 215 7.30 29.5 343.7 739.2
2.4 V 5.40 9.45 16.0 28.5 97.0 215 - - - -
3.0 V 5.70 9.55 16.5 29.0 98.5 220 7.69 29.7 347.2 746.1
3.6 V 5.85 10.0 16.5 29.5 96.5 215 8.08 29.8 349.9 751.1
RTC clocked by LSI
LCD enabled(2)
1.8 V 5.25 9.60 16.0 28.5 96.5 215 7.10 29.0 344.3 739.9
2.4 V 5.30 9.75 16.0 29.0 97.0 215 - - - -
3.0 V 5.85 9.80 16.5 29.0 97.5 215 7.53 29.8 347.4 746.2
3.6 V 5.90 10.5 16.5 29.0 98.5 220 8.18 29.9 350.6 751.8
RTC clocked by
LSE quartz(3) in
Low drive mode
1.8 V 5.35 9.55 16.0 28.5 96.5 215 6.00 28.7 343.9 738.7
2.4 V 5.40 9.70 16.0 29.0 96.5 215 - - - -
3.0 V 5.75 9.70 16.0 29.0 97.5 215 7.40 28.9 346.6 743.8
3.6 V 5.90 10.0 16.5 29.5 99.0 220 7.58 29.2 349.0 749.9
Electrical characteristics STM32WB55xx
100/183 DS11929 Rev 7
IDD
(wakeup
from
Stop1)
Supply
current
during
wakeup from
Stop 1
bypass mode
Wakeup clock
HSI16,
voltage Range 2.
See (4).
3.0 V - 129 - - - - - - - -
µA
Wakeup clock
MSI = 32 MHz,
voltage Range 1.
See (4).
3.0 V - 124 - - - - - - - -
Wakeup clock
MSI = 4 MHz,
voltage Range 2.
See (4).
3.0 V - 207 - - - - - - - -
1. Guaranteed based on test during characterization, unless otherwise specified.
2. LCD enabled with external voltage source. Consumption from VLCD excluded. Refer to LCD controller characteristics for IVLCD
3. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
4. Wakeup with code execution from Flash. Average value given for a typical wakeup time as specified in Table 49: Low-power mode wakeup
timings.
Table 42. Current consumption in Stop 1 mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
STM32WB55xx Electrical characteristics
DS11929 Rev 7 101/183
Table 43. Current consumption in Stop 0 mode
Symbol Parameter
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
IDD
(Stop 0)
Supply current
in Stop 0 mode,
RTC disabled,
BLE disabled,
LCD disabled
--
1.8 V 95.5 100 110 120 195 315 110.0 114.2 458.1 874.8
µA
2.4 V 97.5 105 110 125 195 315 - - - -
3.0 V 98.5 105 110 125 195 320 117.3 134.3 461.8 880.0
3.6 V 100 105 115 125 200 320 165.0 135.7 494.0 884.1
Supply current
during wakeup
from Stop 0
Bypass mode
Wakeup clock
HSI16,
voltage Range 2.
See (2).
2. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49: Low-power mode
wakeup timings.
3.0 V - 331 - - - - - - - -
Wakeup clock is
MSI = 32 MHz,
voltage Range 1.
See (2).
3.0 V - 349 - - - - - - - -
Wakeup clock is
MSI = 4 MHz,
voltage Range 2.
See (2).
3.0 V - 196 - - - - - - - -
Electrical characteristics STM32WB55xx
102/183 DS11929 Rev 7
Table 44. Current consumption in Standby mode
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
IDD
(Standby)
Supply current
in Standby
mode (backup
registers and
SRAM2a
retained),
RTC disabled
BLE disabled
No independent
watchdog
1.8 V 0.270 0.320 0.515 0.920 3.45 8.20 0.300 0.828 7.850 19.300
µA
2.4 V 0.270 0.350 0.540 0.955 3.50 8.80 - - - -
3.0 V 0.270 0.370 0.575 1.00 3.85 9.50 0.380 0.945 8.505 21.200
3.6 V 0.300 0.410 0.645 1.15 4.20 10.50 0.400 1.040 8.980 22.400
BLE disabled
With
independent
watchdog
1.8 V 0.265 0.525 0.710 1.10 3.90 8.40 0.520 1.095 8.041 19.500
2.4 V 0.280 0.595 0.790 1.20 4.00 9.05 - - - -
3.0 V 0.290 0.670 0.855 1.35 4.15 9.80 0.730 1.253 8.774 21.400
3.6 V 0.295 0.770 0.990 1.50 4.60 11.00 0.851 1.356 9.360 22.840
IDD
(Standby with
RTC)
Supply current
in Standby
mode (backup
registers and
SRAM2a
retained),
RTC enabled
BLE disabled
RTC clocked by
LSI, no
independent
watchdog
1.8 V 0.500 0.600 0.780 1.20 3.70 8.45 0.680 1.165 8.143 19.660
2.4 V 0.630 0.705 0.910 1.30 3.80 9.10 - - - -
3.0 V 0.725 0.825 1.050 1.50 3.95 9.90 0.930 1.463 8.977 21.440
3.6 V 0.860 0.970 1.200 1.70 4.25 11.00 1.050 1.628 9.634 23.080
RTC clocked by
LSI, with
independent
watchdog
1.8 V 0.565 0.655 0.830 1.25 3.75 8.55 0.734 1.196 8.187 19.710
2.4 V 0.635 0.790 0.975 1.40 4.10 9.20 - - - -
3.0 V 0.725 0.915 1.100 1.55 4.50 10.00 1.028 1.573 9.072 21.810
3.6 V 0.870 1.050 1.300 1.80 4.90 11.00 1.144 1.723 9.730 23.200
RTC clocked by
LSE quartz (2) in
low drive mode
1.8 V 0.525 0.625 0.840 1.25 3.75 8.60 0.600 1.061 8.029 19.610
2.4 V 0.665 0.755 0.960 1.35 4.05 9.25 - - - -
3.0 V 0.775 0.880 1.100 1.55 4.40 10.00 0.600 1.100 8.719 21.570
3.6 V 0.935 1.050 1.300 1.80 5.00 11.00 0.750 1.171 9.460 23.030
STM32WB55xx Electrical characteristics
DS11929 Rev 7 103/183
IDD
(SRAM2a)(3)
Supply
current to be
subtracted in
Standby
mode when
SRAM2a is
not retained
-
1.8 V 0.160 0.210 0.380 0.660 2.30 5.15 - - - -
µA
2.4 V 0.165 0.245 0.375 0.650 2.15 5.20 - - - -
3.0 V 0.155 0.250 0.385 0.630 2.25 5.20 - - - -
3.6 V 0.155 0.235 0.375 0.670 2.20 5.20 - - - -
IDD
(wakeup from
Standby)
Supply current
during
wakeup from
Standby mode
Wakeup clock is
HSI16. See (4).
SMPS OFF
3.0 V - 1.73 - - - - - - - - mA
1. Guaranteed by characterization results, unless otherwise specified.
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading
capacitors.
3. The supply current in Standby with SRAM2a mode is: IDD(Standby) + IDD(SRAM2a). The supply current in Standby with RTC with
SRAM2a mode is: IDD(Standby + RTC) + IDD(SRAM2a).
4. Wakeup with code execution from Flash memory. Average value given for a typical wakeup time as specified in Table 49.
Table 44. Current consumption in Standby mode (continued)
Symbol Parameter
Conditions TYP MAX(1)
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
Electrical characteristics STM32WB55xx
104/183 DS11929 Rev 7
Table 45. Current consumption in Shutdown mode
Symbol Parameter
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-V
DD 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 85 °C 105 °C
IDD
(Shutdown)
Supply current in
Shutdown mode
(backup
registers
retained) RTC
disabled
-
1.8 V 0.039 0.013 0.030 0.100 0.635 1.950 - - 2.099 6.200
µA
2.4 V 0.059 0.014 0.055 0.120 0.785 2.350 - - - -
3.0 V 0.064 0.037 0.070 0.180 1.000 2.900 - 0.185 2.670 7.490
3.6 V 0.071 0.093 0.140 0.280 1.300 3.700 - 0.247 3.120 8.450
IDD
(Shutdown
with RTC)
Supply current in
Shutdown mode
(backup
registers
retained) RTC
enabled
RTC clocked
by LSE
quartz (2) in low
drive mode
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
1.8 V 0.320 0.315 0.355 0.420 0.985 2.300 - 0.572 2.702 6.180
2.4 V 0.425 0.405 0.460 0.540 1.200 2.800 - - - -
3.0 V 0.535 0.535 0.595 0.700 1.500 3.450 - 0.664 2.990 7.800
3.6 V 0.695 0.720 0.790 0.940 2.000 4.350 - 0.790 3.730 9.140
Table 46. Current consumption in VBAT mode
Symbol Parameter
Conditions TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
-V
BAT 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C
IDD(VBAT)
Backup
domain
supply
current
RTC disabled
1.8 V 1.00 2.00 4.00 10.0 52.0 145 - - - - - -
nA
2.4 V 1.00 2.00 5.00 12.0 60.0 165 - - - - - -
3.0 V 2.00 4.00 7.00 16.0 75.0 225 - - - - - -
3.6 V 7.00 15.0 23.0 42.0 170 450 - - - - - -
RTC enabled
and clocked
by LSE
quartz(2)
2. Based on characterization done with a 32.768 kHz crystal (MC306-G-06Q-32.768, manufacturer JFVNY) with two 6.8 pF loading capacitors.
1.8 V 295 305 315 325 380 480 - - - - - -
2.4 V 385 395 400 415 475 595 - - - - - -
3.0 V 495 505 515 530 600 765 - - - - - -
3.6 V 630 645 660 685 830 1150 - - - - - -
STM32WB55xx Electrical characteristics
DS11929 Rev 7 105/183
Table 47. Current under Reset condition
Symbol Conditions
TYP MAX(1)
1. Guaranteed by characterization results, unless otherwise specified.
Unit
0 °C 25 °C 40 °C 55 °C 85 °C 105 °C 0 °C 25 °C 40 °C 55 °C 85 °C 105 °C
IDD(RST)
1.8 V -410----------
µA
2.4 V ------------
3.0 V -550-----750----
3.6 V -750----------
Electrical characteristics STM32WB55xx
106/183 DS11929 Rev 7
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Ta ble 69: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption measured previously (see
Table 48: Peripheral current consumption, the I/Os used by an application also contribute to
the current consumption. When an I/O pin switches, it uses the current from the I/O supply
voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or
external) connected to the pin:
ISW VDD fSW C=
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CIO+ CEXT
CIO is the I/O pin capacitance
CEXT is the PCB board capacitance plus any connected external device pin
capacitance.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
DS11929 Rev 7 107/183
STM32WB55xx Electrical characteristics
160
On-chip peripheral current consumption
The current consumption of the on-chip peripherals is given in Table 48. The MCU is placed
under the following conditions:
All I/O pins are in Analog mode
The given value is calculated by measuring the difference of the current consumptions:
when the peripheral is clocked on
when the peripheral is clocked off
Ambient operating temperature and supply voltage conditions summarized in Table 18:
Voltage characteristics
The power consumption of the digital part of the on-chip peripherals is given in
Table 48. The power consumption of the analog part of the peripherals (where
applicable) is indicated in each related section of the datasheet.
Table 48. Peripheral current consumption
Peripheral Range 1 Range 2 Low-power
run and sleep Unit
AHB1
Bus Matrix(1) 2.40 2.00 1.80
µA/MHz
TSC 1.25 1.05 1.05
CRC 0.465 0.375 0.380
DMA1 1.90 1.55 1.80
DMA2 2.00 1.65 1.80
DMAMUX 4.15 3.40 4.45
All AHB1 Peripherals 12.0 10.0 11.5
AHB2(2)
AES1 4.00 3.30 3.90
ADC independent clock domain 2.55 2.10 2.10
ADC clock domain 2.25 1.90 1.90
All AHB2 Peripherals 7.45 6.20 6.60
AHB3 QSPI 7.60 6.25 7.10
AHB Shared
TRNG independent clock domain 3.80 N/A N/A
TRNG clock domain 2.00 N/A N/A
SRAM2 0.170 0.135 0.135
FLASH 8.35 6.90 8.45
AES2 6.95 5.75 7.00
PKA 4.40 3.65 4.25
All AHB Shared Peripherals 17.5 14.5 16.0
Electrical characteristics STM32WB55xx
108/183 DS11929 Rev 7
APB1
RTCA 1.10 0.88 1.25
µA/MHz
CRS 0.24 0.20 0.20
USB FS independent clock domain 3.20 N/A N/A
USB FS clock domain 2.05 N/A N/A
I2C1 independent clock domain 2.50 4.40 4.40
I2C1 clock domain 4.80 4.00 5.50
I2C3 independent clock domain 2.10 3.50 3.55
I2C3 clock domain 3.70 3.10 3.55
LCD 1.35 1.10 2.10
SPI2 1.65 1.40 2.25
LPTIM1 independent clock domain 2.10 3.40 3.00
LPTIM1 clock domain 3.60 3.00 3.80
TIM2 5.65 4.70 4.90
LPUART1 independent clock domain 2.70 4.15 3.85
LPUART1 clock domain 4.45 3.70 5.25
LPTIM2 clock domain 3.95 3.25 4.50
LPTIM2 independent clock domain 2.20 3.70 3.80
WWDG 0.335 0.285 0.965
All APB1 Peripherals 27.0 22.5 25.5
APB2
AHB to APB2(3) 1.10 0.885 1.35
TIM1 8.20 6.80 7.25
TIM17 2.85 2.40 2.40
TIM16 2.75 2.30 2.55
USART1 independent clock domain 4.40 7.80 7.00
USART1 clock domain 8.80 7.30 7.75
SPI1 1.75 1.45 1.45
SAI1 independent clock domain 2.50 1.50 3.50
SAI1 clock domain 2.40 N/A N/A
All APB2 on 28.0 23.0 25.5
ALL 97.5 80.5 90.0
1. The BusMatrix is automatically active when at least one master is ON (CPU, DMA).
2. GPIOs consumption during read and write accesses.
3. The AHB to APB2 bridge is automatically active when at least one peripheral is ON on the APB2.
Table 48. Peripheral current consumption (continued)
Peripheral Range 1 Range 2 Low-power
run and sleep Unit
DS11929 Rev 7 109/183
STM32WB55xx Electrical characteristics
160
6.3.9 Wakeup time from Low-power modes and voltage scaling
transition times
The wakeup times given in Table 49 are the latency between the event and the execution of
the first user instruction.
The device goes in Low-power mode after the WFE (Wait For Event) instruction.
Table 49. Low-power mode wakeup timings(1)
Symbol Parameter Conditions Typ Max Unit
tWUSLEEP
Wakeup time from
Sleep mode
to Run mode
-910
No. of
CPU
cycles
tWULPSLEEP
Wakeup time from
Low-power sleep mode
to Low-power run mode
Wakeup in Flash with memory in power-down
during low-power sleep mode (FPDS = 1 in
PWR_CR1) and with clock MSI = 2 MHz
910
tWUSTOP0
Wake up time from
Stop 0 mode
to Run mode in Flash
memory
Range 1
Wakeup clock MSI = 32 MHz 2.38 2.96
µs
Wakeup clock HSI16 = 16 MHz 1.69 2.00
Range 2
Wakeup clock HSI16 = 16 MHz 1.70 2.01
Wakeup clock MSI = 4 MHz 7.43 8.59
Wake up time from
Stop 0 mode
to Run mode in SRAM1
Range 1
Wakeup clock MSI = 32 MHz 2.63 3.00
Wakeup clock HSI16 = 16 MHz 1.80 2.00
Range 2
Wakeup clock HSI16 = 16 MHz 1.82 2.02
Wakeup clock MSI = 4 MHz 7.58 8.70
tWUSTOP1
Wake up time from
Stop 1 mode
to Run in Flash memory
SMPS bypassed
Range 1
Wakeup clock MSI = 32 MHz 4.67 5.56
Wakeup clock HSI16 = 16 MHz 5.09 6.03
Range 2
Wakeup clock HSI16 = 16 MHz 5.08 6.00
Wakeup clock MSI = 4 MHz 8.36 9.28
Wake up time from
Stop 1 mode
to Run in SRAM1
SMPS bypassed
Range 1
Wakeup clock MSI = 32 MHz 4.88 5.55
Wakeup clock HSI16 = 16 MHz 5.29 5.95
Range 2
Wakeup clock HSI16 = 16 MHz 5.28 5.96
Wakeup clock MSI = 4 MHz 8.49 9.30
Wake up time from
Stop 1 mode to
Low-power run mode
in Flash memory Regulator in
Low-power
mode (LPR = 1
in PWR_CR1)
Wakeup clock MSI = 4 MHz
7.96 9.59
Wake up time from
Stop 1 mode to
Low-power run mode
in SRAM1
8.00 9.47
Electrical characteristics STM32WB55xx
110/183 DS11929 Rev 7
tWUSTOP2
Wake up time from
Stop 2 mode
to Run mode in Flash
memory
SMPS bypassed
Range 1
Wakeup clock MSI = 32 MHz 5.27 6.07
µs
Wakeup clock HSI16 = 16 MHz 5.71 6.52
Range 2
Wakeup clock HSI16 = 16 MHz 5.72 6.52
Wakeup clock MSI = 4 MHz 9.10 9.93
Wake up time from
Stop 2 mode to Run
mode in SRAM1
SMPS bypassed
Range 1
Wakeup clock MSI = 32 MHz 5.20 5.94
Wakeup clock HSI16 = 16 MHz 5.64 6.42
Range 2
Wakeup clock HSI16 = 16 MHz 5.64 6.43
Wakeup clock MSI = 4 MHz 9.05 9.85
tWUSTBY
Wakeup time from
Standby mode
to Run mode
SMPS Bypassed
Range 1 Wakeup clock HSI16 = 16 MHz 51.0 58.1 µs
1. Guaranteed by characterization results (VDD = 3 V, .T = 25 °C).
Table 49. Low-power mode wakeup timings(1) (continued)
Symbol Parameter Conditions Typ Max Unit
Table 50. Regulator modes transition times(1)
Symbol Parameter Conditions Typ Max Unit
tWULPRUN
Wakeup time from Low-power run mode to
Run mode(2) Code run with MSI 2 MHz 15.33 16.30
µs
tVOST
Regulator transition time from Range 2 to
Range 1 or Range 1 to Range 2(3) Code run with HSI16 21.4 28.9
1. Guaranteed by characterization results (VDD = 3 V, T = 25 °C).
2. Time until REGLPF flag is cleared in PWR_SR2.
3. Time until VOSF flag is cleared in PWR_SR2.
Table 51. Wakeup time using LPUART(1)
Symbol Parameter Conditions Typ Max Unit
tWULPUART
Wakeup time needed to calculate the maximum
LPUART baud rate allowing to wakeup up from Stop
mode when LPUART clock source is HSI16
Stop mode 0 - 1.7
µs
Stop mode 1/2 - 8.5
1. Guaranteed by design.
DS11929 Rev 7 111/183
STM32WB55xx Electrical characteristics
160
6.3.10 External clock source characteristics
High-speed external user clock generated from an external source
The high-speed external (HSE) clock must be supplied with a 32 MHz crystal oscillator.
The STM32WB55xx include internal programmable capacitances that can be used to tune
the crystal frequency in order to compensate the PCB parasitic one.
The characteristics in Table 52 and Table 53 are measured over recommended operating
conditions, unless otherwise specified. Typical values are referred to TA = 25 °C and
VDD = 3.0 V.
Note: For information about the trimming of the oscillator, refer application note AN5165
“Development of RF hardware using STM32WB microcontrollers” available from
www.st.com.
Low-speed external user clock generated from an external source
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator
oscillator. The information provided in this section is based on design simulation results
obtained with typical external components specified in Table 54. In the application, the
Table 52. HSE crystal requirements(1)
Symbol Parameter Conditions Min Typ Max Unit
fNOM Oscillator frequency - - 32 - MHz
fTOL Frequency tolerance
Includes initial accuracy, stability over
temperature, aging and frequency pulling
due to incorrect load capacitance.
--
(2) ppm
CLLoad capacitance - 6 - 8 pF
ESR Equivalent series resistance - - - 100
PDDrive level - - - 100 µW
1. 32 MHz XTAL is specified for two specific references: NX2016SA and NX1612SA.
2. Refer to the standard specification: 50 ppm for BLE, 40 ppm for 802.15.4 and when both BLE and 802.15.4 are used.
Table 53. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
tSUA(HSE)
Startup time
for 80% amplitude stabilization
VDDRF stabilized, XOTUNE=000000,
-40 to +125 °C range -1000-
µs
tSUR(HSE)
Startup time
for XOREADY signal
VDDRF stabilized, XOTUNE=000000,
-40 to +125 °C range - 250 -
IDDRF(HSE) HSE current consumption HSEGMC=000, XOTUNE=000000 - 50 - µA
XOTg(HSE) XOTUNE granularity
Capacitor bank
-15
ppm
XOTfp(HSE) XOTUNE frequency pulling ±20 ±40 -
XOTnb(HSE) XOTUNE number of tuning bits - 6 - bit
XOTst(HSE) XOTUNE setting time - - 0.1 ms
Electrical characteristics STM32WB55xx
112/183 DS11929 Rev 7
resonator and the load capacitors have to be placed as close as possible to the oscillator
pins to minimize output distortion and startup stabilization time.
Refer to the crystal resonator manufacturer for more details on the resonator characteristics
(frequency, package, accuracy).
Note: For information on selecting the crystal refer to application note AN2867 “Oscillator design
guide for STM8S, STM8A and STM32 microcontrollers” available from www.st.com.
Figure 20. Typical application with a 32.768 kHz crystal
Table 54. Low-speed external user clock characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
IDD(LSE) LSE current consumption
LSEDRV[1:0] = 00
Low drive capability -250-
nA
LSEDRV[1:0] = 01
Medium low drive capability -315-
LSEDRV[1:0] = 10
Medium high drive capability -500-
LSEDRV[1:0] = 11
High drive capability -630-
Gmcritmax Maximum critical crystal gm
LSEDRV[1:0] = 00
Low drive capability - - 0.50
µA/V
LSEDRV[1:0] = 01
Medium low drive capability - - 0.75
LSEDRV[1:0] = 10
Medium high drive capability - - 1.70
LSEDRV[1:0] = 11
High drive capability - - 2.70
tSU(LSE)(2) Startup time VDD stabilized - 2 - s
1. Guaranteed by design.
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) until a stable 32 MHz oscillation is
reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer.
MS30253V2
OSC32_IN
OSC32_OUT
Drive
programmable
amplifier
fLSE
32.768 kHz
resonator
Resonator with integrated
capacitors
CL1
CL2
DS11929 Rev 7 113/183
STM32WB55xx Electrical characteristics
160
Note: No external resistors are required between OSC32_IN and OSC32_OUT, and it is forbidden
to add one.
In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.
The external clock signal has to respect the I/O characteristics detailed in Section 6.3.17.
The recommend clock input waveform is shown in Figure 21.
Figure 21. Low-speed external clock source AC timing diagram
6.3.11 Internal clock source characteristics
The parameters given in Table 56 are derived from tests performed under ambient
temperature and supply voltage conditions summarized in Table 22: General operating
conditions. The provided curves are characterization results, not tested in production.
Table 55. Low-speed external user clock characteristics(1) – Bypass mode
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User external clock
source frequency - 21.2 32.768 44.4 kHz
VLSEH
OSC32_IN input pin
high level voltage - 0.7 VDDx -V
DDx
V
VLSEL
OSC32_IN input pin
low level voltage -V
SS - 0.3 VDDx
tw(LSEH)
tw(LSEL)
OSC32_IN high or
low time -250--ns
ftolLSE Frequency tolerance
Includes initial
accuracy, stability over
temperature, aging and
frequency pulling
-500 - +500 ppm
MS19215V2
VLSEH
tf(LSE)
90%
10%
TLSE
t
tr(LSE)
VLSEL
tw(LSEH)
tw(LSEL)
Electrical characteristics STM32WB55xx
114/183 DS11929 Rev 7
High-speed internal (HSI16) RC oscillator
Figure 22. HSI16 frequency vs. temperature
Table 56. HSI16 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI16 HSI16 Frequency VDD=3.0 V, TA=30 °C 15.88 - 16.08 MHz
TRIM HSI16 user trimming step
Trimming code is not a
multiple of 64 0.2 0.3 0.4
%
Trimming code is a
multiple of 64 -4 -6 -8
DuCy(HSI16)(2) Duty Cycle - 45 - 55
Temp (HSI16) HSI16 oscillator frequency drift over
temperature
TA= 0 to 85 °C -1 - 1
TA= -40 to 125 °C -2 - 1.5
VDD(HSI16) HSI16 oscillator frequency drift over
VDD
VDD=1.62 V to 3.6 V -0.1 - 0.05
tsu(HSI16)(2) HSI16 oscillator start-up time - - 0.8 1.2 s
tstab(HSI16)(2) HSI16 oscillator stabilization time - - 3 5
IDD(HSI16)(2) HSI16 oscillator power consumption - - 155 190 A
1. Guaranteed by characterization results.
2. Guaranteed by design.
MSv39299V1
15.6
15.7
15.8
15.9
16
16.1
16.2
16.3
16.4
MHz
min mean max
+1%
-1%
+2%
-2%
+1.5%
-1.5%
-40 -20 0 20 40 60 80 100 120 °C
DS11929 Rev 7 115/183
STM32WB55xx Electrical characteristics
160
Multi-speed internal (MSI) RC oscillator
Table 57. MSI oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fMSI
MSI frequency
after factory
calibration, done
at VDD=3 V and
TA=30 °C
MSI mode
Range 0 98.7 100 101.3
kHz
Range 1 197.4 200 202.6
Range 2 394.8 400 405.2
Range 3 789.6 800 810.4
Range 4 0.987 1 1.013
MHz
Range 5 1.974 2 2.026
Range 6 3.948 4 4.052
Range 7 7.896 8 8.104
Range 8 15.79 16 16.21
Range 9 23.69 24 24.31
Range 10 31.58 32 32.42
Range 11 47.38 48 48.62
PLL mode
XTAL=
32.768 kHz
Range 0 - 98.304 -
kHz
Range 1 - 196.608 -
Range 2 - 393.216 -
Range 3 - 786.432 -
Range 4 - 1.016 -
MHz
Range 5 - 1.999 -
Range 6 - 3.998 -
Range 7 - 7.995 -
Range 8 - 15.991 -
Range 9 - 23.986 -
Range 10 - 32.014 -
Range 11 - 48.005 -
TEMP(MSI)(2)
MSI oscillator
frequency drift
over temperature
MSI mode
TA= -0 to 85 °C -3.5 - 3
%
TA= -40 to 125 °C -8 - 6
Electrical characteristics STM32WB55xx
116/183 DS11929 Rev 7
VDD(MSI)(2)
MSI oscillator
frequency drift
over VDD
(reference is 3 V)
MSI mode
Range 0 to 3
VDD =
1.62 to 3.6 V -1.2 -
0.5
%
VDD =
2.4 to 3.6 V -0.5 -
Range 4 to 7
VDD =
1.62 to 3.6 V -2.5 -
0.7
VDD =
2.4 to 3.6 V -0.8 -
Range 8 to 11
VDD =
1.62 to 3.6 V -5 -
1
VDD =
2.4 to 3.6 V -1.6 -
FSAMPLING
(MSI)(2)(6)
Frequency
variation in
sampling mode(3)
MSI mode
TA= -40 to 85 °C - 1 2
TA= -40 to 125 °C - 2 4
P_USB
Jitter(MSI)(6)
Period jitter for
USB clock(4)
PLL mode
Range 11
For next
transition - - - 3.458
ns
For paired
transition - - - 3.916
MT_USB
Jitter(MSI)(6)
Medium term jitter
for USB clock(5)
PLL mode
Range 11
For next
transition ---2
For paired
transition ---1
CC jitter(MSI)(6) RMS cycle-to-
cycle jitter PLL mode Range 11 - - 60 -
ps
P jitter(MSI)(6) RMS period jitter PLL mode Range 11 - - 50 -
tSU(MSI)(6) MSI oscillator
start-up time
Range 0 - - 10 20
s
Range 1 - - 5 10
Range 2 - - 4 8
Range 3 - - 3 7
Range 4 to 7 - - 3 6
Range 8 to 11 - - 2.5 6
tSTAB(MSI)(6) MSI oscillator
stabilization time
PLL mode
Range 11
10 % of final
frequency - - 0.25 0.5
ms
5 % of final
frequency --0.51.25
1 % of final
frequency ---2.5
Table 57. MSI oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11929 Rev 7 117/183
STM32WB55xx Electrical characteristics
160
IDD(MSI)(6)
MSI oscillator
power
consumption
MSI and
PLL mode
Range 0 - - 0.6 1
µA
Range 1 - - 0.8 1.2
Range 2 - - 1.2 1.7
Range 3 - - 1.9 2.5
Range 4 - - 4.7 6
Range 5 - - 6.5 9
Range 6 - - 11 15
Range 7 - - 18.5 25
Range 8 - - 62 80
Range 9 - - 85 110
Range 10 - - 110 130
Range 11 - - 155 190
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Average period of MSI at 48 MHz is compared to a real 48 MHz clock over 28 cycles. It includes frequency tolerance + jitter
of MSI at 48 MHz clock.
5. Only accumulated jitter of MSI at 48 MHz is extracted over 28 cycles.
For next transition: min. and max. jitter of 2 consecutive frame of 28 cycles of the MSI at 48 MHz, for 1000 captures over
28 cycles.
For paired transitions: min. and max. jitter of 2 consecutive frame of 56 cycles of the MSI at 48 MHz, for 1000 captures over
56 cycles.
6. Guaranteed by design.
Table 57. MSI oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32WB55xx
118/183 DS11929 Rev 7
Figure 23. Typical current consumption vs. MSI frequency
High-speed internal 48 MHz (HSI48) RC oscillator
Table 58. HSI48 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fHSI48 HSI48 frequency VDD = 3.0 V, TA = 30 °C - 48 - MHz
TRIM HSI48 user trimming step - - 0.11(2) 0.18(2)
%
USER TRIM
COVERAGE HSI48 user trimming coverage ±32 steps ±3(3) ±3.5(3) -
DuCy(HSI48) Duty cycle - 45(2) -55
(2)
ACCHSI48_REL
Accuracy of the HSI48 oscillator
over temperature
(factory calibrated)
VDD = 3.0 V to 3.6 V,
TA = –15 to 85 °C --±3
(3)
VDD = 1.65 V to 3.6 V,
TA = –40 to 125 °C --±4.5
(3)
DVDD(HSI48) HSI48 oscillator frequency drift
with VDD
VDD = 3 V to 3.6 V - 0.025(3) 0.05(3)
VDD = 1.65 V to 3.6 V - 0.05(3) 0.1(3)
tsu(HSI48) HSI48 oscillator start-up time - - 2.5(2) 6(2) s
IDD(HSI48) HSI48 oscillator power consumption - - 340(2) 380(2) A
DS11929 Rev 7 119/183
STM32WB55xx Electrical characteristics
160
Figure 24. HSI48 frequency vs. temperature
Low-speed internal (LSI) RC oscillator
NT jitter Next transition jitter
Accumulated jitter on 28 cycles(4) --±0.15
(2) -
ns
PT jitter Paired transition jitter
Accumulated jitter on 56 cycles(4) --±0.25
(2) -
1. VDD = 3 V, TA = –40 to 125 °C unless otherwise specified.
2. Guaranteed by design.
3. Guaranteed by characterization results.
4. Jitter measurement are performed without clock source activated in parallel.
Table 58. HSI48 oscillator characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
MSv40989V1
-6
-4
-2
0
2
4
6
-50 -30 -10 10 30 50 70 90 110 130
Avg min max °C
%
Table 59. LSI1 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fLSI LSI1 frequency
VDD = 3.0 V, TA = 30 °C 31.04 - 32.96
kHz
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 29.5 - 34
tSU(LSI1)(2) LSI1 oscillator start-up time - - 80 130 s
tSTAB(LSI1)(2) LSI1 oscillator stabilization time 5% of final frequency - 125 180
IDD(LSI1)(2) LSI1 oscillator power
consumption - - 110 180 nA
1. Guaranteed by characterization results.
2. Guaranteed by design.
Electrical characteristics STM32WB55xx
120/183 DS11929 Rev 7
6.3.12 PLL characteristics
The parameters given in Table 61 are derived from tests performed under temperature and
VDD supply voltage conditions summarized in Table 22: General operating conditions.
Table 60. LSI2 oscillator characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fLSI2 LSI2 frequency
VDD = 3.0 V, TA = 30 °C 21.6 - 44.2
kHz
VDD = 1.62 to 3.6 V, TA = -40 to 125 °C 21.2 - 44.4
tSU(LSI2)(2) LSI2 oscillator start-up time - 0.7 - 3.5 ms
IDD(LSI2)(2) LSI2 oscillator power
consumption - - 500 1180 nA
1. Guaranteed by characterization results.
2. Guaranteed by design.
Table 61. PLL, PLLSAI1 characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN
PLL input clock(2) -2.66-16MHz
PLL input clock duty cycle - 45 - 55 %
fPLL_P_OUT PLL multiplier output clock P
Voltage scaling Range 1 2 - 64
MHz
Voltage scaling Range 2 2 - 16
fPLL_Q_OUT PLL multiplier output clock Q
Voltage scaling Range 1 8 - 64
Voltage scaling Range 2 8 - 16
fPLL_R_OUT PLL multiplier output clock R
Voltage scaling Range 1 8 - 64
Voltage scaling Range 2 8 - 16
fVCO_OUT PLL VCO output
Voltage scaling Range 1 96 - 344
Voltage scaling Range 2 64 - 128
tLOCK PLL lock time - - 15 40 s
Jitter
RMS cycle-to-cycle jitter
System clock 64 MHz
-40-
ps
RMS period jitter - 30 -
IDD(PLL) PLL power consumption
on VDD(1)
VCO freq = 96 MHz - 200 260
AVCO freq = 192 MHz - 300 380
VCO freq = 344 MHz - 520 650
1. Guaranteed by design.
2. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between the two PLLs.
DS11929 Rev 7 121/183
STM32WB55xx Electrical characteristics
160
6.3.13 Flash memory characteristics
Table 62. Flash memory characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Typ Max Unit
tprog 64-bit programming time - 81.7 90.8 µs
tprog_row
One row (64 double word)
programming time
Normal programming 5.2 5.5
ms
Fast programming 3.8 4.0
tprog_page
One page (4 KByte)
programming time
Normal programming 41.8 43.0
Fast programming 30.4 31.0
tERASE Page (4 KByte) erase time - 22.0 24.5
tME Mass erase time - 22.1 25.0
IDD
Average consumption from VDD
Write mode 3.4 -
mA
Erase mode 3.4 -
Maximum current (peak)
Write mode 7 (for 6 µs) -
Erase mode 7 (for 67 µs) -
Table 63. Flash memory endurance and data retention
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization results.
Unit
NEND Endurance TA = –40 to +105 °C 10 kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years
1 kcycle(2) at TA = 105 °C 15
1 kcycle(2) at TA = 125 °C 7
10 kcycles(2) at TA = 55 °C 30
10 kcycles(2) at TA = 85 °C 15
10 kcycles(2) at TA = 105 °C 10
Electrical characteristics STM32WB55xx
122/183 DS11929 Rev 7
6.3.14 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and
VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is
compliant with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 64. They are based on the EMS levels and classes
defined in application note AN1709 “EMC design guide for STM8, STM32 and Legacy
MCUs”, available on www.st.com.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flow must include the management of runaway conditions such as:
corrupted program counter
unexpected reset
critical data corruption (e.g. control registers)
Table 64. EMS characteristics
Symbol Parameter Conditions Level/Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 64 MHz,
conforming to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, TA = +25 °C,
fHCLK = 64 MHz,
conforming to IEC 61000-4-4
5A
DS11929 Rev 7 123/183
STM32WB55xx Electrical characteristics
160
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for
1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application is
executed (toggling two LEDs through the I/O ports). This emission test is compliant with the
IEC 61967-2 standard, which specifies the test board and the pin loading.
6.3.15 Electrical sensitivity characteristics
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the ANSI/JEDEC standard.
Table 65. EMI characteristics
Symbol Parameter Conditions Monitored
frequency band
Peripheral ON
SMPS OFF or ON
[fHSE / fCPUM4, fCPUM0]Unit
32 MHz / 64 MHz, 32 MHz
SEMI Peak level
VDD = 3.6 V, TA = 25 °C,
WLCSP100 package
compliant with IEC 61967-2
0.1 MHz to 30 MHz 1
dBµV
30 MHz to 130 MHz 4
130 MHz to 1 GHz -1
1 GHz to 2 GHz 7
EMI level 1.5 -
Table 66. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum value(1) Unit
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = +25 °C, conforming to
ANSI/ESDA/JEDEC JS-001 2 2000
V
VESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = +25 °C, conforming to
ANSI/ESD STM5.3.1 JS-002
C2a(2) 500(2)
C1(3) 250(3)
1. Guaranteed by characterization results.
2. UFQFPN48, VFQPN68 and WLCSP100 packages.
3. UFBGA129 package.
Electrical characteristics STM32WB55xx
124/183 DS11929 Rev 7
Static latch-up
Two complementary static tests are required on six parts to assess the latch-up
performance:
a supply overvoltage is applied to each power supply pin
a current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78A IC latch-up standard.
6.3.16 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3.3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibility to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (higher
than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out
of the -5 µA / 0 µA range) or other functional failure (for example reset occurrence or
oscillator frequency deviation).
The characterization results are given in Table 68.
Negative induced leakage current is caused by negative injection and positive induced
leakage current is caused by positive injection.
Table 67. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = +105 °C conforming to JESD78A II
Table 68. I/O current injection susceptibility(1)
1. Guaranteed by characterization results.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on all pins except PB0, PB1 -5 N/A(2)
2. Injection not possible.
mA
Injected current on PB0, PB1 pins -5 0
DS11929 Rev 7 125/183
STM32WB55xx Electrical characteristics
160
6.3.17 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 69 are derived from tests
performed under the conditions summarized in Table 22: General operating conditions. All
I/Os are designed as CMOS- and TTL-compliant.
Table 69. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
I/O input
low level voltage(1)
1.62 V < VDD < 3.6 V
- - 0.3 x VDD
V
I/O input
low level voltage(2) 0.39 x VDD - 0.06
VIH
I/O input
high level voltage(1) 0.7 x VDD --
I/O input
high level voltage(2) 0.49 x VDD + 0.26 - -
Vhys
TT_xx, FT_xxx
and NRST I/O
input hysteresis
-200-mV
Ilkg
FT_xx
input leakage current
0 VIN Max(VDDXXX)(3) - - ±100
nA
Max(VDDXXX) VIN
Max(VDDXXX) +1 V(2)(3)(4) - - 650
Max(VDDXXX) +1 V < VIN
5.5 V(2)(3)(4)(5)(6) --200
(7)
FT_lu, FT_u and
PC3 IO
input leakage current
0 VIN Max(VDDXXX)(3) - - ±150
Max(VDDXXX) VIN
Max(VDDXXX) +1 V(2)(3) - - 2500
Max(VDDXXX) +1 V < VIN
5.5 V(1)(3)(4)(8) - - 250
TT_xx
input leakage current
VIN Max(VDDXXX)(3) - - ±150
Max(VDDXXX) VIN <
3.6 V(3) - - 2000
RPU
Weak pull-up
equivalent resistor(1) VIN = VSS 25 40 55
k
RPD
Weak pull-down
equivalent resistor(1) VIN = VDD 25 40 55
CIO I/O pin capacitance - - 5 - pF
1. Tested in production.
2. Guaranteed by design, not tested in production.
3. Represents the pad leakage of the I/O itself. The total product pad leakage is given by
ITotal_Ileak_max = 10 A + number of I/Os where VIN is applied on the pad x Ilkg(Max).
4. Max(VDDXXX) is the maximum value among all the I/O supplies.
5. VIN must be lower than [Max(VDDXXX) + 3.6 V].
6. Refer to Figure 25: I/O input characteristics.
Electrical characteristics STM32WB55xx
126/183 DS11929 Rev 7
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters, as shown
in Figure 25 .
Figure 25. I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ± 20 mA (with a relaxed VOL / VOH).
In the user application, the number of I/O pins that can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2.
The sum of the currents sourced by all the I/Os on VDD, plus the maximum
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
IVDD (see Table 18: Voltage characteristics).
The sum of the currents sunk by all the I/Os on VSS, plus the maximum consumption of
the MCU sunk on VSS, cannot exceed the absolute maximum rating IVSS (see
Table 18: Voltage characteristics).
Output voltage levels
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 22: General operating conditions. All I/Os are CMOS- and TTL-compliant (FT or TT
unless otherwise specified).
7. To sustain a voltage higher than Min(VDD, VDDA, VDDUSB, VLCD) + 0.3 V, the internal pull-up and pull-down resistors must
be disabled. All FT_xx IO except FT_lu, FT_u and PC3.
8. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS, whose
contribution to the series resistance is minimal (~10%).
0
0.5
1
1.5
2
2.5
3
1.5 2 2.5 3 3.5
Voltage
Vil-Vih (all IO except BOOT0)
cmos vil spec 30%
cmos vih spec 70%
ttl vil spec ttl
ttl vih spec ttl
datasheet Vil_rule
datasheet Vih_rule
TTL requirement Vih min = 2V
TTL requirement Vil min = 0.8V
DS11929 Rev 7 127/183
STM32WB55xx Electrical characteristics
160
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Table 71.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 22: General
operating conditions.
Table 70. Output voltage characteristics(1)
1. The IIO current sourced or sunk by the device must always respect the absolute maximum rating specified
in Table 18: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports
and control pins) must always respect the absolute maximum ratings IIO.
Symbol Parameter Conditions Min Max Unit
VOL(2)
2. Guaranteed by design.
Output low level voltage for an I/O pin CMOS port(3)
|IIO| = 8 mA
VDD 2.7 V
3. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(2) Output high level voltage for an I/O pin VDD - 0.4 -
VOL(2) Output low level voltage for an I/O pin TTL port(3)
|IIO| = 8 mA
VDD 2.7 V
-0.4
VOH(2) Output high level voltage for an I/O pin 2.4 -
VOL(2) Output low level voltage for an I/O pin |IIO| = 20 mA
VDD 2.7 V
-1.3
VOH(2) Output high level voltage for an I/O pin VDD - 1.3 -
VOL(2) Output low level voltage for an I/O pin |IIO| = 4 mA
VDD 1.62 V
-0.4
VOH(2) Output high level voltage for an I/O pin VDD - 0.45 -
VOLFM+(2) Output low level voltage for an FT I/O
pin in FM+ mode (FT I/O with “f” option)
|IIO| = 20 mA
VDD 2.7 V -0.4
|IIO| = 10 mA
VDD 1.62 V -0.4
|IIO| = 2 mA
1.62 V VDD 1.08 V -0.4
Table 71. I/O AC characteristics(1)(2)
Speed Symbol Parameter Conditions Min Max Unit
00
Fmax Maximum frequency
C=50 pF, 2.7 V VDD 3.6 V - 5
MHz
C=50 pF, 1.62 V VDD 2.7 V - 1
C=10 pF, 2.7 V VDD 3.6 V - 10
C=10 pF, 1.62 V VDD 2.7 V - 1.5
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V VDD 3.6 V - 25
ns
C=50 pF, 1.62 V VDD 2.7 V - 52
C=10 pF, 2.7 V VDD 3.6 V - 17
C=10 pF, 1.62 V VDD 2.7 V - 37
Electrical characteristics STM32WB55xx
128/183 DS11929 Rev 7
6.3.18 NRST pin characteristics
The NRST pin input driver uses the CMOS technology. It is connected to a permanent
pull-up resistor, RPU.
Unless otherwise specified, the parameters given in the table below are derived from tests
performed under the ambient temperature and supply voltage conditions summarized in
Table 22: General operating conditions.
01
Fmax Maximum frequency
C=50 pF, 2.7 V VDD 3.6 V - 25
MHz
C=50 pF, 1.62 V VDD 2.7 V - 10
C=10 pF, 2.7 V VDD 3.6 V - 50
C=10 pF, 1.62 V VDD 2.7 V - 15
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V VDD 3.6 V - 9
ns
C=50 pF, 1.62 V VDD 2.7 V - 16
C=10 pF, 2.7 V VDD 3.6 V - 4.5
C=10 pF, 1.62 V VDD 2.7 V - 9
10
Fmax Maximum frequency
C=50 pF, 2.7 V VDD 3.6 V - 50
MHz
C=50 pF, 1.62 V VDD 2.7 V - 25
C=10 pF, 2.7 V VDD 3.6 V - 100(3)
C=10 pF, 1.62 V VDD 2.7 V - 37.5
Tr/Tf Output rise and fall time
C=50 pF, 2.7 V VDD 3.6 V - 5.8
ns
C=50 pF, 1.62 V VDD 2.7 V - 11
C=10 pF, 2.7 V VDD 3.6 V - 2.5
C=10 pF, 1.62 V VDD 2.7 V - 5
11
Fmax Maximum frequency
C=30 pF, 2.7 V VDD 3.6 V - 120(3)
MHz
C=30 pF, 1.62 V VDD 2.7 V - 50
C=10 pF, 2.7 V VDD 3.6 V - 180(3)
C=10 pF, 1.62 V VDD 2.7 V - 75(3)
Tr/Tf Output rise and fall time
C=30 pF, 2.7 V VDD 3.6 V - 3.3
ns
C=30 pF, 1.62 V VDD 2.7 V - 6
C=10 pF, 2.7 V VDD 3.6 V - 1.7
C=10 pF, 1.62 V VDD 2.7 V - 3.3
1. The maximum frequency is defined with (Tr+ Tf) 2/3 T, and Duty cycle comprised between 45 and 55%.
2. The fall and rise time are defined, respectively, between 90 and 10%, and between 10 and 90% of the
output waveform.
3. This value represents the I/O capability but the maximum system frequency is limited to 64 MHz.
Table 71. I/O AC characteristics(1)(2) (continued)
Speed Symbol Parameter Conditions Min Max Unit
DS11929 Rev 7 129/183
STM32WB55xx Electrical characteristics
160
Figure 26. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 72, otherwise the reset will not be taken into account by the device.
3. The external capacitor on NRST must be placed as close as possible to the device.
Table 72. NRST pin characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST)
NRST input
low level voltage - - - 0.3 x VDD
V
VIH(NRST)
NRST input
high level voltage - 0.7 x VDD --
Vhys(NRST)
NRST Schmitt trigger
voltage hysteresis --200-mV
RPU
Weak pull-up
equivalent resistor(2)
2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to
the series resistance is minimal (~10%).
VIN = VSS 25 40 55 k
VF(NRST) NRST input
filtered pulse ---70
ns
VNF(NRST)
NRST input
not filtered pulse 1.71 V VDD 3.6 V 350 - -
MS19878V3
RPU
VDD
Internal reset
External
reset circuit(1)
NRST(2)
Filter
0.1 μF
Electrical characteristics STM32WB55xx
130/183 DS11929 Rev 7
6.3.19 Analog switches booster
Table 73. Analog switches booster characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Typ Max Unit
VDD Supply voltage 1.62 - 3.6 V
tSU(BOOST) Booster startup time - - 240 µs
IDD(BOOST)
Booster consumption for
1.62 V VDD 2.0 V --250
µA
Booster consumption for
2.0 V VDD 2.7 V --500
Booster consumption for
2.7 V VDD 3.6 V --900
DS11929 Rev 7 131/183
STM32WB55xx Electrical characteristics
160
6.3.20 Analog-to-Digital converter characteristics
Unless otherwise specified, the parameters given in Table 74 are preliminary values derived
from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage
conditions summarized in Table 22: General operating conditions.
Note: It is recommended to perform a calibration after each power-up.
Table 74. ADC characteristics(1) (2) (3)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 - 3.6 V
VREF+
Positive reference
voltage
VDDA 2 V 2 - VDDA V
VDDA < 2 V VDDA V
VREF-
Negative reference
voltage -V
SSA V
fADC ADC clock frequency
Range 1 - - 64
MHz
Range 2 - - 16
fs
Sampling rate
for FAST channels
Resolution = 12 bits - - 4.26
Msps
Resolution = 10 bits - - 4.92
Resolution = 8 bits - - 5.81
Resolution = 6 bits - - 7.11
Sampling rate
for SLOW channels
Resolution = 12 bits - - 3.36
Resolution = 10 bits - - 4.00
Resolution = 8 bits - - 4.57
Resolution = 6 bits - - 7.11
fTRIG
External trigger
frequency
fADC = 64 MHz
Resolution = 12 bits --4.26MHz
Resolution = 12 bits - - 15 1/fADC
VCMIN Input common mode Differential mode
(VREF++
VREF-) / 2
- 0.18
(VREF++
VREF-) / 2
(VREF++
VREF-) / 2
+ 0.18
V
VAIN (4) Conversion voltage
range(2) -0-V
REF+ V
RAIN
External input
impedance ---50k
CADC
Internal sample and hold
capacitor --5-pF
tSTAB Power-up time - 1 Conversion
cycle
tCAL Calibration time
fADC = 64 MHz 1.8125 µs
- 116 1 / fADC
Electrical characteristics STM32WB55xx
132/183 DS11929 Rev 7
tLATR
Trigger conversion
latency Regular and
injected channels
without conversion abort
CKMODE = 00 1.522.5
1/fADC
CKMODE = 01 - - 2.0
CKMODE = 10 - - 2.25
CKMODE = 11 - - 2.125
tLATRINJ
Trigger conversion
latency Injected
channels aborting a
regular conversion
CKMODE = 00 2.533.5
1/fADC
CKMODE = 01 - - 3.0
CKMODE = 10 - - 3.25
CKMODE = 11 - - 3.125
tsSampling time
fADC = 64 MHz 0.039 - 10.0 µs
- 2.5 - 640.5 1/fADC
tADCVREG_STUP
ADC voltage regulator
start-up time ---20
µs
tCONV
Total conversion time
(including sampling time)
fADC = 64 MHz
Resolution = 12 bits 0.234 - 1.019 µs
Resolution = 12 bits ts + 12.5 cycles for successive
approximations = 15 to 653 1/fADC
IDDA(ADC) ADC consumption from
the VDDA supply
fs = 4.26 Msps - 730 830
µAfs = 1 Msps - 160 220
fs = 10 ksps - 16 50
IDDV_S(ADC)
ADC consumption from
the VREF+ single ended
mode
fs = 4.26 Msps - 130 160
µAfs = 1 Msps - 30 40
fs = 10 ksps - 0.6 2
IDDV_D(ADC)
ADC consumption from
the VREF+ differential
mode
fs = 4.26 Msps - 250 310
µAfs = 1 Msps - 60 70
fs = 10 ksps - 1.3 3
1. Guaranteed by design
2. The I/O analog switch voltage booster is enabled when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4V). It is disable when VDDA 2.4 V.
3. SMPS in bypass mode.
4. VREF+ can be internally connected to VDDA and VREF- can be internally connected to VSSA, depending on the package.
Refer to Section 4: Pinouts and pin description for further details.
Table 74. ADC characteristics(1) (2) (3) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11929 Rev 7 133/183
STM32WB55xx Electrical characteristics
160
Table 75. ADC sampling time(1)(2)
Resolution
(bits)
RAIN
(k)
Fast channel Slow channel
Minimum sampling
time (ns)
Sampling
cycles
Minimum sampling
time (ns)
Sampling
cycles
12
0 33 6.5 57 6.5
0.05 37 6.5 62 6.5
0.1 42 6.5 67 6.5
0.2 51 6.5 76 6.5
0.5 78 6.5 104 12.5
1 123 12.5 151 12.5
5 482 47.5 526 47.5
10 931 92.5 994 92.5
20 1830 247.5 1932 247.5
50 4527 640.5 4744 640.5
100 9021 640.5 9430 640.5
10
0 27 2.5 47 6.5
0.05 30 2.5 51 6.5
0.1 34 6.5 55 6.5
0.2 41 6.5 62 6.5
0.5 64 6.5 85 6.5
1 100 12.5 124 12.5
5 395 47.5 431 47.5
10 763 92.5 816 92.5
20 1500 247.5 1584 247.5
50 3709 640.5 3891 640.5
100 7391 640.5 7734 640.5
8
0 21 2.5 37 2.5
0.05 24 2.5 40 6.5
0.1 27 2.5 43 6.5
0.2 32 6.5 49 6.5
0.5 50 6.5 67 6.5
1 78 6.5 97 6.5
5 308 47.5 337 24.5
10 595 92.5 637 47.5
20 1169 247.5 1237 92.5
50 2891 247.5 3037 247.5
100 5762 640.5 6038 640.5
Electrical characteristics STM32WB55xx
134/183 DS11929 Rev 7
6
0 15 2.5 26 2.5
0.05 17 2.5 28 2.5
0.1 19 2.5 31 2.5
0.2 23 2.5 35 2.5
0.5 36 6.5 48 6.5
1 56 6.5 69 6.5
5 221 24.5 242 24.5
10 427 47.5 458 47.5
20 839 92.5 890 92.5
50 2074 247.5 2184 247.5
100 4133 640.5 4342 640.5
1. Guaranteed by design.
2. VDD = 1.62 V, Cpcb = 4.7 pF, 125 °C, booster enabled.
Table 75. ADC sampling time(1)(2) (continued)
Resolution
(bits)
RAIN
(k)
Fast channel Slow channel
Minimum sampling
time (ns)
Sampling
cycles
Minimum sampling
time (ns)
Sampling
cycles
DS11929 Rev 7 135/183
STM32WB55xx Electrical characteristics
160
Table 76. ADC accuracy - Limited test conditions 1(1)(2)(3)
Symbol Parameter Conditions(4) Min Typ Max Unit
ET
Tot a l
unadjusted
error
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Single
ended
Fast channel (max speed) - 4 5
LSB
Slow channel (max speed) - 4 5
Differential
Fast channel (max speed) - 3.5 4.5
Slow channel (max speed) - 3.5 4.5
EO Offset error
Single
ended
Fast channel (max speed) - 1 2.5
Slow channel (max speed) - 1 2.5
Differential
Fast channel (max speed) - 1.5 2.5
Slow channel (max speed) - 1.5 2.5
EG Gain error
Single
ended
Fast channel (max speed) - 2.5 4.5
Slow channel (max speed) - 2.5 4.5
Differential
Fast channel (max speed) - 2.5 3.5
Slow channel (max speed) - 2.5 3.5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential
Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 1.5 2.5
Slow channel (max speed) - 1.5 2.5
Differential
Fast channel (max speed) - 1 2
Slow channel (max speed) - 1 2
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10.4 10.5 -
bits
Slow channel (max speed) 10.4 10.5 -
Differential
Fast channel (max speed) 10.8 10.9 -
Slow channel (max speed) 10.8 10.9 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 64.4 65 -
dB
Slow channel (max speed) 64.4 65 -
Differential
Fast channel (max speed) 66.8 67.4 -
Slow channel (max speed) 66.8 67.4 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
Differential
Fast channel (max speed) 67 68 -
Slow channel (max speed) 67 68 -
Electrical characteristics STM32WB55xx
136/183 DS11929 Rev 7
THD
Tot a l
harmonic
distortion
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
VDDA = VREF+ = 3 V,
TA = 25 °C
Single
ended
Fast channel (max speed) - -74 -73
dB
Slow channel (max speed) - -74 -73
Differential
Fast channel (max speed) - -79 -76
Slow channel (max speed) - -79 -76
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.
Table 76. ADC accuracy - Limited test conditions 1(1)(2)(3) (continued)
Symbol Parameter Conditions(4) Min Typ Max Unit
DS11929 Rev 7 137/183
STM32WB55xx Electrical characteristics
160
Table 77. ADC accuracy - Limited test conditions 2(1)(2)(3)
Symbol Parameter Conditions(4) Min Typ Max Unit
ET
Tot a l
unadjusted
error
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
VDDA 2 V
TA = 25 °C
Single
ended
Fast channel (max speed) - 4 6.5
LSB
Slow channel (max speed) - 4 6.5
Differential
Fast channel (max speed) - 3.5 5.5
Slow channel (max speed) - 3.5 5.5
EO Offset error
Single
ended
Fast channel (max speed) - 1 4.5
Slow channel (max speed) - 1 5
Differential
Fast channel (max speed) - 1.5 3
Slow channel (max speed) - 1.5 3
EG Gain error
Single
ended
Fast channel (max speed) - 2.5 6
Slow channel (max speed) - 2.5 6
Differential
Fast channel (max speed) - 2.5 3.5
Slow channel (max speed) - 2.5 3.5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential
Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 1.5 3.5
Slow channel (max speed) - 1.5 3.5
Differential
Fast channel (max speed) - 1 3
Slow channel (max speed) - 1 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10 10.5 -
bits
Slow channel (max speed) 10 10.5 -
Differential
Fast channel (max speed) 10.7 10.9 -
Slow channel (max speed) 10.7 10.9 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 62 65 -
dB
Slow channel (max speed) 62 65 -
Differential
Fast channel (max speed) 66 67.4 -
Slow channel (max speed) 66 67.4 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 64 66 -
Slow channel (max speed) 64 66 -
Differential
Fast channel (max speed) 66.5 68 -
Slow channel (max speed) 66.5 68 -
Electrical characteristics STM32WB55xx
138/183 DS11929 Rev 7
THD
Tot a l
harmonic
distortion
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
VDDA 2 V
TA = 25 °C
Single
ended
Fast channel (max speed) - -74 -65
dB
Slow channel (max speed) - -74 -67
Differential
Fast channel (max speed) - -79 -70
Slow channel (max speed) - -79 -71
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.
Table 77. ADC accuracy - Limited test conditions 2(1)(2)(3) (continued)
Symbol Parameter Conditions(4) Min Typ Max Unit
DS11929 Rev 7 139/183
STM32WB55xx Electrical characteristics
160
Table 78. ADC accuracy - Limited test conditions 3(1)(2)(3)
Symbol Parameter Conditions(4) Min Typ Max Unit
ET
Tot a l
unadjusted
error
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
1.65 V VDDA = VREF+ 3.6 V,
Voltage scaling Range 1
Single
ended
Fast channel (max speed) - 5.5 7.5
LSB
Slow channel (max speed) - 4.5 6.5
Differential
Fast channel (max speed) - 4.5 7.5
Slow channel (max speed) - 4.5 5.5
EO Offset error
Single
ended
Fast channel (max speed) - 2 5
Slow channel (max speed) - 2.5 5
Differential
Fast channel (max speed) - 2 3.5
Slow channel (max speed) - 2.5 3
EG Gain error
Single
ended
Fast channel (max speed) - 4.5 7
Slow channel (max speed) - 3.5 6
Differential
Fast channel (max speed) - 3.5 4
Slow channel (max speed) - 3.5 5
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1.2 1.5
Slow channel (max speed) - 1.2 1.5
Differential
Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 3 3.5
Slow channel (max speed) - 2.5 3.5
Differential
Fast channel (max speed) - 2 2.5
Slow channel (max speed) - 2 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10 10.4 -
bits
Slow channel (max speed) 10 10.4 -
Differential
Fast channel (max speed) 10.6 10.7 -
Slow channel (max speed) 10.6 10.7 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 62 64 -
dB
Slow channel (max speed) 62 64 -
Differential
Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 63 65 -
Slow channel (max speed) 63 65 -
Differential
Fast channel (max speed) 66 67 -
Slow channel (max speed) 66 67 -
Electrical characteristics STM32WB55xx
140/183 DS11929 Rev 7
THD
Tot a l
harmonic
distortion
ADC clock frequency 64 MHz,
Sampling rate 4.26 Msps,
1.65 V VDDA = VREF+ 3.6 V,
Voltage scaling Range 1
Single
ended
Fast channel (max speed) - -69 -67
dB
Slow channel (max speed) - -71 -67
Differential
Fast channel (max speed) - -72 -71
Slow channel (max speed) - -72 -71
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.
Table 78. ADC accuracy - Limited test conditions 3(1)(2)(3) (continued)
Symbol Parameter Conditions(4) Min Typ Max Unit
DS11929 Rev 7 141/183
STM32WB55xx Electrical characteristics
160
Table 79. ADC accuracy - Limited test conditions 4(1)(2)(3)
Symbol Parameter Conditions(4) Min Typ Max Unit
ET
Tot a l
unadjusted
error
ADC clock frequency 16 MHz,
1.65 V VDDA = VREF+ 3.6 V,
Voltage scaling Range 2
Single
ended
Fast channel (max speed) - 5 5.4
LSB
Slow channel (max speed) - 4 5
Differential
Fast channel (max speed) - 4 5
Slow channel (max speed) - 3.5 4.5
EO Offset error
Single
ended
Fast channel (max speed) - 2 4
Slow channel (max speed) - 2 4
Differential
Fast channel (max speed) - 2 3.5
Slow channel (max speed) - 2 3.5
EG Gain error
Single
ended
Fast channel (max speed) - 4 4.5
Slow channel (max speed) - 4 4.5
Differential
Fast channel (max speed) - 3 4
Slow channel (max speed) - 3 4
ED
Differential
linearity
error
Single
ended
Fast channel (max speed) - 1 1.5
Slow channel (max speed) - 1 1.5
Differential
Fast channel (max speed) - 1 1.2
Slow channel (max speed) - 1 1.2
EL
Integral
linearity
error
Single
ended
Fast channel (max speed) - 2.5 3
Slow channel (max speed) - 2.5 3
Differential
Fast channel (max speed) - 2 2.5
Slow channel (max speed) - 2 2.5
ENOB
Effective
number of
bits
Single
ended
Fast channel (max speed) 10.2 10.5 -
bits
Slow channel (max speed) 10.2 10.5 -
Differential
Fast channel (max speed) 10.6 10.7 -
Slow channel (max speed) 10.6 10.7 -
SINAD
Signal-to-
noise and
distortion
ratio
Single
ended
Fast channel (max speed) 63 65 -
dB
Slow channel (max speed) 63 65 -
Differential
Fast channel (max speed) 65 66 -
Slow channel (max speed) 65 66 -
SNR Signal-to-
noise ratio
Single
ended
Fast channel (max speed) 64 65 -
Slow channel (max speed) 64 65 -
Differential
Fast channel (max speed) 66 67 -
Slow channel (max speed) 66 67 -
Electrical characteristics STM32WB55xx
142/183 DS11929 Rev 7
Figure 27. ADC accuracy characteristics
THD
Tot a l
harmonic
distortion
ADC clock frequency 16 MHz,
1.65 V VDDA = VREF+ 3.6 V,
Voltage scaling Range 2
Single
ended
Fast channel (max speed) - -71 -69
dB
Slow channel (max speed) - -71 -69
Differential
Fast channel (max speed) - -73 -72
Slow channel (max speed) - -73 -72
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA 2.4 V. No oversampling.
Table 79. ADC accuracy - Limited test conditions 4(1)(2)(3) (continued)
Symbol Parameter Conditions(4) Min Typ Max Unit
ET = total unajusted error: maximum deviation
between the actual and ideal transfer curves.
EO = offset error: maximum deviation
between the first actual transition and
the first ideal one.
EG = gain error: deviation between the last
ideal transition and the last actual one.
ED = differential linearity error: maximum
deviation between actual steps and the ideal ones.
EL = integral linearity error: maximum deviation
between any actual transition and the end point
correlation line.
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) End point correlation line
4095
4094
4093
7
6
5
4
3
2
1
023456
17 4093 4094 4095 4096 VDDA
VSSA
EO
ET
EL
EG
ED
1 LSB IDEAL
(1)
(3)
(2)
MS19880V2
DS11929 Rev 7 143/183
STM32WB55xx Electrical characteristics
160
Figure 28. Typical connection diagram using the ADC
1. Refer to Table 74: ADC characteristics for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 69: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 69: I/O static characteristics for the values of Ilkg.
General PCB design guidelines
Power supply decoupling has to be performed as shown in Figure 14: Power supply scheme
(all packages except UFBGA129). The 10 nF capacitor needs to be ceramic (good quality),
placed as close as possible to the chip.
6.3.21 Voltage reference buffer characteristics
MS33900V5
Sample and hold ADC converter
12-bit
converter
Cparasitic
(2) Ilkg
(3)
VTCADC
VDDA
RAIN
(1)
VAIN
VT
AINx RADC
Table 80. VREFBUF characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA
Analog supply
voltage
Normal mode
VRS = 0 2.4 - 3.6
V
VRS = 1 2.8 - 3.6
Degraded mode(2) VRS = 0 1.65 - 2.4
VRS = 1 1.65 - 2.8
VREFBUF_
OUT
Voltage
reference output
Normal mode
VRS = 0 2.046(3) 2.048 2.049(3)
VRS = 1 2.498(3) 2.5 2.502(3)
Degraded mode(2) VRS = 0 VDDA-150 mV - VDDA
VRS = 1 VDDA-150 mV - VDDA
TRIM Trim step
resolution - - - ±0.05 ±0.1 %
CL Load capacitor - - 0.5 1 1.5 µF
esr
Equivalent
series resistor
of Cload
----2
Iload
Static load
current ----4mA
Electrical characteristics STM32WB55xx
144/183 DS11929 Rev 7
Iline_reg Line regulation 2.8 V VDDA 3.6 V
Iload = 500 µA - 200 1000
ppm/V
Iload = 4 mA - 100 500
Iload_reg Load regulation 500 A Iload 4 mA Normal mode - 50 500 ppm/mA
TCoeff
Temperature
coefficient
-40 °C < TJ < +125 °C - -
Tcoeff_
vrefint +
50
ppm/ °C
0 °C < TJ < +50 °C - -
Tcoeff_
vrefint +
50
PSRR Power supply
rejection
DC 40 60 -
dB
100 kHz 25 40 -
tSTART Start-up time
CL = 0.5 µF(4) -300350
µsCL = 1.1 µF(4) -500650
CL = 1.5 µF(4) -650800
IINRUSH
Control of
maximum DC
current drive on
VREFBUF_OUT
during start-up
phase (5)
---8-mA
IDDA
(VREFBUF)
VREFBUF
consumption
from VDDA
Iload = 0 µA - 16 25
µAIload = 500 µA - 18 30
Iload = 4 mA - 35 50
1. Guaranteed by design, unless otherwise specified.
2. In degraded mode, the voltage reference buffer cannot maintain accurately the output voltage that will follow (VDDA - drop
voltage).
3. Guaranteed by test in production.
4. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
5. To correctly control the VREFBUF in-rush current during start-up phase and scaling change, the VDDA voltage must be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
Table 80. VREFBUF characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
DS11929 Rev 7 145/183
STM32WB55xx Electrical characteristics
160
6.3.22 Comparator characteristics
Table 81. COMP characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VDDA Analog supply voltage - 1.62 - 3.6
VVIN
Comparator
input voltage range -0-V
DDA
VBG(2) Scaler input voltage - VREFINT
VSC Scaler offset voltage - - ±5 ±10 mV
IDDA(SCALER) Scaler static consumption
from VDDA
BRG_EN=0 (bridge disable) - 200 300 nA
BRG_EN=1 (bridge enable) - 0.8 1 µA
tSTART_SCALER Scaler startup time - - 100 200 µs
tSTART
Comparator startup time
to reach propagation
delay specification
High-speed
mode
VDDA 2.7 V - - 5
µs
VDDA < 2.7 V - - 7
Medium mode
VDDA 2.7 V - - 15
VDDA < 2.7 V - - 25
Ultra-low-power mode - - 40
tD(3) Propagation delay with
100 mV overdrive
High-speed
mode
VDDA 2.7 V - 55 80
ns
VDDA < 2.7 V - 55 100
Medium mode - 0.55 0.9
µs
Ultra-low-power mode - 4 7
Voffset Comparator offset error Full common mode range - ±5 ±20 mV
Vhys Comparator hysteresis
No hysteresis - 0 -
mV
Low hysteresis - 8 -
Medium hysteresis - 15 -
High hysteresis - 27 -
IDDA(COMP) Comparator consumption
from VDDA
Ultra-low-
power mode
Static - 400 600
nA
With 50 kHz ±100 mV
overdrive square signal - 1200 -
Medium
mode
Static - 5 7
µA
With 50 kHz ±100 mV
overdrive square signal -6-
High-speed
mode
Static - 70 100
With 50 kHz ±100 mV
overdrive square signal -75-
1. Guaranteed by design, unless otherwise specified.
2. Refer to Table 34: Embedded internal voltage reference.
3. Guaranteed by characterization results.
Electrical characteristics STM32WB55xx
146/183 DS11929 Rev 7
6.3.23 Temperature sensor characteristics
6.3.24 VBAT monitoring characteristics
Table 82. TS characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VTS linearity with temperature - ±1 ±2 °C
Avg_Slope(2) Average slope 2.3 2.5 2.7 mV / °C
V30 Voltage at 30 °C (±5 °C)(3) 0.742 0.76 0.785 V
tSTART
(TS_BUF)(1) Sensor buffer start-up time in continuous mode(4) -815µs
tSTART(1) Start-up time when entering in continuous mode(4) -70120µs
tS_temp(1) ADC sampling time when reading the temperature 5 - - µs
IDD(TS)(1) Temperature sensor consumption from VDD, when
selected by ADC -4.77 µA
1. Guaranteed by design.
2. Guaranteed by characterization results.
3. Measured at VDDA = 3.0 V ±10 mV. The V30 ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 11:
Temperature sensor calibration values.
4. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power sleep modes.
Table 83. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -39-k
QRatio on V
BAT measurement - 3 - -
Er(1)
1. Guaranteed by design.
Error on Q -10 - 10 %
tS_vbat(1) ADC sampling time when reading the VBAT 12 - - µs
Table 84. VBAT charging characteristics
Symbol Parameter Conditions Min Typ Max Unit
RBC
Battery
charging
resistor
VBRS = 0 - 5 -
k
VBRS = 1 - 1.5 -
DS11929 Rev 7 147/183
STM32WB55xx Electrical characteristics
160
6.3.25 SMPS step-down converter characteristics
The SMPS step-down converter characteristic are given at 4 MHz clock, with a 20 mA load
(unless otherwise specified), using a 10 µH inductor and a 4.7 µF capacitor.
6.3.26 LCD controller characteristics
The devices embed a built-in step-up converter to provide a constant LCD reference voltage
independently from the VDD voltage. An external capacitor Cext must be connected to the
VLCD pin to decouple this converter.
Table 85. LCD controller characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
VLCD LCD external voltage - - 3.6
V
VLCD0 LCD internal reference voltage 0 - 2.62 -
VLCD1 LCD internal reference voltage 1 - 2.76 -
VLCD2 LCD internal reference voltage 2 - 2.89 -
VLCD3 LCD internal reference voltage 3 - 3.04 -
VLCD4 LCD internal reference voltage 4 - 3.19 -
VLCD5 LCD internal reference voltage 5 - 3.32 -
VLCD6 LCD internal reference voltage 6 - 3.46 -
VLCD7 LCD internal reference voltage 7 - 3.62 -
Cext VLCD external capacitance
Buffer OFF
(BUFEN=0 is LCD_CR register) 0.2 - 2
F
Buffer ON
(BUFEN=1 is LCD_CR register) 1-2
ILCD(2)
Supply current from VDD at
VDD = 2.2 V
Buffer OFF
(BUFEN=0 is LCD_CR register) -3-
A
Supply current from VDD at
VDD = 3.0 V
Buffer OFF
(BUFEN=0 is LCD_CR register) -1.5-
IVLCD
Supply current from VLCD
(VLCD = 3 V)
Buffer OFF
(BUFFEN = 0, PON = 0) -0.5-
A
Buffer ON
(BUFFEN = 1, 1/2 Bias) -0.6-
Buffer ON
(BUFFEN = 1, 1/3 Bias) -0.8-
Buffer ON
(BUFFEN = 1, 1/4 Bias) -1-
RHN Total High resistor value for Low drive resistive network - 5.5 - M
RLN Total Low resistor value for High drive resistive network - 240 - k
Electrical characteristics STM32WB55xx
148/183 DS11929 Rev 7
6.3.27 Timer characteristics
The parameters given in the following tables are guaranteed by design. Refer to
Section 6.3.17 for details on the input/output alternate function characteristics (output
compare, input capture, external clock, PWM output).
V44 Segment/Common highest level voltage - VLCD -
V
V34 Segment/Common 3/4 level voltage - 3/4 VLCD -
V23 Segment/Common 2/3 level voltage - 2/3 VLCD -
V12 Segment/Common 1/2 level voltage - 1/2 VLCD -
V13 Segment/Common 1/3 level voltage - 1/3 VLCD -
V14 Segment/Common 1/4 level voltage - 1/4 VLCD -
V0Segment/Common lowest level voltage - 0 -
1. Guaranteed by design.
2. LCD enabled with 3 V internal step-up active, 1/8 duty, 1/4 bias, division ratio = 64, all pixels active, no LCD connected.
Table 85. LCD controller characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 86. TIMx(1) characteristics
Symbol Parameter Conditions Min Max Unit
tres(TIM) Timer resolution time
-1-t
TIMxCLK
fTIMxCLK = 64 MHz 15.625 - ns
fEXT
Timer external clock frequency
on CH1 to CH4
-0f
TIMxCLK/2
MHz
fTIMxCLK = 64 MHz 0 40
ResTIM Timer resolution
TIM1, TIM16, TIM17 - 16
bit
TIM2 - 32
tCOUNTER 16-bit counter clock period
- 1 65536 tTIMxCLK
fTIMxCLK = 64 MHz 0.015625 1024 µs
tMAX_COUNT
Maximum possible count with
32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 64 MHz - 67.10 s
1. TIMx, is used as a general term where x stands for 1, 2, 16 or 17.
DS11929 Rev 7 149/183
STM32WB55xx Electrical characteristics
160
6.3.28 Clock recovery system (CRS)
The devices embed a special block for the automatic trimming of the internal 48 MHz
oscillator to guarantee its optimal accuracy over the whole device operational range.
This automatic trimming is based on the external synchronization signal, which can be
derived from USB Sart Of Frame (SOF) signalization, from LSE oscillator, from an external
signal on CRS_SYNC pin or generated by user software.
For faster lock-in during startup it is also possible to combine automatic trimming with
manual trimming action.
6.3.29 Communication interfaces characteristics
I2C interface characteristics
The I2C interface meets the timings requirements of the I2C-bus specification and user
manual rev. 03 for:
Standard-mode (Sm): bit rate up to 100 kbit/s
Fast-mode (Fm): bit rate up to 400 kbit/s
Fast-mode Plus (Fm+): bit rate up to 1 Mbit/s.
The I2C timings requirements are guaranteed by design when the I2C peripheral is properly
configured (see the reference manual).
Table 87. IWDG min/max timeout period at 32 kHz (LSI1)(1)
Prescaler divider PR[2:0] bits Min timeout RL[11:0] = 0x000 Max timeout RL[11:0] = 0xFFF Unit
/4 0 0.125 512
ms
/8 1 0.250 1024
/16 2 0.500 2048
/32 3 1.0 4096
/64 4 2.0 8192
/128 5 4.0 16384
/256 6 or 7 8.0 32768
1. The exact timings still depend on the phasing of the APB interface clock vs. the LSI clock, hence there is always a full RC
period of uncertainty.
Table 88. Minimum I2CCLK frequency in all I2C modes
Symbol Parameter Condition Min Unit
f(I2CCLK)
I2CCLK
frequency
Standard-mode - 2
MHz
Fast-mode
Analog filter ON, DNF = 0 9
Analog filter OFF, DNF = 1 9
Fast-mode Plus
Analog filter ON, DNF = 0 19
Analog filter OFF, DNF = 1 16
Electrical characteristics STM32WB55xx
150/183 DS11929 Rev 7
The SDA and SCL I/O requirements are met with the following restriction: the SDA and SCL
I/O pins are not “true” open-drain. When configured as open-drain, the PMOS connected
between the I/O pin and VDD is disabled, but is still present. The 20 mA output drive
requirement in Fast-mode Plus is supported partially.
This limits the maximum load Cload supported in Fast-mode Plus, given by these formulas:
tr(SDA/SCL) = 0.8473 x Rp x Cload
Rp(min) = [VDD - VOL(max)] / IOL(max)
where Rp is the I2C lines pull-up. Refer to Section 6.3.17 for the I2C I/Os characteristics.
All I2C SDA and SCL I/Os embed an analog filter, refer to Table 89 for its characteristics.
SPI characteristics
Unless otherwise specified, the parameters given in Table 90 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 22: General operating conditions.
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 VDD
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics
(NSS, SCK, MOSI, MISO for SPI).
Table 89. I2C analog filter characteristics(1)
1. Guaranteed by design.
Symbol Parameter Min Max Unit
tAF
Maximum pulse width of spikes that
are suppressed by the analog filter 50(2)
2. Spikes with widths below tAF(min) are filtered.
110(3)
3. Spikes with widths above tAF(max) are not filtered
ns
DS11929 Rev 7 151/183
STM32WB55xx Electrical characteristics
160
Table 90. SPI characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode
1.65 < VDD < 3.6 V
Voltage Range 1
--
32
MHz
Master transmitter mode
1.65 < VDD < 3.6 V
Voltage Range 1
32
Slave receiver mode
1.65 < VDD < 3.6 V
Voltage Range 1
32
Slave mode transmitter/full duplex
2.7 < VDD < 3.6 V
Voltage Range 1
32(2)
Slave mode transmitter/full duplex
1.65 < VDD < 3.6 V
Voltage Range 1
20.5(2)
Voltage Range 2 8
tsu(NSS) NSS setup time Slave mode, SPI prescaler = 2 4xTPCLK --
-
th(NSS) NSS hold time Slave mode, SPI prescaler = 2 2xTPCLK --
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode TPCLK - 1.5 TPCLK TPCLK + 1
tsu(MI) Data input setup time
Master mode 1.5 - -
ns
tsu(SI) Slave mode 1 - -
th(MI) Data input hold time
Master mode 5 - -
th(SI) Slave mode 1 - -
ta(SO) Data output access time
Slave mode
9-34
tdis(SO) Data output disable time 9 - 16
tv(SO) Data output valid time
Slave mode 2.7 < VDD < 3.6 V
Voltage Range 1 -14.515.5
ns
Slave mode 1.65 < VDD < 3.6 V
Voltage Range 1 -15.524
Slave mode 1.65 < VDD < 3.6 V
Voltage Range 2 -19.526
tv(MO) Master mode (after enable edge) - 2.5 3
th(SO) Data output hold time
Slave mode (after enable edge) 8 - -
th(MO) Master mode (after enable edge) 1 - -
1. Guaranteed by characterization results.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI), which has to fit into SCK low
or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50 %.
Electrical characteristics STM32WB55xx
152/183 DS11929 Rev 7
Figure 29. SPI timing diagram - slave mode and CPHA = 0
Figure 30. SPI timing diagram - slave mode and CPHA = 1
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
ai14135b
NSS input
tSU(NSS) tc(SCK) th(NSS)
SCK input
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH)
tw(SCKL)
ta(SO) tv(SO) th(SO) tr(SCK)
tf(SCK) tdis(SO)
MISO
OUTPUT
MOSI
INPUT
tsu(SI) th(SI)
MSB OUT
MSB IN
BIT6 OUT LSB OUT
LSB IN
BIT 1 IN
DS11929 Rev 7 153/183
STM32WB55xx Electrical characteristics
160
Figure 31. SPI timing diagram - master mode
1. Measurement points are set at CMOS levels: 0.3 VDD and 0.7 VDD.
ai14136c
SCK Output
CPHA= 0
MOSI
OUTPUT
MISO
INP UT
CPHA= 0
LSB OUT
LSB IN
CPOL=0
CPOL=1
B I T1 OUT
NSS input
tc(SCK)
tw(SCKH)
tw(SCKL)
tr(SCK)
tf(SCK)
th(MI)
High
SCK Output
CPHA=1
CPHA=1
CPOL=0
CPOL=1
tsu(MI)
tv(MO) th(MO)
MSB IN BIT6 IN
MSB OUT
Electrical characteristics STM32WB55xx
154/183 DS11929 Rev 7
Quad-SPI characteristics
Unless otherwise specified, the parameters given in Table 91 and Table 92 for Quad-SPI
are derived from tests performed under the ambient temperature, fAHB frequency and VDD
supply voltage conditions summarized in Table 22: General operating conditions, with the
following configuration:
Output speed is set to OSPEEDRy[1:0] = 11
Capacitive load C = 15 or 20 pF
Measurement points are set at CMOS levels: 0.5 VDD
Refer to Section 6.3.17 for more details on the input/output alternate function
characteristics.
Table 91. Quad-SPI characteristics in SDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
FCK
1/t(CK)
Quad-SPI
clock frequency
1.65 < VDD< 3.6 V, CLOAD = 20 pF
Voltage Range 1 --40
MHz
1.65 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1 --48
2.7 < VDD< 3.6 V, CLOAD = 15 pF
Voltage Range 1 --60
1.65 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2 --16
tw(CKH) Quad-SPI clock
high and low time fAHBCLK= 48 MHz, presc=1
t(CK)/2 - 0.5 - t(CK)/2 + 1
ns
tw(CKL) t(CK)/2 - 1 - t(CK)/2 + 0.5
ts(IN) Data input setup time
Voltage Range 1 2 - -
Voltage Range 2 3.5 - -
th(IN) Data input hold time
Voltage Range 1 4.5 - -
Voltage Range 2 6 - -
tv(OUT) Data output valid time
Voltage Range 1 - 1 1.5
Voltage Range 2 - 1 1.5
th(OUT) Data output hold time
Voltage Range 1 0 - -
Voltage Range 2 0 - -
1. Guaranteed by characterization results.
DS11929 Rev 7 155/183
STM32WB55xx Electrical characteristics
160
Table 92. Quad-SPI characteristics in DDR mode(1)
Symbol Parameter Conditions Min Typ Max Unit
FCK
1/t(CK)
Quad-SPI clock
frequency
1.65 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1 --40
MHz
2.0 < VDD < 3.6 V, CLOAD = 20 pF
Voltage Range 1 --50
1.65 < VDD < 3.6 V, CLOAD = 15 pF
Voltage Range 1 --48
1.65 < VDD < 3.6 V CLOAD = 20 pF
Voltage Range 2 --16
tw(CKH) Quad-SPI clock
high and low time fAHBCLK = 48 MHz, presc=0
t(CK)/2 - t(CK)/2 + 1
ns
tw(CKL) t(CK)/2 - 1 - t(CK)/2
tsr(IN)
Data input setup
time on rising edge
Voltage Range 1 2.5
--
Voltage Range 2 3.5
tsf(IN)
Data input setup
time on falling edge
Voltage Range 1 2.5
--
Voltage Range 2 1.5
thr(IN)
Data input hold
time on rising edge
Voltage Range 1 5.5
--
Voltage Range 2 6.5
thf(IN)
Data input hold
time on falling edge
Voltage Range 1 5
--
Voltage Range 2 6
tvr(OUT)
Data output valid
time on rising edge
Voltage Range 1
DHHC=0
-
45.5
DHHC=1 t(CK)/2 + 1 t(CK)/2 + 1.5
Voltage Range 2 4.5 7
tvf(OUT)
Data output valid
time on falling edge
Voltage Range 1
DHHC=0
-
46
DHHC=1 t(CK)/2 + 1 t(CK)/2 + 2
Voltage Range 2 6 7.5
thr(OUT)
Data output hold
time on rising edge
Voltage Range 1
DHHC=0 2 - -
DHHC=1 t(CK)/2 + 0.5 - -
Voltage Range 2 3.5 - -
thf(OUT)
Data output hold
time on falling edge
Voltage Range 1
DHHC=0 3 - -
DHHC=1 t(CK)/2 + 0.5 - -
Voltage Range 2 5 - -
1. Guaranteed by characterization results.
Electrical characteristics STM32WB55xx
156/183 DS11929 Rev 7
Figure 32. Quad-SPI timing diagram - SDR mode
Figure 33. Quad-SPI timing diagram - DDR mode
SAI characteristics
Unless otherwise specified, the parameters given in Table 93 for SAI are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized inTable 22: General operating conditions, with
the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement are performed at CMOS levels: 0.5 VDD
Refer to Section 6.3.17 for more details on the input/output alternate function
characteristics (CK,SD,FS).
MSv36878V1
Data output D0 D1 D2
Clock
Data input D0 D1 D2
t(CK) tw(CKH) tw(CKL)
tr(CK) tf(CK)
ts(IN) th(IN)
tv(OUT) th(OUT)
MSv36879V3
Data output IO0 IO2 IO4
Clock
Data input IO0 IO2 IO4
t(CLK) tw(CLKH) tw(CLKL)
tr(CLK) tf(CLK)
tsf(IN) thf(IN)
tvf(OUT) thr(OUT)
IO1 IO3 IO5
IO1 IO3 IO5
tvr(OUT) thf(OUT)
tsr(IN) thr(IN)
DS11929 Rev 7 157/183
STM32WB55xx Electrical characteristics
160
Table 93. SAI characteristics(1)
1. Guaranteed by characterization results.
Symbol Parameter Conditions Min Max Unit
fMCLK SAI main clock output - - 50
MHz
fCK SAI clock frequency(2)
2. APB clock frequency must be at least twice SAI clock frequency.
Master transmitter
2.7 V VDD 3.6 V
Voltage Range 1
-23.5
Master transmitter
1.65 V VDD 3.6 V
Voltage Range 1
-16
Master receiver
Voltage Range 1 -16
Slave transmitter
2.7 V VDD 3.6 V
Voltage Range 1
-26
Slave transmitter
1.65 V VDD 3.6 V
Voltage Range 1
-20
Slave receiver
Voltage Range 1 -32
Voltage Range 2 - 8
tv(FS) FS valid time
Master mode
2.7 V VDD 3.6 V -21
ns
Master mode
1.65 V VDD 3.6 V -30
th(FS) FS hold time Master mode 10 -
tsu(FS) FS setup time Slave mode 1.5 -
th(FS) FS hold time Slave mode 2.5 -
tsu(SD_A_MR) Data input setup time
Master receiver 1 -
tsu(SD_B_SR) Slave receiver 1.5 -
th(SD_A_MR) Data input hold time
Master receiver 6.5 -
th(SD_B_SR) Slave receiver 2.5 -
tv(SD_B_ST) Data output valid time
Slave transmitter (after enable edge)
2.7 V VDD 3.6 V -19
Slave transmitter (after enable edge)
1.65 V VDD 3.6 V -25
th(SD_B_ST) Data output hold time Slave transmitter (after enable edge) 10 -
tv(SD_A_MT) Data output valid time
Master transmitter (after enable edge)
2.7 V VDD 3.6 V -18.5
Master transmitter (after enable edge)
1.65 V VDD 3.6 V -25
th(SD_A_MT) Data output hold time Master transmitter (after enable edge) 10 -
Electrical characteristics STM32WB55xx
158/183 DS11929 Rev 7
Figure 34. SAI master timing waveforms
Figure 35. SAI slave timing waveforms
MS32771V1
SAI_SCK_X
SAI_FS_X
(output)
1/fSCK
SAI_SD_X
(transmit)
tv(FS)
Slot n
SAI_SD_X
(receive)
th(FS)
Slot n+2
tv(SD_MT) th(SD_MT)
Slot n
tsu(SD_MR) th(SD_MR)
MS32772V1
SAI_SCK_X
SAI_FS_X
(input)
SAI_SD_X
(transmit)
tsu(FS)
Slot n
SAI_SD_X
(receive)
tw(CKH_X) th(FS)
Slot n+2
tv(SD_ST) th(SD_ST)
Slot n
tsu(SD_SR)
tw(CKL_X)
th(SD_SR)
1/fSCK
DS11929 Rev 7 159/183
STM32WB55xx Electrical characteristics
160
USB characteristics
The STM32WB55xx USB interface is fully compliant with the USB specification version 2.0,
and is USB-IF certified (for Full-speed device operation).
JTAG/SWD interface characteristics
Unless otherwise specified, the parameters given in Table 95 and Table 96 are derived from
tests performed under the ambient temperature, fPCLKx frequency and supply voltage
conditions summarized in Table 22: General operating conditions, with the following
configuration:
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5 VDD
Table 94. USB electrical characteristics(1)
1. TA = -40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
VDDUSB USB transceiver operating voltage - 3.0(2)
2. The STM32WB55xx USB functionality is ensured down to 2.7 V, but the full USB electrical characteristics
are degraded in the 2.7 to 3.0 V voltage range.
-3.6V
Tcrystal_less
USB crystal-less
operation temperature --15-85
°C
RPUI
Embedded USB_DP pull-up value
during idle - 900 1250 1600
RPUR
Embedded USB_DP pull-up value
during reception - 1400 2300 3200
ZDRV(3)
3. Guaranteed by design.
Output driver impedance(4)
4. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-); the matching
impedance is already included in the embedded driver.
Driving high and low 28 36 44
Table 95. JTAG characteristics
Symbol Parameter Conditions Min Typ Max Unit
1/tc(TCK) TCK clock frequency
2.7 < VDD < 3.6 V - - 29
MHz
1.65 < VDD < 3.6 V - - 21
tisu(TMS) TMS input setup time - 2.5 - -
ns
tih(TMS) TMS input hold time - 2 - -
tisu(TDI) TDI input setup time - 1.5 - -
tih(TDI) TDI input hold time - 2 - -
tov(TDO) TDO output valid time
2.7 < VDD < 3.6 V - 13.5 16.5
1.65 < VDD < 3.6 V - 13.5 23
toh(TDO) TDO output hold time - 11 - -
Electrical characteristics STM32WB55xx
160/183 DS11929 Rev 7
Refer to Section 6.3.17 for more details on the input/output alternate function characteristics
(CK, SD, WS).
Table 96. SWD characteristics
Symbol Parameter Conditions Min Typ Max Unit
1/tc(SWCLK) SWCLK clock frequency
2.7 < VDD < 3.6 V - - 55
MHz
1.65 < VDD < 3.6 V - - 35
tisu(TMS) SWDIO input setup time - 2.5 - -
ns
tih(TMS) SWDIO input hold time - 2 - -
tov(TDO) SWDIO output valid time
2.7 < VDD < 3.6 V - 16 18
1.65 < VDD < 3.6 V - 16 28
toh(TDO) SWDIO output hold time - 13 - -
DS11929 Rev 7 161/183
STM32WB55xx Package information
176
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK packages, depending on their level of environmental compliance. ECOPACK
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK is an ST trademark.
7.1 UFBGA129 package information
This UFBGA is a 129-ball, 7 x 7 mm, 0.5 mm fine pitch, square ball grid array package.
Figure 36. UFBGA129 package outline
1. Drawing is not to scale.
2. - The terminal A1 corner must be identified on the top surface by using a corner chamfer,
ink or metalized markings, or other feature of package body or integral heat slug.
- A distinguishing feature is allowable on the bottom surface of the package to identify the terminal A1
corner. Exact shape of each corner is optional.
Table 97. UFBGA129 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A(2) - - 0.60 - - 0.024
A1 - - 0.11 - - 0.004
A2 - 0.13 - - 0.005 -
A4 - 0.32 - - 0.013 -
b(3) 0.24 0.29 0.34 0.009 0.011 0.013
B09R_UFBGA129_ME_V2
e
E
E1
B
F
F
D1
D
e
A
1
2
3
7
8
9
4
5
6
11
12
13
10
EFGHABCD N
JKLM
A1 corner index area
BOTTOM VIEW
b (129 balls)
eee
f f f M
M
C
CAB
C
A
A1
ddd C
b
A2
A4
SEATING
PLANE
Package information STM32WB55xx
162/183 DS11929 Rev 7
Figure 37. UFBGA129 recommended footprint
D 6.85 7.00 7.15 0.270 0.276 0.281
E 6.85 7.00 7.15 0.270 0.276 0.281
D1 - 6.00 - - 0.236 -
E1 - 6.00 - - 0.236 -
e - 0.50 - - 0.020 -
F - 0.50 - - 0.020 -
ddd - - 0.08 - - 0.003
eee(4) - - 0.15 - - 0.006
fff(5) - - 0.05 - - 0.002
1. Values in inches are converted from mm and rounded to four decimal digits.
2. - UFBGA stands for Ultra Thin Profile Fine Pitch Ball Grid Array.
- Ultra thin profile: 0.50 < A 0.65mm / Fine pitch: e < 1.00mm pitch.
- The total profile height (Dim A) is measured from the seating plane to the top of the component
- The maximum total package height is calculated by the following methodology:
A Max = A1 Typ + A2 Typ + A4 Typ + (A1²+A2²+A4² tolerance values).
3. The typical balls diameters before mounting is 0.20 mm.
4. The tolerance of position that controls the location of the pattern of balls with respect to datum A and B.
For each ball there is a cylindrical tolerance zone eee perpendicular to datum C and located on true
position with respect to datum A and B as defined by e. The axis perpendicular to datum C of each ball
must lie within this tolerance zone.
5. The tolerance of position that controls the location of the balls within the matrix with respect to each other.
For each ball there is a cylindrical tolerance zone fff perpendicular to datum C and located on true position
as defined by e. The axis perpendicular to datum C of each ball must lie within this tolerance zone. Each
tolerance zone fff in the array is contained entirely in the respective zone eee above The axis of each ball
must lie simultaneously in both tolerance zones.
Table 97. UFBGA129 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
BGA_WLCSP_FT_V1
Dsm
Dpad
DS11929 Rev 7 163/183
STM32WB55xx Package information
176
Device marking for UFBGA129
Figure 38 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 38. UFBGA129 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Table 98. UFBGA129 recommended PCB design rules
Dimension Recommended values
Pitch 0.5 mm
Dpad 0,360 mm
Dsm 0.460 mm typ. (depends on soldermask registration tolerance)
Stencil opening 0.360 mm
Stencil thickness 0.100 mm
MS53511V1
Date code
55V
Product identification(1)
Y WW
STM32WB
Additional
information
Y
Pin 1 identifier
Package information STM32WB55xx
164/183 DS11929 Rev 7
7.2 WLCSP100 package information
WLCSP100 is a 100-ball, 4.390 x 4.371 mm, 0.4 mm pitch, wafer level chip scale package.
Figure 39. WLCSP100 outline
A
K
10 1
F
G
e1 A1 BALL LOCATION
e4
e2 E
K
H
e3e
e
D
BOTTOM VIEW
E
D
TOP VIEW
A1
DETAIL A
A
A2
SIDE VIEW
A3
FRONT VIEW
A2
A1
BUMP
SEATING PLANE
DETAIL A
ROTATED 90 A08S_WLCSP100_ME_V1
DS11929 Rev 7 165/183
STM32WB55xx Package information
176
Table 99. WLCSP100 mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to the third decimal place.
Min Typ Max Min Typ Max
A- -0.59- -0.023
A1 - 0.18 - - 0.007 -
A2 - 0.38 - - 0.015 -
A3 - 0.025(2)
2. Nominal dimension rounded to the third decimal place results from process capability.
--0.001-
b 0.22 0.25 0.28 0.009 0.010 0.0110
D 4.38 4.40 4.42 0.1715 0.1728 0.1742
E 4.36 4.38 4.40 0.1707 0.1721 0.1735
e - 0.40 - - 0.0157 -
e1 - 3.60 - - 0.1417 -
e2 - 3.60 - - 0.1417 -
e3 - 0.08 - - 0.0031 -
e4 - 0.08 - - 0.0033 -
F - 0.480(3)
3. Calculated dimensions are rounded to third decimal place.
- - 0.0187 -
G - 0.306(3) - - 0.0119 -
H - 0.32 - - 0.0124 -
K - 0.47 - - 0.0185 -
aaa - - 0.10 - - 0.0039
bbb - - 0.10 - - 0.0039
ccc - - 0.10 - - 0.0039
ddd - - 0.05 - - 0.0020
eee - - 0.05 - - 0.0020
Package information STM32WB55xx
166/183 DS11929 Rev 7
Figure 40. WLCSP100 recommended footprint
1. Dimensions are expressed in millimeters.
Device marking for WLCSP100
Figure 41 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Table 100. WLCSP100 recommended PCB design rules
Dimension Recommended values
Pitch 0.4 mm
Dpad 0.225 mm
Dsm 0.290 mm typ. (depends on the soldermask registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
A08S_WLCSP100_FP_V1
Dpad Dsm
DS11929 Rev 7 167/183
STM32WB55xx Package information
176
Figure 41. WLCSP100 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MS53512V1
Product
identification(1)
Date code
Pin 1 identifier
WB55V
YwwY
Package information STM32WB55xx
168/183 DS11929 Rev 7
7.3 VFQFPN68 package information
VFQFPN68 is a 8 x 8 mm, 0.4 mm pitch, very thin fine pitch quad flat package.
Figure 42. VFQFPN68 package outline
1. VFQFPN stands for Thermally Enhanced Very thin Fine pitch Quad Flat Packages No lead. Sawed
version. Very thin profile: 0.80 < A 1.00 mm.
2. The pin #1 identifier must be existed on the top surface of the package by using indentation mark or other
feature of package body. Exact shape and size of this feature is optional.
Table 101. VFQFPN68 mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A 0.80 0.90 1.00 0.0315 0.0354 0.0394
A1 0 0.02 0.05 0 0.0008 0.0020
A3 - 0.20 - - 0.0008 -
b 0.15 0.20 0.25 0.0059 0.0079 0.0098
D 7.85 8.00 8.15 0.3091 0.3150 0.3209
D2 6.30 6.40 6.50 0.2480 0.2520 0.2559
C
D
E
TOP VIEW
PIN 1 IDENTIFIER
LASER MARKING
68 67
1
2
(2X) 0.10 C
D2
E2
68 67
2
1
PIN 1 ID
C 0.30 X 45' eb
BOTTOM VIEW
L
EXPOSED PAD AREA
SIDE VIEW
E
SEATING
PLANE
ddd C
A
A1
A2
B029_VFQFPN68_ME_V1
DS11929 Rev 7 169/183
STM32WB55xx Package information
176
Figure 43. VFQFPN68 recommended footprint
1. Dimensions are expressed in millimeters.
Device marking for VFQFPN68
Figure 43 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
E 7.85 8.00 8.15 0.3091 0.3150 0.3209
E2 6.30 6.40 6.50 0.2480 0.2520 0.2559
e - 0.40 - - 0.0157 -
L 0.40 0.50 0.60 0.0157 0.0197 0.0236
ddd - - 0.08 - - 0.0031
1. Values in inches are converted from mm and rounded to four decimal digits.
Table 101. VFQFPN68 mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
B029_VFQFPN68_FP_V2
8.30
7.00
6.65
8.30
7.00
6.65
0.82
6.40
6.40
0.65 0.40
0.25
0.15
Package information STM32WB55xx
170/183 DS11929 Rev 7
Figure 44. VFQFPN68 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
MS53514V1
STM32WB55
Product
identification(1)
Pin 1 identifier
R
Y
DS11929 Rev 7 171/183
STM32WB55xx Package information
176
7.4 UFQFPN48 package information
UFQFPN48 is a 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package.
Figure 45. UFQFPN48 outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package, it must be electrically connected to
the PCB ground.
A0B9_ME_V3
D
Pin 1 identifier
laser marking area
EE
DY
D2
E2
Exposed pad
area
Z
1
48
Detail Z
R 0.125 typ.
1
48
L
C 0.500x45°
pin1 corner
A
Seating
plane
A1
b
e
ddd
Detail Y
T
Package information STM32WB55xx
172/183 DS11929 Rev 7
Figure 46. UFQFPN48 recommended footprint
1. Dimensions are expressed in millimeters.
Table 102. UFQFPN48 mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to four decimal digits.
Min Typ Max Min Typ Max
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
7.30
7.30
0.20
0.30
0.55 0.50
5.80
6.20
6.20
5.60
5.60
5.80
0.75
A0B9_FP_V2
48
1
12
13 24
25
36
37
DS11929 Rev 7 173/183
STM32WB55xx Package information
176
Device marking for UFQFPN48
Figure 47 gives an example of topside marking orientation versus pin 1 identifier location.
The printed markings may differ depending on the supply chain.
Other optional marking or inset/upset marks, which identify the parts throughout supply
chain operations, are not indicated below.
Figure 47. UFQFPN48 marking example (package top view)
1. Parts marked as “ES”, “E” or accompanied by an Engineering Sample notification letter, are not yet
qualified and therefore not yet ready to be used in production and any consequences deriving from such
usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering
samples in production. ST Quality has to be contacted prior to any decision to use these Engineering
samples to run qualification activity.
MS51581V2
STM32WB55
CGU6
YWW
Date code
Pin 1 identifier
Product
identification(1)
Revision code
Y
Package information STM32WB55xx
174/183 DS11929 Rev 7
7.5 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 22: General operating conditions.
The maximum chip-junction temperature, TJ max, in degrees Celsius, can be calculated
using the equation:
TJ max = TA max + (PD max x JA)
where:
TA max is the maximum ambient temperature in °C,
JA is the package junction-to-ambient thermal resistance, in °C / W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/O max),
PINT max is the product of IDD and VDD, expressed in Watt. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins:
PI/O max = (VOL × IOL) + ((VDD – VOH) × IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
Note: When the SMPS is used, a portion of the power consumption is dissipated into the external
inductor, therefore reducing the chip power dissipation. This portion depends mainly on the
inductor ESR characteristics.
Note: As the radiated RF power is quite low (< 4 mW), it is not necessary to remove it from the
chip power consumption.
Note: RF characteristics (such as sensitivity, Tx power, consumption) are provided up to 85 °C.
Table 103. Package thermal characteristics
Symbol Parameter Value Unit
JA
Thermal resistance junction-ambient
UFQFPN48 - 7 mm x 7 mm 24.9
°C/W
Thermal resistance junction-ambient
VFQFPN68 - 8 mm x 8 mm 47.0
Thermal resistance junction-ambient
WLCSP100 - 0.4 mm pitch 35.8
Thermal resistance junction-ambient
UFBGA129 - 0.5 mm pitch 41.5
JB
Thermal resistance junction-case
UFQFPN48 - 7 mm x 7 mm 13.0
°C/W
Thermal resistance junction-case
VFQFPN68 - 8 mm x 8 mm 36.1
Thermal resistance junction-case
WLCSP100 - 0.4 mm pitch N/A
Thermal resistance junction-case
UFBGA129 - 0.5 mm pitch 16.2
DS11929 Rev 7 175/183
STM32WB55xx Package information
176
7.5.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org
7.5.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the ordering
information scheme shown in Section 8.
Each temperature range suffix corresponds to a specific guaranteed ambient temperature at
maximum dissipation and, to a specific maximum junction temperature.
As applications do not commonly use the STM32WB55xx at maximum dissipation, it is
useful to calculate the exact power consumption and junction temperature to determine
which temperature range is best suited to the application.
The following examples show how to calculate the temperature range needed for a given
application.
Example 1: High-performance application
Assuming the following application conditions:
Maximum ambient temperature TA max = 82 °C (measured according to JESD51-2),
IDD max = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at
low level with IOL = 8 mA, VOL = 0.4 V and maximum 8 I/Os used at the same time in
output at low level with IOL = 20 mA, VOL= 1.3 V
PINT max = 50 mA × 3.5 V = 175 mW
PIO max = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW
This gives: PINT max = 175 mW and PIO max = 272 mW
PD max = 175 + 272 = 447 mW
Using the values obtained in Table 103 TJ max is calculated as follows:
For VFQFPN68, 47 °C / W
TJ max = 82 °C + (47 °C / W × 447 mW) = 82 °C + 21 °C = 103 °C
This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C), see Section 8.
In this case, parts must be ordered at least with the temperature range suffix 6.
JC
Thermal resistance junction-board
UFQFPN48 - 7 mm x 7 mm 1.3
°C/W
Thermal resistance junction-board
VFQFPN68 - 8 mm x 8 mm 13.7
Thermal resistance junction-board
WLCSP100 - 0.4 mm pitch N/A
Thermal resistance junction-board
UFBGA129 - 0.5 mm pitch 34.9
Table 103. Package thermal characteristics (continued)
Symbol Parameter Value Unit
Package information STM32WB55xx
176/183 DS11929 Rev 7
Note: With this given PD max user can find the TA max allowed for a given device temperature
range (order code suffix 7).
Suffix 7: TA max = TJ max - (47 °C / W × 447 mW) = 125 °C - 21 °C = 103 °C
Example 2: High-temperature application
Using the same rules, it is possible to address applications running at high ambient
temperatures with a low dissipation, as long as junction temperature TJ remains within the
specified range.
Assuming the following application conditions:
Maximum ambient temperature TA max = 100 °C (measured according to JESD51-2),
IDD max = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at
low level with IOL = 8 mA, VOL= 0.4 V
PINT max = 50 mA × 3.5 V = 175 mW
PIO max = 20 × 8 mA × 0.4 V = 64 mW
This gives: PINTmax = 175 mW and PIO max = 64 mW
PD max = 175 + 64 = 239 mW
Thus: PD max = 239 mW
Using the values obtained in Table 103 TJ max is calculated as follows:
For UFQFPN48, 24.9 °C / W
TJ max = 100 °C + (24.9 °C / W × 239 mW) = 100 °C + 6 °C = 106 °C
This is above the range of the suffix 6 version parts (–40 < TJ < 105 °C).
In this case, parts must be ordered at least with the temperature range suffix 7 (see
Section 8), unless user reduces the power dissipation to be able to use suffix 6 parts.
DS11929 Rev 7 177/183
STM32WB55xx Ordering information
177
8 Ordering information
Example: STM32 WB 55 V G V 6 TR
Device family
STM32 = Arm® based 32-bit microcontroller
Product type
WB = Wireless Bluetooth®
Device subfamily
55 = Die 5, full set of features
Pin count
C = 48 pins
R = 68 pins
V = 100 or 129 pins
Flash memory size
C = 256 Kbytes
E = 512 Kbytes
G = 1 Mbyte
Package
U = UFQFPN48 7 x 7 mm
V = VFQFPN68 8 x 8 mm
Y = WLCSP100 0.4 mm pitch
Q = UFBGA129 0.5 mm pitch
Temperature range
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)
7 = Industrial temperature range, -40 to 105 °C (125 °C junction)
Packing
TR = tape and reel
xxx = programmed parts
Revision history STM32WB55xx
178/183 DS11929 Rev 7
9 Revision history
Table 104. Document revision history
Date Revision Changes
25-Jul-2017 1 Initial release.
04-Apr-2018 2
Updated document title, Features, Section 1: Introduction, Section 2:
Description, Section 3.1: Architecture, Section 3.3.2: Memory protection
unit, Section 3.3.3: Embedded Flash memory, Section 3.4: Security and
safety, Section 3.6: RF subsystem, Section 3.6.1: RF front-end block
diagram, Section 3.6.2: BLE general description, Section 3.7.1: Power
supply distribution, Section 3.7.2: Power supply schemes, Section 3.7.4:
Power supply supervisor, Section 3.10: Clocks and startup, Section 3.14:
Analog to digital converter (ADC), Section 3.19: True random number
generator (RNG), Section 5: Memory mapping, Section 6.3.25: SMPS
step-down converter characteristics and Section 7.5.2: Selecting the
product temperature range.
Updated Table 2: STM32WB55xx devices features and peripheral counts,
Table 6: Power supply typical components, Table 7: Features over all
modes, Table 8: STM32WB55xx modes overview, Table 13: Timer
features, Table 15: Legend/abbreviations used in the pinout table,
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate
functions, Table 23: RF transmitter BLE characteristics, Table 26: RF
receiver BLE characteristics (1 Mbps) and added footnote to it, Table 28:
RF BLE power consumption for VDD = 3.3 V, Table 31: RF 802.15.4
power consumption for VDD = 3.3 V, Table 37: Typical current
consumption in Run and Low-power run modes, with different codes
running from Flash, ART enable (Cache ON Prefetch OFF), VDD= 3.3 V,
Table 38: Typical current consumption in Run and Low-power run modes,
with different codes running from SRAM1, VDD = 3.3 V, Table 40: Current
consumption in Low-power sleep modes, Flash memory in Power down,
Table 41: Current consumption in Stop 2 mode, Table 42: Current
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0
mode, Table 44: Current consumption in Standby mode, Table 45: Current
consumption in Shutdown mode, Table 48: Peripheral current
consumption, Table 103: Package thermal characteristics and Table 97:
STM32WB55xx ordering information scheme.
Added Table 47: Current under Reset condition.
Updated Figure 1: STM32WB55xx block diagram, Figure 2:
STM32WB55xx RF front-end block diagram, Figure 4: Power distribution,
Figure 6: Power supply overview, Figure 7: Clock tree, Figure 8:
STM32WB55Cx UFQFPN48 pinout(1)(2), Figure 9: STM32WB55Rx
VFQFPN68 pinout(1)(2), Figure 10: STM32WB55Vx WLCSP100 ballout(1)
and Figure 14: Power supply scheme (all packages except UFBGA129).
DS11929 Rev 7 179/183
STM32WB55xx Revision history
182
08-Oct-2018 3
Changed document classification to Public.
Updated Features, Section 3.6.2: BLE general description, Section 3.7.2:
Power supply schemes, Section 3.7.3: Linear voltage regulator,
Section 3.10: Clocks and startup, Section 6.3.10: External clock source
characteristics, Section 6.3.20: Analog-to-Digital converter
characteristics, Section 6.3.29: Communication interfaces characteristics,
Section 7.2: WLCSP100 package information and Section 7.5: Thermal
characteristics.
Replaced VDDIOx with VDD throughout the whole document.
Updated Table 5: Typical external components, footnote 2 of Table 7:
Features over all modes, Table 8: STM32WB55xx modes overview and its
footnote 5, Table 12: Internal voltage reference calibration values,
Table 16: STM32WB55xx pin and ball definitions and its footnote 5,
Table 17: Alternate functions, Table 20: Thermal characteristics, Table 21:
Main performance at VDD = 3.3 V, Table 21: Main performance at VDD =
3.3 V, Table 22: General operating conditions, Table 23: RF transmitter
BLE characteristics and its footnote, Table 26: RF receiver BLE
characteristics (1 Mbps), Table 28: RF BLE power consumption for VDD =
3.3 V, Table 29: RF transmitter 802.15.4 characteristics and its footnote 1,
Table 30: RF receiver 802.15.4 characteristics, Table 31: RF 802.15.4
power consumption for VDD = 3.3 V, Table 34: Embedded internal
voltage reference, Table 35: Current consumption in Run and Low-power
run modes, code with data processing running from Flash, ART enable
(Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current consumption
in Run and Low-power run modes, code with data processing running
from SRAM1, VDD = 3.3 V, Table 37: Typical current consumption in Run
and Low-power run modes, with different codes running from Flash, ART
enable (Cache ON Prefetch OFF), VDD= 3.3 V, Table 38: Typical current
consumption in Run and Low-power run modes, with different codes
running from SRAM1, VDD = 3.3 V, Table 39: Current consumption in
Sleep and Low-power sleep modes, Flash memory ON, Table 40: Current
consumption in Low-power sleep modes, Flash memory in Power down,
Table 41: Current consumption in Stop 2 mode, Table 42: Current
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0
mode, Table 44: Current consumption in Standby mode, Table 45: Current
consumption in Shutdown mode, Table 46: Current consumption in VBAT
mode, Table 47: Current under Reset condition, Table 48: Peripheral
current consumption, Table 49: Low-power mode wakeup timings,
Table 50: Regulator modes transition times, Table 51: Wakeup time using
LPUART, Table 53: HSE oscillator characteristics and added footnote to
it, Table 60: LSI2 oscillator characteristics, Table 62: Flash memory
characteristics, Table 64: EMS characteristics, Table 66: ESD absolute
maximum ratings, Table 68: I/O current injection susceptibility, Table 69:
I/O static characteristics and its footnotes, Table 70: Output voltage
characteristics, Table 71: I/O AC characteristics and its footnotes 1 and 2,
Table 72: NRST pin characteristics, Table 76: ADC accuracy - Limited test
conditions 1, Table 77: ADC accuracy - Limited test conditions 2,
Table 78: ADC accuracy - Limited test conditions 3, Table 79: ADC
accuracy - Limited test conditions 4, Table 81: COMP characteristics,
Table 89: I2C analog filter characteristics, Table 90: SPI characteristics,
Table 91: Quad-SPI characteristics in SDR mode, Table 92: Quad-SPI
characteristics in DDR mode and Table 93: SAI characteristics.
Table 104. Document revision history (continued)
Date Revision Changes
Revision history STM32WB55xx
180/183 DS11929 Rev 7
08-Oct-2018 3
(cont’d)
Updated Figure 2: STM32WB55xx RF front-end block diagram, Figure 14:
Power supply scheme (all packages except UFBGA129), Figure 18:
Typical energy detection (T = 27°C, VDD = 3.3 V) and Figure 25: I/O input
characteristics.
Added Figure 5: Power-up/down sequence, Figure 17: Typical link quality
indicator code vs. Rx level and Figure 18: Typical energy detection (T =
27°C, VDD = 3.3 V).
Added Table 24: RF transmitter BLE characteristics (1 Mbps), Table 25:
RF transmitter BLE characteristics (2 Mbps), Table 27: RF receiver BLE
characteristics (2 Mbps), Table 52: HSE crystal requirements and
Table 88: Minimum I2CCLK frequency in all I2C modes.
Added Device marking for UFQFPN48.
Removed former Figure 22: I/O AC characteristics definition(1) and
Figure 27: SMPS efficiency - VDDSMPS = 3.6 V.
20-Feb-2019 4
Updated document title.
Product status moved to Production data.
Introduced BGA129 package, hence updated image on cover page,
Table 16: STM32WB55xx pin and ball definitions and Section 8: Ordering
information, and added Figure 11: STM32WB55Vx UFBGA129 ballout(1)
and Section 7.1: UFBGA129 package information.
Updated Features, Section 3.3.4: Embedded SRAM, Section 3.17: Touch
sensing controller (TSC) and Section 3.24: Low-power universal
asynchronous receiver transmitter (LPUART).
Added Section 6.3.28: Clock recovery system (CRS).
Added Table 75: ADC sampling time.
Removed former Table 75: Maximum ADC RAIN and Table 84: SMPS
step-down converter characteristics.
Updated captions of figures 8, 9 and 10.
Updated Figure 43: VFQFPN68 recommended footprint.
Table 104. Document revision history (continued)
Date Revision Changes
DS11929 Rev 7 181/183
STM32WB55xx Revision history
182
20-Feb-2019 4
(cont’d)
Updated Table 2: STM32WB55xx devices features and peripheral counts,
Table 8: STM32WB55xx modes overview and its footnotes, Table 21:
Main performance at VDD = 3.3 V, Table 22: General operating
conditions, Table 23: RF transmitter BLE characteristics, Table 24: RF
transmitter BLE characteristics (1 Mbps), Table 25: RF transmitter BLE
characteristics (2 Mbps), Table 26: RF receiver BLE characteristics (1
Mbps), Table 27: RF receiver BLE characteristics (2 Mbps), Table 28: RF
BLE power consumption for VDD = 3.3 V, Table 29: RF transmitter
802.15.4 characteristics, Table 31: RF 802.15.4 power consumption for
VDD = 3.3 V, Table 35: Current consumption in Run and Low-power run
modes, code with data processing running from Flash, ART enable
(Cache ON Prefetch OFF), VDD = 3.3 V, Table 36: Current consumption
in Run and Low-power run modes, code with data processing running
from SRAM1, VDD = 3.3 V, Table 37: Typical current consumption in Run
and Low-power run modes, with different codes running from Flash, ART
enable (Cache ON Prefetch OFF), VDD= 3.3 V, Table 38: Typical current
consumption in Run and Low-power run modes, with different codes
running from SRAM1, VDD = 3.3 V, Table 39: Current consumption in
Sleep and Low-power sleep modes, Flash memory ON, Table 40: Current
consumption in Low-power sleep modes, Flash memory in Power down,
Table 41: Current consumption in Stop 2 mode, Table 42: Current
consumption in Stop 1 mode, Table 43: Current consumption in Stop 0
mode, Table 44: Current consumption in Standby mode, Table 45: Current
consumption in Shutdown mode, Table 46: Current consumption in VBAT
mode, Table 47: Current under Reset condition, Table 48: Peripheral
current consumption and its footnotes, Table 49: Low-power mode
wakeup timings, Table 50: Regulator modes transition times and its
footnote 1, Table 64: EMS characteristics, Table 65: EMI characteristics,
Table 66: ESD absolute maximum ratings, Table 68: I/O current injection
susceptibility, Table 74: ADC characteristics, Table 76: ADC accuracy -
Limited test conditions 1, Table 77: ADC accuracy - Limited test
conditions 2, Table 78: ADC accuracy - Limited test conditions 3,
Table 79: ADC accuracy - Limited test conditions 4 and Table 103:
Package thermal characteristics.
04-Oct-2019 5
Updated Features, Section 2: Description, Section 6.1.6: Power supply
scheme, Section 6.2: Absolute maximum ratings and Section 7.2:
WLCSP100 package information.
Updated Table 6: Power supply typical components, Table 7: Features
over all modes, Table 11: Temperature sensor calibration values,
Table 16: STM32WB55xx pin and ball definitions, Table 17: Alternate
functions, Table 21: Main performance at VDD = 3.3 V, Table 26: RF
receiver BLE characteristics (1 Mbps), Table 34: Embedded internal
voltage reference, Table 61: PLL, PLLSAI1 characteristics and Table 66:
ESD absolute maximum ratings.
Updated Figure 6: Power supply overview and Figure 33: Quad-SPI
timing diagram - DDR mode.
Added Figure 15: Power supply scheme (UFBGA129 package) and
Figure 21: Low-speed external clock source AC timing diagram.
Added Table 55: Low-speed external user clock characteristics – Bypass
mode.
Table 104. Document revision history (continued)
Date Revision Changes
Revision history STM32WB55xx
182/183 DS11929 Rev 7
19-Feb-2020 6
Updated Features, Section 2: Description, I/O system current
consumption, Section 3.17: Touch sensing controller (TSC), Section 7.1:
UFBGA129 package information, Section 7.2: WLCSP100 package
information, Section 7.3: VFQFPN68 package information, Section 7.4:
UFQFPN48 package information, Section 7.5: Thermal characteristics
and Section 8: Ordering information.
Added JTAG/SWD interface characteristics, Device marking for
UFBGA129, Device marking for WLCSP100 and Device marking for
VFQFPN68.
Updated Table 2: STM32WB55xx devices features and peripheral counts,
Table 7: Features over all modes, Table 16: STM32WB55xx pin and ball
definitions, Table 17: Alternate functions, Table 18: Voltage
characteristics, Table 22: General operating conditions, Table 26: RF
receiver BLE characteristics (1 Mbps), Table 27: RF receiver BLE
characteristics (2 Mbps), Table 30: RF receiver 802.15.4 characteristics,
Table 47: Current under Reset condition, Table 60: LSI2 oscillator
characteristics and Table 103: Package thermal characteristics.
Added footnote 5 to Table 15: Legend/abbreviations used in the pinout
table.
Updated Figure 2: STM32WB55xx RF front-end block diagram, Figure 6:
Power supply overview, Figure 7: Clock tree, Figure 11: STM32WB55Vx
UFBGA129 ballout(1), Figure 14: Power supply scheme (all packages
except UFBGA129), Figure 36: UFBGA129 package outline and
Figure 47: UFQFPN48 marking example (package top view).
10-Apr-2020 7
Updated Section 3.6.5: Typical RF application schematic and
Section 6.3.10: External clock source characteristics.
Updated Table 16: STM32WB55xx pin and ball definitions and Table 52:
HSE crystal requirements.
Updated Figure 11: STM32WB55Vx UFBGA129 ballout(1) and Figure 14:
Power supply scheme (all packages except UFBGA129).
Minor text edits across the whole document.
Table 104. Document revision history (continued)
Date Revision Changes
DS11929 Rev 7 183/183
STM32WB55xx
183
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2020 STMicroelectronics – All rights reserved