09005aef80ec6f79 pdf/09005aef80ec6f65 zip
Burst CellularRAM 1.5_128Mb__1.fm - Rev. D 2/05 EN 1©2003 Micron Technology, Inc. All rights reserved.
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
128Mb BURST
CellularRAMTM 1.5
MT45W8MW16BGX
Features
Single device supports asynchronous, page, and
burst operations
Vcc, VccQ Voltages
1.7V–1.95V Vcc
1.7V–1.95V VccQ
Random Access Time: 70ns
Burst Mode READ and WRITE Access
4, 8, 16, or 32 words, or continuous burst
Burst wrap or sequential
MAX clock rate: 104 MHz (tCLK = 9.62ns)
Burst initial latency: 39ns (4 clocks) @ 104 MHz
tACLK: 7ns @ 104 MHz
Page Mode Read Access
Sixteen-word page size
Interpage read access: 70ns
Intrapage read access: 20ns
•Low Power Consumption
Asynchronous READ: < 30mA
Intrapage Read: < 15mA
Initial access, burst READ:
(39ns [4 clocks] @ 104 MHz) < 40mA
Continuous burst READ: < 25mA
Standby: < 50µA (TYP at 25°C)
Deep power-down: < 3µA (TYP)
Low-Power Features
On-chip Temperature Compensated Refresh (TCR)
Partial Array Refresh (PAR)
Deep Power-Down (DPD) Mode
Figure 1: Ball Assignment 54-Ball VFBGA
Part Number Example:
MT45W8MW16BGX-701LWT
Options Designator
•Configuration: MT45W8MW16B
8 Meg x 16
VCC Core Voltage Supply: 1.8V
VCCQ I/O Voltage Supply: 1.8V
•Package
54-ball VFBGA—”green GX
Timing
70ns access -70
85ns access -85
Options (continued) Designator
•Frequency
66 MHz 6
80 MHz 8
104 MHz 1
Standby Power at 85°C
Standard: 200µA (MAX) None
Low-power: 160µA (MAX) L
•Operating Temperature Range
Wireless (-30°C to +85°C) WT
Industrial (-40°C to +85°C) IT
A
B
C
D
E
F
G
H
J
1 2 3 4 5 6
Top View
(Ball Down)
LB#
DQ8
DQ9
VSSQ
VCCQ
DQ14
DQ15
A18
WAIT
OE#
UB#
DQ10
DQ11
DQ12
DQ13
A19
A8
CLK
A0
A3
A5
A17
A21
A14
A12
A9
ADV#
A2
CE#
DQ1
DQ3
DQ4
DQ5
WE#
A11
RFU
CRE
DQ0
DQ2
VCC
VSS
DQ6
DQ7
A20
RFU
A1
A4
A6
A7
A16
A15
A13
A10
A22
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128MbTOC.fm - Rev. D 2/05 EN 2©2003 Micron Technology, Inc. All rights reserved.
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Part-Numbering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Valid Part Number Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Device Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Bus Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Page Mode READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Burst Mode Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Mixed-Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
WAIT Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
LB#/UB# Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Temperature Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Partial Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Deep Power-Down Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Access Using CRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Software Access. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Bus Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Burst Length (BCR[2:0]) Default = Continuous Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Burst Wrap (BCR[3]) Default = No Wrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Drive Strength (BCR[5:4]) Default = Outputs Use Half-Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
WAIT Configuration (BCR[8]) Default = WAIT Transitions One Clock Before Data Valid/Invalid . . . . . . . . .22
WAIT Polarity (BCR[10]) Default = WAIT Active HIGH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Latency Counter (BCR[13:11]) Default = Three Clock Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Initial Access Latency (BRC[14]) Default = Variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Operating Mode (BCR[15]) Default = Asynchronous Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Refresh Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Partial Array Refresh (RCR[2:0] Default = Full Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Deep Power-Down (RCR[4]) Default = DPD Disabled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Page Mode Operation (RCR[7]) Default = Disabled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Device Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Electrical Characteristics and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Data Sheet Designation: Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128MbLOF.fm - Rev. D 2/05 EN 3©2003 Micron Technology, Inc. All rights reserved.
List of Figures
Figure 1: Ball Assignment 54-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2: Functional Block Diagram—8 Meg x 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Figure 3: Part Number Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 4: Power-Up Initialization Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 5: READ Operation (ADV# LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 6: WRITE Operation (ADV# LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 7: Page Mode READ Operation (ADV# LOW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 8: Burst Mode READ (4-word burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 9: Burst Mode WRITE (4-word burst) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Figure 10: Wired or WAIT Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 11: Refresh Collision During Variable-Latency READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 12: Configuration Register WRITE, Asynchronous Mode Followed by READ ARRAY Operation . . . . . .16
Figure 13: Configuration Register WRITE, Synchronous Mode Followed by READ ARRAY Operation . . . . . . .16
Figure 14: Register READ, Asynchronous Mode Followed by READ ARRAY Operation . . . . . . . . . . . . . . . . . . . .17
Figure 15: Register READ, Synchronous Mode Followed by READ ARRAY Operation . . . . . . . . . . . . . . . . . . . . .18
Figure 16: Load Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 17: Read Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 18: Bus Configuration Register Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 19: WAIT Configuration (BCR[8] = 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 20: WAIT Configuration (BCR[8] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 21: WAIT Configuration During Burst Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 22: Latency Counter (Variable Initial Latency, No Refresh Collision) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 23: Latency Counter (Fixed Latency) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 24: Refresh Configuration Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Figure 25: Typical Refresh Current vs. Temperature (ITCR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Figure 26: AC Input/Output Reference Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 27: AC Output Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Figure 28: Initialization Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 29: DPD Entry and Exit Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Figure 30: Asynchronous READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Figure 31: Asynchronous READ Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Figure 32: Page Mode READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Figure 33: Single-Access Burst READ Operation—Variable Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Figure 34: 4-Word Burst READ Operation—Variable Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Figure 35: Single-Access Burst READ Operation—Fixed Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 36: 4-Word Burst READ Operation—Fixed Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Figure 37: READ Burst Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Figure 38: Continuous Burst READ Showing an Output Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Figure 39: CE#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Figure 40: LB#/UB#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Figure 41: WE#-Controlled Asynchronous WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Figure 42: Asynchronous WRITE Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Figure 43: Burst WRITE Operation—Variable Latency Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Figure 44: Burst WRITE Operation—Fixed Latency Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Figure 45: Continuous Burst WRITE Showing an Output Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Figure 46: Burst WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Figure 47: Burst READ Interrupted by Burst READ or WRITE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Figure 48: Burst WRITE Interrupted by Burst WRITE or READ—Variable Latency Mode . . . . . . . . . . . . . . . . . .55
Figure 49: Burst WRITE Interrupted by Burst WRITE or READ—Fixed Latency Mode . . . . . . . . . . . . . . . . . . . . .56
Figure 50: Asynchronous WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Figure 51: Asynchronous WRITE (ADV# LOW) Followed By Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Figure 52: Burst READ Followed by Asynchronous WRITE (WE#-Controlled) . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Figure 53: Burst READ Followed by Asynchronous WRITE Using ADV# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Figure 54: Asynchronous WRITE Followed by Asynchronous READ—ADV# LOW . . . . . . . . . . . . . . . . . . . . . . . .61
Figure 55: Asynchronous WRITE Followed by Asynchronous READ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62
Figure 56: 54-Ball VFBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128MbLOT.fm - Rev. D 2/05 EN 4©2003 Micron Technology, Inc. All rights reserved.
List of Tables
Table 1: VFBGA Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Table 2: Bus Operations—Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 3: Bus Operations—Burst Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Table 4: Sequence and Burst Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 5: Drive Strength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Table 6: Variable Latency Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Table 7: Fixed Latency Configuration Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Table 8: 128Mb Address Patterns for PAR (RCR[4] = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 9: Device Identification Register Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Table 10: Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Table 11: Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Table 12: Partial Array Refresh Specifications and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
Table 13: Deep Power-Down Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 14: Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31
Table 15: Asynchronous READ Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Table 16: Burst READ Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Table 17: Asynchronous WRITE Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
Table 18: Burst WRITE Cycle Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
Table 19: Initialization and DPD Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
Table 20: Asynchronous READ Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
Table 21: Asynchronous READ Timing Parameters Using ADV#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
Table 22: Asynchronous READ Timing Parameters—Page Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
Table 23: Burst READ Timing Parameters—Single Access, Variable Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40
Table 24: Burst READ Timing Parameters—4-Word Burst . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
Table 25: Burst READ Timing Parameters—Single Access, Fixed Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Table 26: Burst READ Timing Parameters—4-Word Burst, Fixed Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
Table 27: Burst READ Timing Parameters—Burst Suspend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44
Table 28: Burst READ Timing Parameters—BCR[8] = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45
Table 29: Asynchronous WRITE Timing Parameters—CE#-Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46
Table 30: Asynchronous WRITE Timing Parameters—LB#/UB#-Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47
Table 31: Asynchronous WRITE Timing Parameters—WE#-Controlled . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .48
Table 32: Asynchronous WRITE Timing Parameters Using ADV#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Table 33: Burst WRITE Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50
Table 34: Burst WRITE Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
Table 35: Burst WRITE Timing Parameters—BCR[8] = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52
Table 36: WRITE Timing Parameters—Burst WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 37: READ Timing Parameters—Burst WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
Table 38: READ Timing Parameters—Burst WRITE Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 39: WRITE Timing Parameters—Burst WRITE Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54
Table 40: WRITE Timing Parameters—Burst READ Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 41: READ Timing Parameters—Burst READ Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
Table 42: WRITE Timing Parameters—Burst READ Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 43: READ Timing Parameters—Burst READ Interrupted . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
Table 44: WRITE Timing Parameters—Async WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 45: READ Timing Parameters—Async WRITE Followed by Burst READ . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Table 46: Asynchronous WRITE Timing Parameters—ADV# LOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 47: Burst READ Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Table 48: Burst READ Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 49: Asynchronous WRITE Timing Parameters—WE# Controlled. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59
Table 50: Burst READ Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
Table 51: Asynchronous WRITE Timing Parameters Using ADV#. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128MbLOT.fm - Rev. D 2/05 EN 5©2003 Micron Technology, Inc. All rights reserved.
Table 52: WRITE Timing Parameters—ADV# LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 53: READ Timing Parameters—ADV# LOW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61
Table 54: WRITE Timing Parameters—Async WRITE Followed by Async READ . . . . . . . . . . . . . . . . . . . . . . . . . .62
Table 55: READ Timing Parameters—Async WRITE Followed by Async READ . . . . . . . . . . . . . . . . . . . . . . . . . . .62
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 6©2004 Micron Technology, Inc. All rights reserved.
General Description
Micron CellularRAM™ products are high-speed,
CMOS pseudo-static random access memories devel-
oped for low-power, portable applications. The
MT45W8MW16BGX device has a 128Mb DRAM core,
organized as 8 Meg x 16 bits. These devices include
an industry-standard burst mode Flash interface that
dramatically increases read/write bandwidth com-
pared with other low-power SRAM or Pseudo SRAM
offerings.
To operate seamlessly on a burst Flash bus, Cellu-
larRAM products incorporate a transparent self refresh
mechanism. The hidden refresh requires no additional
support from the system memory controller and has
no significant impact on device read/write perfor-
mance.
Two user-accessible control registers define device
operation. The bus configuration register (BCR)
defines how the CellularRAM device interacts with the
system memory bus and is nearly identical to its coun-
terpart on burst mode Flash devices. The refresh con-
figuration register (RCR) is used to control how refresh
is performed on the DRAM array. These registers are
automatically loaded with default settings during
power-up and can be updated anytime during normal
operation.
Special attention has been focused on standby cur-
rent consumption during self refresh. CellularRAM
products include three mechanisms to minimize
standby current. Partial array refresh (PAR) enables
the system to limit refresh to only that part of the
DRAM array that contains essential data. Temperature
compensated refresh (TCR) uses an on-chip sensor to
adjust the refresh rate to match the device tempera-
ture—the refresh rate decreases at lower temperatures
to minimize current consumption during standby.
Deep power-down (DPD) enables the system to halt
the refresh operation altogether when no vital infor-
mation is stored in the device. The system config-
urable refresh mechanisms are accessed through the
RCR.
This CellularRAM device is compliant with the
industry-standard CellularRAM 1.5 feature set estab-
lished by the CellularRAM Workgroup. It includes sup-
port for both variable and fixed latency, with three
output-device drive-strength settings, additional wrap
options, and a device ID register (DIDR).
Figure 2: Functional Block Diagram—8 Meg x 16
NOTE:
Functional block diagrams illustrate simplified device operation. See ball descriptions (Table 1 on page 7); bus operations
tables (Tables 2 and 3 on page 8); and timing diagrams for detailed information.
A[22:0]
Input/
Output
MUX
and
Buffers
Control
Logic
8,192K x 16
DRAM
MEMORY
ARRAY
CE#
WE#
OE#
CLK
ADV#
CRE
WAIT
LB#
UB#
DQ[7:0]
DQ[15:8]
Address Decode
Logic
Refresh Configuration
Register (RCR)
Device ID Register
(DIDR)
Bus Configuration
Register (BCR)
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 7©2004 Micron Technology, Inc. All rights reserved.
l
NOTE:
The CLK and ADV# inputs can be tied to VSS if the device is always operating in asynchronous or page mode. WAIT will
be asserted but should be ignored during asynchronous and page mode operations.
Table 1: VFBGA Ball Descriptions
VFBGA
ASSIGNMENT SYMBOL TYPE DESCRIPTION
A3, A4, A5, B3,
B4, C3, C4, D4,
H2, H3, H4, H5,
G3, G4, F3, F4,
E4, D3, H1, G2,
H6, E3, J4
A[22:0] Input Address Inputs: Inputs for addresses during READ and WRITE operations.
Addresses are internally latched during READ and WRITE cycles. The address lines
are also used to define the value to be loaded into the BCR or the RCR.
J2 CLK Input Clock: Synchronizes the memory to the system operating frequency during
synchronous operations. When configured for synchronous operation, the address
is latched on the first rising CLK edge when ADV# is active. CLK is static LOW
during asynchronous access READ and WRITE operations and during PAGE READ
ACCESS operations.
J3 ADV# Input Address Valid: Indicates that a valid address is present on the address inputs.
Addresses can be latched on the rising edge of ADV# during asynchronous READ
and WRITE operations. ADV# can be held LOW during asynchronous READ and
WRITE operations.
A6 CRE Input Control Register Enable: When CRE is HIGH, WRITE operations load the RCR or
BCR, and READ operations access the RCR, BCR, or DIDR.
B5 CE# Input Chip Enable: Activates the device when LOW. When CE# is HIGH, the device is
disabled and goes into standby or deep power-down mode.
A2 OE# Input Output Enable: Enables the output buffers when LOW. When OE# is HIGH, the
output buffers are disabled.
G5 WE# Input Write Enable: Determines if a given cycle is a WRITE cycle. If WE# is LOW, the cycle
is a WRITE to either a configuration register or to the memory array.
A1 LB# Input Lower Byte Enable. DQ[7:0]
B2 UB# Input Upper Byte Enable. DQ[15:8]
B6, C5, C6, D5,
E5, F5, F6, G6,
B1, C1, C2, D2,
E2, F2, F1, G1
DQ[15:0] Input/
Output
Data Inputs/Outputs.
J1 WAIT Output Wait: Provides data-valid feedback during burst READ and WRITE operations. The
signal is gated by CE#. WAIT is used to arbitrate collisions between refresh and
READ/WRITE operations. WAIT is asserted when a burst crosses a row boundary.
WAIT is also used to mask the delay associated with opening a new internal page.
WAIT is asserted and should be ignored during asynchronous and page mode
operations. WAIT is High-Z when CE# is HIGH.
J5, J6 RFU Reserved for future use.
D6 VCC Supply Device Power Supply: (1.70V–1.95V) Power supply for device core operation.
E1 VCCQ Supply I/O Power Supply: (1.70V–1.95V) Power supply for input/output buffers.
E6 VSS Supply VSS must be connected to ground.
D1 VSSQ Supply VSSQ must be connected to ground.
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 8©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. CLK must be LOW during async read and async write modes; and to achieve standby power during standby and DPD
modes. CLK must be static (HIGH or LOW) during burst suspend.
2. The WAIT polarity is configured through the bus configuration register (BCR[10]).
3. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When only LB# is in select mode, DQ[7:0] are
affected. When only UB# is in the select mode, DQ[15:8] are affected.
4. The device will consume active power in this mode whenever addresses are changed.
5. When the device is in standby mode, address inputs and data inputs/outputs are internally isolated from any
external influence.
6. VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve standby current.
7. DPD is initiated when CE# transitions from LOW to HIGH after writing RCR[4] to 0. DPD is maintained until CE# transi-
tions from HIGH to LOW.
8. Burst mode operation is initialized through the bus configuration register (BCR[15]).
9. Initial cycle. Following cycles are the same as BURST CONTINUE. CE# must stay LOW for the equivalent of a single-word
burst (as indicated by WAIT).
Table 2: Bus Operations—Asynchronous Mode
MODE POWER CLK1ADV# CE# OE# WE# CRE
LB#/
UB# WAIT2DQ[15:0]3NOTES
Read Active L L L L H L L Low-Z Data-Out 4
Write Active L L L X L L L Low-Z Data-In 4
Standby Standby L X H X X L X High-Z High-Z 5, 6
No Operation Idle L X L X X L X Low-Z X 4, 6
Configuration
Register Write
Active L LLHLHXLow-ZHigh-Z
Configuration
Register Read
Active L L L L H H L Low-Z Config. Reg.
Out
DPD Deep
Power-Down
LXHXXXXHigh-ZHigh-Z 7
Table 3: Bus Operations—Burst Mode
MODE POWER CLK1ADV# CE# OE# WE# CRE
LB#/
UB# WAIT2DQ[15:0]3NOTES
Async Read Active L L L L H L L Low-Z Data-Out 4
Async Write Active L L L X L L L Low-Z Data-In 4
Standby Standby L X H X X L X High-Z High-Z 5, 6
No Operation Idle LXLXXLXLow-ZX 4, 6
Initial Burst
Read
Active L L X H L L Low-Z Data-Out 4, 8
Initial Burst
Write
Active L L H L L X Low-Z Data-In 4, 8
Burst Continue Active H L X X X L Low-Z Data-In or
Data-Out
4, 8
Burst Suspend Active X X L H X X X Low-Z High-Z 4, 8
Configuration
Register Write
Active L L H L H X Low-Z High-Z 8, 9
Configuration
Register Read
Active L L L H H L Low-Z Config. Reg.
Out
8, 9
DPD Deep
Power-Down
L X H X X X X High-Z High-Z 7
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 9©2004 Micron Technology, Inc. All rights reserved.
Part-Numbering Information
Micron CellularRAM devices are available in several
different configurations and densities (see Figure 3).
Figure 3: Part Number Chart
Valid Part Number Combinations
After building the part number from the part num-
bering chart above, please go to the Micron Part Mark-
ing Decoder Web site at http://www.micron.com/
partsearch to verify that the part number is offered and
valid. If the device required is not on this list, please
contact the factory.
Device Marking
Due to the size of the package, the Micron standard
part number is not printed on the top of the device.
Instead, an abbreviated device mark comprised of a
five-digit alphanumeric code is used. The abbreviated
device marks are cross-referenced to the Micron part
numbers at http://www.micron.com/partsearch. To
view the location of the abbreviated mark on the
device, please refer to customer service note, CSN-11,
“Product Mark/Label,” at http://www.micron.com/
csn.
MT 45 W 8M W 16 B GX -70 8 WT ES
Micron Technology
Product Family
45 = PSRAM/CellularRAM Memory
Operating Core Voltage
W = 1.70V–1.95V
Address Locations
M = Megabits
Operating Voltage
W = 1.70V–1.95V
Bus Configuration
16 = x16
READ/WRITE Operation Mode
B = Asynchronous/Page/Burst
Package Codes
GX = "Green" VFBGA (6 x 9 grid, 0.75mm pitch, 8.0mm x 10.0mm x 1.0mm) 54-ball
Production Status
Blank = Production
ES = Engineering Sample
MS = Mechanical Sample
Operating Temperature
WT = -30˚C to +85˚C
IT = -40˚ to +85˚C
Standby Power Options
Blank = Standard
L = Low Power
Frequency
6 = 66 MHz
8 = 80 MHz
1 = 104 MHz
Access/Cycle Time
70 = 70ns
85 = 85ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 10 ©2004 Micron Technology, Inc. All rights reserved.
Functional Description
In general, the MT45W8MW16BGX device is a high-
density alternative to SRAM and Pseudo SRAM prod-
ucts, popular in low-power, portable applications.
MT45W8MW16BGX contains a 134,217,728-bit
DRAM core, organized as 8,388,608 addresses by 16
bits. The device implements the same high-speed bus
interface found on burst mode Flash products.
The CellularRAM bus interface supports both asyn-
chronous and burst mode transfers. Page mode
accesses are also included as a bandwidth-enhancing
extension to the asynchronous read protocol.
Power-Up Initialization
CellularRAM products include an on-chip voltage
sensor used to launch the power-up initialization pro-
cess. Initialization will configure the BCR and the RCR
with their default settings (see Figure 18 on page 20
and Figure 24 on page 26). VCC and VCCQ must be
applied simultaneously. When they reach a stable level
at or above 1.7V, the device will require 150µs to com-
plete its self-initialization process. During the initial-
ization period, CE# should remain HIGH. When
initialization is complete, the device is ready for nor-
mal operation.
Figure 4: Power-Up Initialization
Timing
Bus Operating Modes
The MT45W8MW16BGX CellularRAM product
incorporates a burst mode interface found on Flash
products targeting low-power, wireless applications.
This bus interface supports asynchronous, page mode,
and burst mode read and write transfers. The specific
interface supported is defined by the value loaded into
the BCR. Page mode is controlled by the refresh con-
figuration register (RCR[7]).
Asynchronous Mode
CellularRAM products power up in the asynchro-
nous operating mode. This mode uses the industry-
standard SRAM control bus (CE#, OE#, WE#, LB#/
UB#). READ operations (Figure 5) are initiated by
bringing CE#, OE#, and LB#/UB# LOW while keeping
WE# HIGH. Valid data will be driven out of the I/Os
after the specified access time has elapsed. WRITE
operations (Figure 6) occur when CE#, WE#, and LB#/
UB# are driven LOW. During asynchronous WRITE
operations, the OE# level is a “Don't Care,” and WE#
will override OE#. The data to be written is latched on
the rising edge of CE#, WE#, or LB#/UB# (whichever
occurs first). Asynchronous operations (page mode
disabled) can either use the ADV input to latch the
address, or ADV can be driven LOW during the entire
READ/WRITE operation.
During asynchronous operation, the CLK input must
be held static LOW. WAIT will be driven while the device
is enabled and its state should be ignored. WE# LOW
time must be limited to tCEM.
Figure 5: READ Operation (ADV# LOW)
NOTE:
ADV must remain LOW for page mode operation.
Figure 6: WRITE Operation (ADV# LOW)
Vcc
VccQ Device Initialization
Vcc = 1.7V Device ready for
normal operation
tPU > 150µs
ADDRESS VALID
DATA
CE#
DON’T CARE
DATA VALID
OE#
WE#
LB#/UB#
tRC = READ Cycle Time
ADDRESS
ADDRESS VALID
DATA
CE#
DON’T CARE
DATA VALID
OE#
WE#
LB#/UB#
tWC = WRITE Cycle Time
ADDRESS
< tCEM
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 11 ©2004 Micron Technology, Inc. All rights reserved.
Page Mode READ Operation
Page mode is a performance-enhancing extension
to the legacy asynchronous READ operation. In page-
mode-capable products, an initial asynchronous read
access is performed, then adjacent addresses can be
read quickly by simply changing the low-order
address. Addresses A[3:0] are used to determine the
members of the 16-address CellularRAM page. Any
change in addresses A[4] or higher will initiate a new
tAA access time. Figure 7 shows the timing for a page
mode access. Page mode takes advantage of the fact
that adjacent addresses can be read in a shorter period
of time than random addresses. WRITE operations do
not include comparable page mode functionality.
During asynchronous page mode operation, the
CLK input must be held LOW. CE# must be driven
HIGH upon completion of a page mode access. WAIT
will be driven while the device is enabled and its state
should be ignored. Page mode is enabled by setting
RCR[7] to HIGH. ADV must be driven LOW during all
page mode read accesses.
Due to refresh considerations, CE# must not be
LOW longer than tCEM.
Figure 7: Page Mode READ Operation
(ADV# LOW)
Burst Mode Operation
Burst mode operations enable high-speed synchro-
nous READ and WRITE operations. Burst operations
consist of a multi-clock sequence that must be per-
formed in an ordered fashion. After CE# goes LOW, the
address to access is latched on the rising edge of the
next clock that ADV# is LOW. During this first clock ris-
ing edge, WE# indicates whether the operation is going
to be a READ (WE# = HIGH, Figure 8 on page 12) or
WRITE (WE# = LOW, Figure 9 on page 12).
The size of a burst can be specified in the BCR either
as a fixed length or continuous. Fixed-length bursts
consist of four, eight, sixteen, or thirty-two words.
Continuous bursts have the ability to start at a speci-
fied address and burst through the entire memory.
The latency count stored in the BCR defines the
number of clock cycles that elapse before the initial
data value is transferred between the processor and
CellularRAM device. The initial latency for READ oper-
ations can be configured as fixed or variable (WRITE
operations always use fixed latency). Variable latency
allows the CellularRAM to be configured for minimum
latency at high clock frequencies, but the controller
must monitor WAIT to detect any conflict with refresh
cycles.
Fixed latency outputs the first data word after the
worst-case access delay, including allowance for
refresh collisions. The initial latency time and clock
speed determine the latency count setting. The
boundaries of 128-word rows should not be crossed in
fixed latency mode. Fixed latency is used when the
controller cannot monitor WAIT. Fixed latency also
provides improved performance at lower clock fre-
quencies.
The WAIT output asserts as soon as CE# goes LOW,
and de-asserts to indicate when data is to be trans-
ferred into (or out of) the memory. WAIT will again be
asserted if the burst crosses a row boundary (variable
latency only—do not cross row boundaries when using
fixed latency). Once the CellularRAM device has
restored the previous row's data and accessed the next
row, WAIT will be de-asserted and the burst can con-
tinue (see Figure 38 on page 45).
To access other devices on the same bus without the
timing penalty of the initial latency for a new burst,
burst mode can be suspended. Bursts are suspended
by stopping CLK. CLK can be stopped HIGH or LOW. If
another device will use the data bus while the burst is
suspended, OE# should be taken HIGH to disable the
CellularRAM outputs; otherwise, OE# can remain
LOW. Note that the WAIT output will continue to be
active, and as a result no other devices should directly
share the WAIT connection to the controller. To con-
tinue the burst sequence, OE# is taken LOW, then CLK
is restarted after valid data is available on the bus.
The CE# LOW time is limited by refresh consider-
ations. CE# must not stay LOW longer than tCEM. If a
burst suspension will cause CE# to remain LOW for
longer than tCEM, CE# should be taken HIGH and the
burst restarted with a new CE# LOW/ADV# LOW cycle.
DATA
CE#
DON’T CARE
OE#
WE#
LB#/UB#
ADDRESS Add[0] Add[1] Add[2] Add[3]
D[1] D[2] D[3]
tAA tAPA
< tCEM
tAPA tAPA
D[0]
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 12 ©2004 Micron Technology, Inc. All rights reserved.
Figure 8: Burst Mode READ (4-word burst)
NOTE:
Non-default BCR settings for burst mode READ (4-word burst): Fixed or variable latency; latency code two (three clocks); WAIT active
LOW; WAIT asserted during delay. Diagram above is representative of variable latency with no refresh collision or fixed-latency access.
Figure 9: Burst Mode WRITE (4-word burst)
NOTE:
Non-default BCR settings for burst mode WRITE (4-word burst): Fixed or variable latency; latency code two (three clocks); WAIT active
LOW; WAIT asserted during delay.
A[22:0]
D[0]
ADV#
CE#
OE#
D[1] D[2] D[3]
WE#
WAIT
DQ[15:0]
LB#/UB#
Latency Code 2 (3 clocks)
CLK
UNDEFINEDDON’T CARE
READ Burst Identified
(WE# = HIGH)
ADDRESS
VALID
A[22:0]
D[0]
ADV#
CE#
OE#
D[1] D[2] D[3]
WE#
WAIT
DQ[15:0]
LB#/UB#
ADDRESS
VALID
Latency Code 2 (3 clocks)
CLK
DON’T CARE
WRITE Burst Identified
(WE# = LOW)
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 13 ©2004 Micron Technology, Inc. All rights reserved.
Mixed-Mode Operation
The device supports a combination of synchronous
READ and asynchronous READ and WRITE operations
when the BCR is configured for synchronous opera-
tion. The asynchronous READ and WRITE operations
require that the clock (CLK) remain LOW during the
entire sequence. The ADV# signal can be used to latch
the target address, or it can remain LOW during the
entire WRITE operation. CE# can remain LOW when
transitioning between mixed-mode operations with
fixed latency enabled; however, the CE# LOW time
must not exceed tCEM. Mixed-mode operation facili-
tates a seamless interface to legacy burst mode Flash
memory controllers. See Figure 50 on page 57 for the
Asynchronous WRITE Followed by Burst READ” tim-
ing diagram.
WAIT Operation
The WAIT output on a CellularRAM device is typi-
cally connected to a shared, system-level WAIT signal
(see Figure 10). The shared WAIT signal is used by the
processor to coordinate transactions with multiple
memories on the synchronous bus.
Figure 10: Wired or WAIT
Configuration
Once a READ or WRITE operation has been initi-
ated, WAIT goes active to indicate that the Cellular-
RAM device requires additional time before data can
be transferred. For READ operations, WAIT will remain
active until valid data is output from the device. For
WRITE operations, WAIT will indicate to the memory
controller when data will be accepted into the Cellu-
larRAM device. When WAIT transitions to an inactive
state, the data burst will progress on successive clock
edges.
CE# must remain asserted during WAIT cycles
(WAIT asserted and WAIT configuration BCR[8] = 1).
Bringing CE# HIGH during WAIT cycles may cause
data corruption. (Note that for BCR[8] = 0, the actual
WAIT cycles end one cycle after WAIT de-asserts, and
for row boundary crossings, start one cycle after the
WAIT signal asserts.)
When using variable initial access latency (BCR[14]
= 0), the WAIT output performs an arbitration role for
READ operations launched while an on-chip refresh is
in progress. If a collision occurs, WAIT is asserted for
additional clock cycles until the refresh has completed
(see Figure 11 on page 14). When the refresh operation
has completed, the READ operation will continue nor-
mally.
WAIT is also asserted when a continuous READ or
WRITE burst crosses the boundary between 128-word
rows. The WAIT assertion allows time for the new row
to be accessed, and permits any pending refresh oper-
ations to be performed.
WAIT will be asserted but should be ignored during
asynchronous READ and WRITE, and page READ
operations.
By using fixed initial latency (BCR[14] = 1), this Cel-
lularRAM device can be used in burst mode without
monitoring the WAIT signal. However, WAIT can still
be used to determine when valid data is available at
the start of the burst and at row-boundary crossings. If
WAIT is not monitored, the controller must stop burst
accesses at row boundaries and restart the burst to
access the next row.
LB#/UB# Operation
The LB# enable and UB# enable signals support
byte-wide data transfers. During READ operations, the
enabled byte(s) are driven onto the DQs. The DQs
associated with a disabled byte are put into a High-Z
state during a READ operation. During WRITE opera-
tions, any disabled bytes will not be transferred to the
RAM array and the internal value will remain
unchanged. During an asynchronous WRITE cycle, the
data to be written is latched on the rising edge of CE#,
WE#, LB#, or UB#, whichever occurs first.
When both the LB# and UB# are disabled (HIGH)
during an operation, the device will disable the data
bus from receiving or transmitting data. Although the
device will seem to be deselected, it remains in an
active mode as long as CE# remains LOW.
CellularRAM
External
Pull-Up/
Pull-Down
Resistor
Processor
READY
Other
Device
WAIT
Other
Device
WAIT
WAIT
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 14 ©2004 Micron Technology, Inc. All rights reserved.
Figure 11: Refresh Collision During Variable-Latency READ Operation
NOTE:
Non-default BCR settings for refresh collision during variable-latency READ operation: Latency code two (three clocks);
WAIT active LOW; WAIT asserted during delay.
A[22:0]
ADV#
CE#
OE#
WE#
WAIT
DQ[15:0]
CLK VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VOH
VOL
D[2]D[1] D[3]
VALID
ADDRESS
Additional WAIT states inserted to allow refresh completion.
LB#/UB#
UNDEFINED DON’T CARE
D[0]
High-Z
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 15 ©2004 Micron Technology, Inc. All rights reserved.
Low-Power Operation
Standby Mode Operation
During standby, the device current consumption is
reduced to the level necessary to perform the DRAM
refresh operation. Standby operation occurs when CE#
is HIGH.
The device will enter a reduced power state upon
completion of a READ or WRITE operation, or when
the address and control inputs remain static for an
extended period of time. This mode will continue until
a change occurs to the address or control inputs.
Temperature Compensated Refresh
Temperature compensated refresh (TCR) allows for
adequate refresh at different temperatures. This Cellular-
RAM device includes an on-chip temperature sensor that
automatically adjusts the refresh rate according to the
operating temperature. The device continually adjusts
the refresh rate to match that temperature.
Partial Array Refresh
Partial array refresh (PAR) restricts refresh opera-
tion to a portion of the total memory array. This fea-
ture enables the device to reduce standby current by
refreshing only that part of the memory array required
by the host system. The refresh options are full array,
one-half array, one-quarter array, one-eighth array, or
none of the array. The mapping of these partitions can
start at either the beginning or the end of the address
map (see Table 8 on page 27). READ and WRITE opera-
tions to address ranges receiving refresh will not be
affected. Data stored in addresses not receiving refresh
will become corrupted. When re-enabling additional
portions of the array, the new portions are available
immediately upon writing to the RCR.
Deep Power-Down Operation
Deep power-down (DPD) operation disables all
refresh-related activity. This mode is used if the system
does not require the storage provided by the Cellular-
RAM device. Any stored data will become corrupted
when DPD is enabled. When refresh activity has been
re-enabled, the CellularRAM device will require 150µs
to perform an initialization procedure before normal
operations can resume. During this 150µs period, the
current consumption will be higher than the specified
standby levels, but considerably lower than the active
current specification.
DPD can be enabled by writing to the RCR using
CRE or the software access sequence; DPD starts when
CE# goes HIGH. DPD is disabled the next time CE#
goes LOW and stays LOW for at least 10µs.
Registers
Two user-accessible configuration registers define
the device operation. The bus configuration register
(BCR) defines how the CellularRAM interacts with the
system memory bus and is nearly identical to its coun-
terpart on burst mode Flash devices. The refresh config-
uration register (RCR) is used to control how refresh is
performed on the DRAM array. These registers are
automatically loaded with default settings during
power-up, and can be updated any time the devices
are operating in a standby state.
A DIDR provides information on the device manu-
facturer, CellularRAM generation, and the specific
device configuration. The DIDR is read-only.
Access Using CRE
The registers can be accessed using either a syn-
chronous or an asynchronous operation when the
control register enable (CRE) input is HIGH (see Fig-
ures 12 through 15 on pages 16 through 18). When CRE
is LOW, a READ or WRITE operation will access the
memory array. The configuration register values are
written via addresses A[22:0]. In an asynchronous
WRITE, the values are latched into the configuration
register on the rising edge of ADV#, CE#, or WE#,
whichever occurs first; LB# and UB# are “Dont Care.
The BCR is accessed when A[19:18] are 10b; the RCR is
accessed when A[19:18] are 00b. The DIDR is read
when A[19:18] are 01b. For reads, address inputs other
than A[19:18] are “Dont Care,” and register bits 15:0
are output on DQ[15:0]. Immediately after performing
a configuration register READ or WRITE operation,
reading the memory array is highly recommended.
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 16 ©2004 Micron Technology, Inc. All rights reserved.
Figure 12: Configuration Register WRITE, Asynchronous Mode
Followed by READ ARRAY Operation
NOTE: 1. A[19:18] = 00b to load RCR, and 10b to load BCR.
Figure 13: Configuration Register WRITE, Synchronous Mode
Followed by READ ARRAY Operation
NOTE: 1. Non-default BCR settings for synchronous mode configuration register WRITE followed by READ ARRAY operation: Latency
code two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. A[19:18] = 00b to load RCR, and 10b to load BCR.
3. CE# must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused by refresh
collisions require a corresponding number of additional CE# LOW cycles.
A[22:0]
(except A[19:18]) OPCODE ADDRESS
ADDRESS
DATA VALID
A[19:18]1
ADV#
CE#
OE#
WE#
LB#/UB#
DQ[15:0]
Initiate Control Register Access
Write Address Bus Value
to Control Register
CRE
tAVS tAVH
tAVH
tAVS
tVP
tVPH
tCPH
tWP
tCW
DON’T CARE
Select Control Register
CLK
A[22:0]
(except A[19:18])
A[19:18]2
CRE
ADV#
CE#
OE#
WE#
LB#/UB#
WAIT
DQ[15:0]
tSP
tSP
tSP
tHD
tHD
tHD
tCSP
tSP
tHD
High-Z
DON’T CARE
OPCODE ADDRESS
High-Z
tCEW
Latch Control Register Value
Latch Control Register Address
tCBPH3
DATA
VALID
ADDRESS
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 17 ©2004 Micron Technology, Inc. All rights reserved.
Figure 14: Register READ, Asynchronous Mode
Followed by READ ARRAY Operation
NOTE:
A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.
A[22:0]
(except A[19:18]) ADDRESS
ADDRESS
DATA VALID
CR VALID
A[19:18]1
ADV#
CE#
OE#
WE#
LB#/UB#
DQ[15:0]
Initiate Register Access
CRE
tAVH
tAVS
tAA
tVP
tVPH
tCPH
tCO
tOLZ
tBA
tLZ
tOE
tLZ
UNDEFINEDDON’T CARE
Select Register
tAAVD
tAVS
tAA
tHZ
tOHZ
tBHZ
tAVH
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 18 ©2004 Micron Technology, Inc. All rights reserved.
Figure 15: Register READ, Synchronous Mode Followed by READ ARRAY Operation
NOTE:
1. Non-default BCR settings for synchronous mode register READ followed by READ ARRAY operation: Latency code two
(three clocks); WAIT active LOW; WAIT asserted during delay.
2. A[19:18] = 00b to read RCR, 10b to read BCR, and 01b to read DIDR.
3. CE# must remain LOW to complete a burst-of-one WRITE. WAIT must be monitored—additional WAIT cycles caused by
refresh collisions require a corresponding number of additional CE# LOW cycles.
CLK
A[22:0]
(except A[19:18])
A[19:18]2
CRE
ADV#
CE#
OE#
WE#
LB#/UB#
WAIT
DQ[15:0]
tSP
tSP
tSP
tHD
tHD
tHD
tHZ
tCSP
tKOH
UNDEFINEDDON’T CARE
tSP tHD
ADDRESS
tCW
Latch Control Register Value
tOLZ
Latch Control Register Address
tCBPH3
tBOE
DATA
VALID
ADDRESS
tACLK
tOHZ
High-Z
High-Z
tABA
CR
VALID
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 19 ©2004 Micron Technology, Inc. All rights reserved.
Software Access
Software access of the registers uses a sequence of
asynchronous READ and asynchronous WRITE opera-
tions. The contents of the configuration registers can
be modified and all registers can be read using the
software sequence.
The configuration registers are loaded using a four-
step sequence consisting of two asynchronous READ
operations followed by two asynchronous WRITE
operations (see Figure 16). The read sequence is virtu-
ally identical except that an asynchronous READ is
performed during the fourth operation (see Figure 17).
The address used during all READ and WRITE opera-
tions is the highest address of the CellularRAM device
being accessed (7FFFFFh for 128Mb); the contents of
this address are not changed by using this sequence.
The data value presented during the third operation
(WRITE) in the sequence defines whether the BCR,
RCR, or the DIDR is to be accessed. If the data is 0000h,
the sequence will access the RCR; if the data is 0001h,
the sequence will access the BCR; if the data is 0002h,
the sequence will access the DIDR. During the fourth
operation, DQ[15:0] transfer data in to or out of bits
15–0 of the registers.
The use of the software sequence does not affect the
ability to perform the standard (CRE-controlled)
method of loading the configuration registers. How-
ever, the software nature of this access mechanism
eliminates the need for CRE. If the software mecha-
nism is used, CRE can simply be tied to VSS. The port
line often used for CRE control purposes is no longer
required.
Figure 16: Load Configuration Register
Figure 17: Read Configuration Register
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
XXXXh XXXXh
RCR: 0000h
BCR: 0001h
CR VALUE
IN
A
DDRESS
CE#
OE#
WE#
LB#/UB#
DATA
DON'T CARE
READ READ WRITE WRITE
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
ADDRESS
(MAX)
XXXXh XXXXh CR VALUE
OUT
ADDRESS
CE#
OE#
WE#
LB#/UB#
DATA
DON'T CARE
READ READ WRITE READ
RCR: 0000h
BCR: 0001h
DIDR: 0002h
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 20 ©2004 Micron Technology, Inc. All rights reserved.
Bus Configuration Register
The BCR defines how the CellularRAM device inter-
acts with the system memory bus. Page mode opera-
tion is enabled by a bit contained in the RCR. Figure 18
describes the control bits in the BCR. At power-up, the
BCR is set to 9D1Fh.
The BCR is accessed with CRE HIGH and A[19:18] =
10b, or through the register access software sequence
with DQ = 0001h on the third cycle.
Figure 18: Bus Configuration Register Definition
NOTE:
1. Burst wrap and length apply to both READ and WRITE operations.
A13
13 12 11 0
Latency
Counter
Initial
Latency
321
WAIT
Polarity
4
5
WAIT
Configuration (WC)
6
7
8
Drive Strength Burst
Wrap (BW)*
14
A12A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
0
1
Operating Mode
Synchronous burst access mode
Asynchronous access mode (default)
BCR[12] BCR[11]
Latency Counter
BCR[13]
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Code 0–Reserved
Code 1–Reserved
Code 2
Code 3 (Default)
Code 4
Code 5
Code 6
Code 7–Reserved
0
1
WAIT Polarity
Active LOW
Active HIGH (default)
BCR[10]
0
1
WAIT Configuration
Asserted during delay
Asserted one data cycle before delay (default)
Drive Strength
Full
1/2 (default)
1/4
Reserved
BCR[5]
0
0
1
1
BCR[4]
0
1
0
1
0
1
Initial Access Latency
Variable (default)
Fixed
BCR[14]
Burst Wrap (Note 1)
Burst wraps within the burst length
Burst no wrap (default)
BCR[3]
BCR[1] BCR[0] Burst Length (Note 1)
BCR[2]
15
Burst
Length (BL)*
Reserved Reserved
9
10
Operating
Mode
Reserved
22–20
A14A15
A[17:16]
0
1
0
Register Select
Select RCR
Select BCR
Select DIDR
19–18 17–16
Register
Select
Reserved
A[19:18]A[22:20]
Reserved
Must be set to "0"
Must be set to "0"Must be set to "0"
All must be set to "0"
BCR[8]
BCR[15]
BCR[19]
0
0
1
BCR[18]
0
1
0
0
0
1
1
0
1
1
0
1
Others
1
0
1
0
1
4 words
8 words
16 words
32 words
Continuous burst (default)
Reserved
Setting is ignored
(Default to "0")
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 21 ©2004 Micron Technology, Inc. All rights reserved.
Burst Length (BCR[2:0])
Default = Continuous Burst
Burst lengths define the number of words the device
outputs during burst READ and WRITE operations. The
device supports a burst length of 4, 8, 16, or 32 words.
The device can also be set in continuous burst mode
where data is accessed sequentially without regard to
address boundaries; the internal address wraps to
000000h if the burst goes past the last address.
Burst Wrap (BCR[3]) Default = No Wrap
The burst-wrap option determines if a 4-, 8-, 16-, or
32-word READ or WRITE burst wraps within the burst
length, or steps through sequential addresses. If the
wrap option is not enabled, the device accesses data
from sequential addresses without regard to burst
boundaries; the internal address wraps to 000000h if
the burst goes past the last address.
Drive Strength (BCR[5:4])
Default = Outputs Use Half-Drive Strength
The output driver strength can be altered to full,
one-half, or one-quarter strength to adjust for different
data bus loading scenarios. The reduced-strength
options are intended for stacked chip (Flash + Cellular-
RAM) environments when there is a dedicated memory
bus. The reduced-drive-strength option minimizes the
noise generated on the data bus during READ opera-
tions. Full output drive strength should be selected
when using a discrete CellularRAM device in a more
heavily loaded data bus environment. Outputs are con-
figured at half-drive strength during testing. See Table 5
on page 22 for additional information.
Table 4: Sequence and Burst Length
BURST WRAP
STARTING
ADDRESS
4-
WORD
BURST
LENGTH
8-WORD
BURST LENGTH 16-WORD BURST LENGTH
32-WORD
BURST LENGTH CONTINUOUS BURST
BCR[3] WRAP (DECIMAL) LINEAR LINEAR LINEAR LINEAR LINEAR
0Yes
0 0-1-2-3 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15 0-1-2-...-29-30-31 0-1-2-3-4-5-6-…
1 1-2-3-0 1-2-3-4-5-6-7-0 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-0 1-2-3-...-30-31-0 1-2-3-4-5-6-7-…
2 2-3-0-1 2-3-4-5-6-7-0-1 2-3-4-5-6-7-8-9-10-11-12-13-14-15-0-1 2-3-4-...-31-0-1 2-3-4-5-6-7-8-…
3 3-0-1-2 3-4-5-6-7-0-1-2 3-4-5-6-7-8-9-10-11-12-13-14-15-0-1-2 3-4-5-...-0-1-2 3-4-5-6-7-8-9-…
4 4-5-6-7-0-1-2-3 4-5-6-7-8-9-10-11-12-13-14-15-0-1-2-3 4-5-6-...-1-2-3 4-5-6-7-8-9-10-…
5 5-6-7-0-1-2-3-4 5-6-7-8-9-10-11-12-13-14-15-0-1-2-3-4 5-6-7-...-2-3-4 5-6-7-8-9-10-11-…
6 6-7-0-1-2-3-4-5 6-7-8-9-10-11-12-13-14-15-0-1-2-3-4-5 6-7-8-...-3-4-5 6-7-8-9-10-11-12-
7 7-0-1-2-3-4-5-6 7-8-9-10-11-12-13-14-15-0-1-2-3-4-5-6 7-8-9-...-4-5-6 7-8-9-10-11-12-13-…
... ... ... ...
14 14-15-0-1-2-3-4-5-6-7-8-9-10-11-12-13 14-15-16-...-11-12-13 14-15-16-17-18-19-20-...
15 15-0-1-2-3-4-5-6-7-8-9-10-11-12-13-14 15-16-17-...-12-13-14 15-16-17-18-19-20-21-...
... ... ...
30 30-31-0-...-27-28-29 30-31-32-33-34-...
31 31-0-1-...-28-29-30 31-32-33-34-35-...
1No
0 0-1-2-3 0-1-2-3-4-5-6-7 0-1-2-3-4-5-6-7-8-9-10-11-12-13-14-15 0-1-2...--29-30-31 0-1-2-3-4-5-6-…
1 1-2-3-4 1-2-3-4-5-6-7-8 1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16 1-2-3-...-30-31-32 1-2-3-4-5-6-7-…
2 2-3-4-5 2-3-4-5-6-7-8-9 2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17 2-3-4-...-31-32-33 2-3-4-5-6-7-8-…
3 3-4-5-6 3-4-5-6-7-8-9-10 3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18 3-4-5-...-32-33-34 3-4-5-6-7-8-9-…
4 4-5-6-7-8-9-10-11 4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19 4-5-6-...-33-34-35 4-5-6-7-8-9-10-…
5 5-6-7-8-9-10-11-12 5-6-7-8-9-10-11-12-13-...-15-16-17-18-19-20 5-6-7-...-34-35-36 5-6-7-8-9-10-11…
6 6-7-8-9-10-11-12-13 6-7-8-9-10-11-12-13-14-...-16-17-18-19-20-21 6-7-8-...-35-36-37 6-7-8-9-10-11-12…
7 7-8-9-10-11-12-13-14 7-8-9-10-11-12-13-14-...-17-18-19-20-21-22 7-8-9-...-36-37-38 7-8-9-10-11-12-13…
... ... ... ...
14 14-15-16-17-18-19-...-23-24-25-26-27-28-29 14-15-16-...-43-44-45 14-15-16-17-18-19-20-…
15 15-16-17-18-19-20-...-24-25-26-27-28-29-30 15-16-17-...-44-45-46 15-16-17-18-19-20-21-…
... ... ...
30 30-31-32-...-59-60-61 30-31-32-33-34-35-36-...
31 31-32-33-...-60-61-62 31-32-33-34-35-36-37-...
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 22 ©2004 Micron Technology, Inc. All rights reserved.
WAIT Configuration (BCR[8])
Default = WAIT Transitions One Clock Before
Data Valid/Invalid
The WAIT configuration bit is used to determine
when WAIT transitions between the asserted and the
de-asserted state with respect to valid data presented
on the data bus. The memory controller will use the
WAIT signal to coordinate data transfer during synchro-
nous READ and WRITE operations. When BCR[8] = 0,
data will be valid or invalid on the clock edge immedi-
ately after WAIT transitions to the de-asserted or
asserted state, respectively (Figures 19 and 21). When A8
= 1, the WAIT signal transitions one clock period prior to
the data bus going valid or invalid (Figures 20 and 21).
WAIT Polarity (BCR[10])
Default = WAIT Active HIGH
The WAIT polarity bit indicates whether an asserted
WAIT output should be HIGH or LOW. This bit will
determine whether the WAIT signal requires a pull-up
or pull-down resistor to maintain the de-asserted
state.
Figure 19: WAIT Configuration (BCR[8] = 0)
NOTE:
Data valid/invalid immediately after WAIT
transitions (BCR[8] = 0). See Figure 21.
Figure 20: WAIT Configuration (BCR[8] = 1)
NOTE:
Valid/invalid data delayed for one clock after WAIT
transitions (BCR[8] = 1). See Figure 21.
Figure 21: WAIT Configuration During Burst Operation
NOTE:
Non-default BCR setting: WAIT active LOW.
Table 5: Drive Strength
BCR[5] BCR[4] DRIVE STRENGTH IMPEDANCE TYP ()USE RECOMMENDATION
0 0 Full 25–30 CL = 30pF to 50pF
01 1/2
(default)
50 CL = 15pF to 30pF
104 MHz at light load
1 0 1/4 100 CL = 15pF or lower
1 1 Reserved
WAIT
DQ[15:0]
CLK
Data[0] Data[1]
Data immediatel
y
valid (or invalid)
High-Z
WAIT
D[15:0]
CLK
Data[0]
Data valid (or invalid) after one clock delay
High-Z
WAIT
WAIT
DQ[15:0]
CLK
D[0]
BCR[8] = 0
Data valid in current cycle.
BCR[8] = 1
Data valid in next cycle.
DON’T CARE
D[2] D[3]
D[1]
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 23 ©2004 Micron Technology, Inc. All rights reserved.
Latency Counter (BCR[13:11])
Default = Three Clock Latency
The latency counter bits determine how many
clocks occur between the beginning of a READ or
WRITE operation and the first data value transferred.
For allowable latency codes, see Tables 6 and 7 on
pages 24 and 25 respectively, and Figures 22 and 23 on
pages 24 and 25 respectively).
Initial Access Latency (BRC[14])
Default = Variable
Variable initial access latency outputs data after the
number of clocks set by the latency counter. However,
WAIT must be monitored to detect delays caused by
collisions with refresh operations.
Fixed initial access latency outputs the first data at a
consistent time that allows for worst-case refresh colli-
sions. The latency counter must be configured to
match the initial latency and the clock frequency. It is
not necessary to monitor WAIT with fixed initial
latency. The burst begins after the number of clock
cycles configured by the latency counter. The burst
will pause (and WAIT will be asserted) at the boundary
of a 128-word row. (See Table 7 and Figure 23 on
page 25.)
Operating Mode (BCR[15])
Default = Asynchronous Operation
The operating mode bit selects either synchronous
burst operation or the default asynchronous mode of
operation.
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 24 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. Latency is the number of clock cycles from the initiation of a burst operation until data appears. Data is transferred on
the next clock cycle.
Figure 22: Latency Counter (Variable Initial Latency, No Refresh Collision)
Table 6: Variable Latency Configuration Codes
BCR[13:11]
LATENCY
CONFIGURATION CODE
LATENCY1MAX INPUT CLK FREQUENCY (MHz)
NORMAL
REFRESH
COLLISION -701 -708 -856
010 2 (3 clocks) 2 4 66 (15ns) 54 (18.5ns) 40 (25ns)
011 3 (4 clocks)—default 3 6 104 (9.62ns) 80 (12.5ns) 66 (15ns)
Others Reserved ——
A[22:0]
ADV#
DQ[15:0]
CLK
Code 2
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
Code 3 (Default)
DQ[15:0]
DON’T CARE UNDEFINED
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VOH
VOL
VALID
ADDRESS
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 25 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. Fixed latency > 80 MHz available only with VCC/VCCQ from 1.8V–1.95V.
Figure 23: Latency Counter (Fixed Latency)
Table 7: Fixed Latency Configuration Codes
BCR[13:11]
LATENCY
CONFIGURATION CODE LATENCY COUNT (N)
MAX INPUT CLK FREQUENCY (MHz)
-701 -708 -856
010 2 (3 clocks) 2 33 (30ns) 33 (30ns) 20 (50ns)
011 3 (4 clocks)—default 3 52 (19.2ns) 52 (19.2ns) 33 (30ns)
100 4 (5 clocks) 4 66 (15ns) 66 (15ns) 40 (25ns)
101 5 (6 clocks) 5 75 (13.3ns) 75 (13.3ns) 52 (19.2ns)
110 6 (7 clocks) 6104 (9.62ns)180 (12.5ns) 66 (15ns)
Others Reserved ——
A[22:0]
ADV#
DQ[15:0]
(READ)
CLK
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE UNDEFINED
VIH
VIL
VIH
VIL
VIH
VIL
CE# VIH
VIL
VOH
VOL
tAADV
tAA
tCO
tACLK
tSP tHD
DQ[15:0]
(WRITE)
VOH
VOL
N-1
Cycles Cycle N
VALID
INPUT
VALID
INPUT
VALID
INPUT
VALID
INPUT
VALID
INPUT
Burst Identified
(ADV# = LOW)
VALID
ADDRESS
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 26 ©2004 Micron Technology, Inc. All rights reserved.
Refresh Configuration Register
The refresh configuration register (RCR) defines
how the CellularRAM device performs its transparent
self refresh. Altering the refresh parameters can dra-
matically reduce current consumption during standby
mode. Page mode control is also embedded into the
RCR. Figure 24 describes the control bits used in the
RCR. At power-up, the RCR is set to 0010h.
The RCR is accessed with CRE HIGH and A[19:18] =
00b; or through the register access software sequence
with DQ = 0000h on the third cycle (see “Registers” on
page 15.)
Partial Array Refresh (RCR[2:0]
Default = Full Array Refresh
The PAR bits restrict refresh operation to a portion
of the total memory array. This feature allows the
device to reduce standby current by refreshing only
that part of the memory array required by the host sys-
tem. The refresh options are full array, one-half array,
one-quarter array, one-eighth array, or none of the
array. The mapping of these partitions can start at
either the beginning or the end of the address map
(see Table 8 on page 27).
Figure 24: Refresh Configuration Register Mapping
PAR
A4 A3 A2 A1 A0
Read Configuration
Register
Address Bus
45 1
2
30
6
A5
0
1
Deep Power-Down
DPD Enable
DPD Disable (default)
RCR[4]
A6
All must be set to "0"
A[17:8]
17–8
19–18
22–20
Register
Select
Reserved Reserved ReservedReserved
A[22:20] A[19:18]
Register Select
Select RCR
Select BCR
Select DIDR
RCR[19]
All must be set to "0"
RCR[1]
0
0
1
1
RCR[0]
0
1
0
1
Refresh Coverage
Full array (default)
Bottom 1/2 array
Bottom 1/4 array
Bottom 1/8 array
RCR[2]
0
0
0
0
00
1
01
1
10
1
11
1
None of array
Top 1/2 array
Top 1/4 array
Top 1/8 array
DPD
Must be set to "0"Setting is ignored
(Default 00b)
A7
7
Page
0
1
Page Mode Enable/Disable
Page Mode Disabled (default)
Page Mode Enable
RCR[7]
0
1
0
RCR[18]
0
0
1
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 27 ©2004 Micron Technology, Inc. All rights reserved.
Deep Power-Down (RCR[4])
Default = DPD Disabled
The deep power-down bit enables and disables all
refresh-related activity. This mode is used if the system
does not require the storage provided by the Cellular-
RAM device. Any stored data will become corrupted
when DPD is enabled. When refresh activity has been
re-enabled, the CellularRAM device will require 150µs
to perform an initialization procedure before normal
operations can resume.
Deep power-down is enabled by setting RCR[4] = 0
and taking CE# HIGH. DPD can be enabled using CRE
or the software sequence to access the RCR. Taking
CE# LOW for at least 10µs disables DPD and sets RCR[4] =
1; it is not necessary to write to the RCR to disable DPD.
Page Mode Operation (RCR[7])
Default = Disabled
The page mode operation bit determines whether
page mode is enabled for asynchronous READ opera-
tions. In the power-up default state, page mode is dis-
abled.
Device Identification Register
The DIDR provides information on the device man-
ufacturer, CellularRAM generation, and the specific
device configuration. Table 9 describes the bit fields in
the DIDR. This register is read-only.
The DIDR is accessed with CRE HIGH and A[19:18]
= 01b, or through the register access software
sequence with DQ = 0002h on the third cycle.
Table 8: 128Mb Address Patterns for PAR (RCR[4] = 1)
RCR[2] RCR[1] RCR[0] ACTIVE SECTION ADDRESS SPACE SIZE DENSITY
0 0 0 Full die 000000h–7FFFFFh 8 Meg x 16 128Mb
0 0 1 One-half of die 000000h–3FFFFFh 4 Meg x 16 64Mb
0 1 0 One-quarter of die 000000h–1FFFFFh 2 Meg x 16 32Mb
0 1 1 One-eighth of die 000000h–0FFFFFh 1 Meg x 16 16Mb
1 0 0 None of die 0 0 Meg x 16 0Mb
1 0 1 One-half of die 400000h–7FFFFFh 4 Meg x 16 64Mb
1 1 0 One-quarter of die 600000h–7FFFFFh 2 Meg x 16 32Mb
1 1 1 One-eighth of die 700000h–7FFFFFh 1 Meg x 16 16Mb
Table 9: Device Identification Register Mapping
BIT FIELD DIDR[15] DIDR[14:11] DIDR[10:8] DIDR[7:5] DIDR[4:0]
Field Name Reserved Device Version Device Density CellularRAM
Generation
Vendor ID
Bit Setting Version
Bit Setting 0b 0000b 1st 011b 010b 00011b
0001b 2nd
Meaning 128Mb CellularRAM 1.5 Micron
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 28 ©2004 Micron Technology, Inc. All rights reserved.
Electrical Characteristics and Conditions
Stresses greater than those listed may cause perma-
nent damage to the device. This is a stress rating only,
and functional operation of the device at these or any
other conditions above those indicated in the opera-
tional sections of this specification is not implied.
Exposure to absolute maximum rating conditions for
extended periods may affect reliability.
Table 10: Absolute Maximum Ratings
PARAMETER RATING
Voltage to Any Ball Except Vcc, VccQ Relative to Vss –0.50V to (4.0V or VccQ + 0.3V, whichever is less)
Voltage on Vcc Supply Relative to Vss –0.2V to +2.45V
Voltage on VccQ Supply Relative to Vss –0.2V to +2.45V
Storage Temperature (plastic) –55ºC to +150ºC
Operating Temperature (case)
Wireless –30ºC to +85ºC
Industrial –40ºC to +85ºC
Soldering Temperature and Time
10s (solder ball only) +260ºC
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 29 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. Input signals may overshoot to VccQ + 1.0V for periods less than 2ns during transitions.
2. Input signals may undershoot to Vss - 1.0V for periods less than 2ns during transitions.
3. BCR[5:4] = 01b (default setting of one-half drive strength).
4. This parameter is specified with the outputs disabled to avoid external loading effects. The user must add the current
required to drive output capacitance expected in the actual system.
5. ISB (MAX) values measured with PAR set to FULL ARRAY and at +85°C. In order to achieve low standby current, all inputs
must be driven to either VCCQ or VSS. ISB might be slightly higher for up to 500ms after power-up, or when entering
standby mode.
Table 11: Electrical Characteristics and Operating Conditions
Wireless Temperature (-30ºC < TC < +85ºC); Industrial Temperature (-40ºC < TC < +85ºC)
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Supply Voltage VCC 1.7 1.95 V
I/O Supply Voltage VCCQ W: 1.8V 1.7 1.95 V
Input High Voltage VIH VCCQ - 0.4 VCCQ + 0.2 V 1
Input Low Voltage VIL -0.20 0.4 V 2
Output High Voltage IOH = -0.2mA VOH 0.80 VCCQV3
Output Low Voltage IOL = +0.2mA VOL 0.20 VCCQV 3
Input Leakage Current VIN = 0 to VCCQILIA
Output Leakage Current OE# = VIH or
Chip Disabled
ILOA
Operating Current
Asynchronous Random READ/
WRITE
VIN = VCCQ or 0V
Chip Enabled,
IOUT = 0
ICC1-70 25 mA 4
-85 22
Asynchronous Page READ ICC1P -70 15 mA 4
-85 12
Initial Access, Burst READ/WRITE ICC2 104 MHz 35 mA 4
80 MHz 30
66 MHz 25
Continuous Burst READ ICC3R 104 MHz 30 mA 4
80 MHz 25
66 MHz 20
Continuous Burst WRITE ICC3W 104 MHz 35 mA 4
80 MHz 30
66 MHz 25
Standby Current VIN = VCCQ or 0V
CE# = VCCQ
ISB Standard 200 µA 5
Low-Power (L) 160
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 30 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
IPAR (MAX) values measured at 85°C. IPAR might be slightly higher for up to 500ms after changes to the PAR array parti-
tion.
Figure 25: Typical Refresh Current vs. Temperature (ITCR)
Table 12: Partial Array Refresh Specifications and Conditions
DESCRIPTION CONDITIONS SYMBOL
ARRAY
PARTITION MAX UNITS
Partial Array Refresh Standby
Current
VIN = VCCQ or 0V,
CE# = VCCQ
IPAR Standard Power
(no desig.)
Full 200 µA
1/2 170
1/4 155
1/8 150
0140
Low-Power
Option
(L)
Full 160 µA
1/2 130
1/4 115
1/8 110
0100
140
130
120
110
100
90
80
70
60
50
40
30
20
10
0
–30 –20 10 0 10 20 30 40 50 60 70 80 90
Current (µA)
Temperature (C)
PAR = Full Array
PAR = 1/2 of Array
PAR = 1/4 of Array
PAR = 1/8 of Array
PAR = None of Array
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 31 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
Typical (TYP) IZZ value applies across all operating temperatures and voltages.
NOTE:
1. These parameters are verified in device characterization and are not 100% tested.
Figure 26: AC Input/Output Reference Waveform
NOTE:
1. AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall times (10% to 90%) < 1.6ns.
2. Input timing begins at VCCQ/2.
3. Output timing ends at VCCQ/2.
Figure 27: AC Output Load Circuit
NOTE:
All tests are performed with the outputs configured for default setting of half drive strength (BCR[5:4] = 01b).
Table 13: Deep Power-Down Specifications
DESCRIPTION CONDITIONS SYMBOL TYP MAX UNITS
Deep Power-Down VIN = VCCQ or 0V;
VCC, VCCQ = 1.95V; +85°C
IZZ 325µA
Table 14: Capacitance
DESCRIPTION CONDITIONS SYMBOL MIN MAX UNITS NOTES
Input Capacitance TC = +25ºC; f = 1 MHz;
VIN = 0V
CIN 2.0 6 pF 1
Input/Output Capacitance (DQ) CIO 3.5 6 pF 1
Output
Test Points
Input
1
VCCQ
VSSQ
VCCQ/2
3
VCC
Q
/2
2
DUT VccQ/2
30pF
Test Point
50
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 32 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. Low-Z to High-Z timings are tested with the circuit shown in Figure 27 on page 31. The High-Z timings measure a 100mV
transition from either VOH or VOL toward VCCQ/2.
2. High-Z to Low-Z timings are tested with the circuit shown in Figure 27 on page 31. The Low-Z timings measure a 100mV
transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.
3. Page mode enabled only.
Table 15: Asynchronous READ Cycle Timing Requirements
All tests are performed with the outputs configured for default setting of half drive strength (BCR[5:4] = 01b).
PARAMETER SYMBOL
-701/708 -856
UNITS NOTESMIN MAX MIN MAX
Address Access Time tAA 70 85 ns
ADV# Access Time tAADV 70 85 ns
Page Access Time tAPA 20 25 ns
Address Hold from ADV# HIGH tAVH 22ns
Address Setup to ADV# HIGH tAVS 55ns
LB#/UB# Access Time tBA 70 85 ns
LB#/UB# Disable to DQ High-Z Output tBHZ 88ns1
LB#/UB# Enable to Low-Z Output tBLZ 10 10 ns 2
Maximum CE# Pulse Width tCEM 44µs3
CE# LOW to WAIT Valid tCEW 17.517.5ns
Chip Select Access Time tCO 70 85 ns
CE# LOW to ADV# HIGH tCVS 77ns
Chip Disable to DQ and WAIT High-Z Output tHZ 88ns1
Chip Enable to Low-Z Output tLZ 10 10 ns 2
Output Enable to Valid Output tOE 20 20 ns
Output Hold from Address Change tOH 55ns
Output Disable to DQ High-Z Output tOHZ 88ns1
Output Enable to Low-Z Output tOLZ 33ns2
Page Cycle Time tPC 20 25 ns
READ Cycle Time tRC 70 85 ns
ADV# Pulse Width LOW tVP 57ns
ADV# Pulse Width HIGH tVPH 10 10 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 33 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. A refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two
conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 27 on page 31. The High-Z timings measure a 100mV
transition from either VOH or VOL toward VCCQ/2.
3. High-Z to Low-Z timings are tested with the circuit shown in Figure 27 on page 31. The Low-Z timings measure a 100mV
transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.
Table 16: Burst READ Cycle Timing Requirements
All tests are performed with the outputs configured for default setting of half drive strength (BCR[5:4] = 01b).
PARAMETER SYMBOL
-701 -708 -856
UNITS NOTESMIN MAX MIN MAX MIN MAX
Address Access Time (Fixed Latency) tAA 70 70 85 ns
ADV# Access Time (Fixed Latency) tAADV 70 70 85 ns
Burst to READ Access Time (Variable Latency) tABA 35 46 55 ns
CLK to Output Delay tACLK 7911ns
Address Hold from ADV# HIGH (Fixed Latency) tAVH 222 ns
Burst OE# LOW to Output Delay tBOE 20 20 20 ns
CE# HIGH between Subsequent Burst or Mixed-
Mode Operations
tCBPH 5 6 8 ns 1
Maximum CE# Pulse Width tCEM 444µs1
CE# or ADV# LOW to WAIT Valid tCEW 17.517.517.5 ns
CLK Period tCLK 9.62 12.5 15 ns
Chip Select Access Time (Fixed Latency) tCO 70 70 85 ns
CE# Setup Time to Active CLK Edge tCSP 345 ns
Hold Time from Active CLK Edge tHD 222 ns
Chip Disable to DQ and WAIT High-Z Output tHZ 8 8 8 ns 2
CLK Rise or Fall Time tKHKL 1.6 1.8 2.0 ns
CLK to WAIT Valid tKHTL 7911ns
Output HOLD from CLK tKOH 2 2 2 ns
CLK HIGH or LOW Time tKP 3 4 5 ns
Output Disable to DQ High-Z Output tOHZ 8 8 8 ns 2
Output Enable to Low-Z Output tOLZ 333 ns 3
Setup Time to Active CLK Edge tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 34 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. Low-Z to High-Z timings are tested with the circuit shown in Figure 27 on page 31. The High-Z timings measure a 100mV
transition from either VOH or VOL toward VCCQ/2.
2. High-Z to Low-Z timings are tested with the circuit shown in Figure 27 on page 31. The Low-Z timings measure a 100mV
transition away from the High-Z (VCCQ/2) level toward either VOH or VOL.
3. WE# LOW time must be limited to tCEM (4µs).
Table 17: Asynchronous WRITE Cycle Timing Requirements
PARAMETER SYMBOL
-701/708 -856
UNITS NOTESMIN MAX MIN MAX
Address and ADV# LOW Setup Time tAS 00ns
Address Hold from ADV# Going HIGH tAVH 22ns
Address Setup to ADV# Going HIGH tAVS 55ns
Address Valid to End of WRITE tAW 70 85 ns
LB#/UB# Select to End of WRITE tBW 70 85 ns
CE# LOW to WAIT Valid tCEW 1 7.5 1 7.5 ns
CE# HIGH between Subsequent Async Operations tCPH 55ns
CE# LOW to ADV# HIGH tCVS 77ns
Chip Enable to End of WRITE tCW 70 85 ns
Data Hold from WRITE Time tDH 00ns
Data WRITE Setup Time tDW 20 20 ns
Chip Disable to WAIT High-Z Output tHZ 88ns1
Chip Enable to Low-Z Output tLZ 10 10 ns 2
End WRITE to Low-Z Output tOW 55ns 2
ADV# Pulse Width tVP 57ns
ADV# Pulse Width HIGH tVPH 10 10 ns
ADV# Setup to End of WRITE tVS 70 85 ns
WRITE Cycle Time tWC 70 85 ns
WRITE to DQ High-Z Output tWHZ 88ns 1
WRITE Pulse Width tWP 45 55 ns 3
WRITE Pulse Width HIGH tWPH 10 10 ns
WRITE Recovery Time tWR 00ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 35 ©2004 Micron Technology, Inc. All rights reserved.
NOTE:
1. tAS required if tCSP > 20ns.
2. A refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two
conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
3. Low-Z to High-Z timings are tested with the circuit shown in Figure 27 on page 31. The High-Z timings measure a 100mV
transition from either VOH or VOL toward VCCQ/2.
Table 18: Burst WRITE Cycle Timing Requirements
PARAMETER SYMBOL
-701 -708 -856
UNITS NOTESMIN MAX MIN MAX MIN MAX
Address and ADV# LOW setup time tAS 000 ns1
Address Hold from ADV# HIGH (Fixed Latency) tAVH 222 ns
CE# HIGH between Subsequent Burst or Mixed-
Mode Operations
tCBPH 5 6 8 ns 2
Maximum CE# Pulse Width tCEM 444µs2
CE# LOW to WAIT Valid tCEW 17.517.517.5 ns
Clock Period tCLK 9.62 12.5 15 ns
CE# Setup to CLK Active Edge tCSP 345 ns
Hold Time from Active CLK Edge tHD 222 ns
Chip Disable to WAIT High-Z Output tHZ 888ns3
Last Clock to ADV# LOW (Fixed Latency) tKADV 466 ns
CLK Rise or Fall Time tKHKL 1.6 1.8 2.0 ns
Clock to WAIT Valid tKHTL 7911ns
CLK HIGH or LOW Time tKP 345 ns
Setup Time to Activate CLK Edge tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 36 ©2004 Micron Technology, Inc. All rights reserved.
Timing Diagrams
Figure 28: Initialization Period
Figure 29: DPD Entry and Exit Timing Parameters
tPU
Vcc, VccQ = 1.7V
Vcc (MIN)
Device ready fo
r
normal operation
CE#
DPD EnabledWrite
RCR[4] = 0
DPD Exit Device Initialization Device ready for
normal operation
tDPD tDPDX tPU
Table 19: Initialization and DPD Timing Parameters
PARAMETER SYMBOL
-701/708 -856
UNITS NOTEMIN MAX MIN MAX
Initialization Period (required before normal operations) tPU 150 150 µs
Time from DPD entry to DPD exit tDPD 10 10 µs
CE# LOW time to exit DPD tDPDX 10 10 µs
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 37 ©2004 Micron Technology, Inc. All rights reserved.
Figure 30: Asynchronous READ
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
VALID ADDRESS
tAA
tHZ
tBA
High-Z High-Z
tRC
tCO
tBHZ
tOHZ
tHZ
tOE
tCEW
VALID OUTPUT
High-Z
UNDEFINED
DON’T CARE
tBLZ
tLZ
tOLZ
Table 20: Asynchronous READ Timing Parameters
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 85 ns
tHZ 88ns
tBA 70 85 ns
tLZ 10 10 ns
tBHZ 8 8 ns
tOE 20 20 ns
tBLZ 10 10 ns
tOHZ 8 8 ns
tCEW 1 7.5 1 7.5 ns tOLZ 33ns
tCO 70 85 ns
tRC 70 85 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 38 ©2004 Micron Technology, Inc. All rights reserved.
Figure 31: Asynchronous READ Using ADV#
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
VALID ADDRESS
tVPH
tAADV
tAA
tVP
tHZ
tBA
High-Z High-Z
tCVS
tCO
tBLZ
tBHZ
tOHZ
tHZ
tLZ
tOE
tOLZ
VALID OUTPUT
tAVH
tAVS
High-Z
UNDEFINED
DON’T CARE
tCEW
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
Table 21: Asynchronous READ Timing Parameters Using ADV#
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 85 ns tCVS 77ns
tAADV 70 85 ns
tHZ 88ns
tAVH 22ns
tLZ 10 10 ns
tAVS 55ns
tOE 20 20 ns
tBA 70 85 ns
tOHZ 8 8 ns
tBHZ 8 8 ns
tOLZ 33ns
tBLZ 10 10 ns
tVP 57ns
tCEW 1 7.5 1 7.5 ns tVPH 10 10 ns
tCO 70 85 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 39 ©2004 Micron Technology, Inc. All rights reserved.
Figure 32: Page Mode READ
A[3:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
VALID ADDRESS
tAA
tHZ
tBA
High-Z High-Z
tCO
tCEM
tBLZ
tBHZ
tOHZ
tHZ
tLZ
tOE
tOLZ
tCEW
High-Z
UNDEFINED
DON’T CARE
A[22:4] VALID ADDRESS
VALID
ADDRESS
VALID
ADDRESS
VALID
ADDRESS
tRC
VALID
OUTPUT
tAPA
tPC
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
tOH
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
Table 22: Asynchronous READ Timing Parameters—Page Mode Operation
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 85 ns
tHZ 8 8 ns
tAPA 20 25 ns tLZ 10 10 ns
tBA 70 85 ns
tOE 20 20 ns
tBHZ 8 8 ns
tOH 5 5 ns
tBLZ 10 10 ns
tOHZ 8 8 ns
tCEM 44µs
tOLZ 33ns
tCEW 1 7.5 1 7.5 ns tPC 20 25 ns
tCO 70 85 ns
tRC 70 85 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 40 ©2004 Micron Technology, Inc. All rights reserved.
Figure 33: Single-Access Burst READ Operation—Variable Latency
NOTE:
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.
A[22:0]
VIH
VIL
ADV#
VIH
VIL
CE#
VIH
VIL
OE#
VIH
VIL
WE#
VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK
VIH
VIL
VOH
VOL
tSP
tCLK
tCEW
tHD
tABA
tHD
VALID
OUTPUT
VALID
ADDRESS
High-Z
tKOH
tOHZ
tSP
LB#/UB#
VIH
VIL
tCSP
tCEM
High-Z
t
OLZ
tHD
tHD
tSP
tHZ
tKP tKP
tKHKL
tHD
tSP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
tKHTL
tBOE
High-Z
tACLK
Table 23: Burst READ Timing Parameters—Single Access, Variable Latency
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tABA 35 46 55 ns tHZ 8 8 8 ns
tACLK 79 11ns tKHKL 1.6 1.8 2.0 ns
tBOE 20 20 20 ns tKHTL 7911ns
tCEM 444µs
tKOH 2 2 2 ns
tCEW 17.517.517.5ns tKP 345ns
tCLK 9.62 12.5 15 ns tOHZ 8 8 8 ns
tCSP 345ns
tOLZ 333ns
tHD 222ns
tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 41 ©2004 Micron Technology, Inc. All rights reserved.
Figure 34: 4-Word Burst READ Operation—Variable Latency
NOTE:
Non-default BCR settings: Latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VOH
VOL
tSP
tCLK
tKHKL
tHD
tABA
VALID
ADDRESS
High-Z
tKOH
tHZ
tHD
tSP
LB#/UB# VIH
VIL
High-Z
tOLZ
High-Z
tCBPH
tCSP
tCEM
tSP tHD
tSP tHD
tOHZ
tHD
tKP tKP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
tCEW
tACLK
tKHTL
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
tBOE
Table 24: Burst READ Timing Parameters—4-Word Burst
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tABA 35 46 55 ns tHZ 8 8 8 ns
tACLK 7911ns
tKHKL 1.6 1.8 2.0 ns
tBOE 20 20 20 ns tKHTL 7911ns
tCBPH 5 6 8 ns
tKOH 2 2 2 ns
tCEM 444µs
tKP 345ns
tCEW 17.517.517.5ns tOHZ 8 8 8 ns
tCLK 9.62 12.5 15 ns tOLZ 333ns
tCSP 345ns
tSP 3 3 3 ns
tHD 222ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 42 ©2004 Micron Technology, Inc. All rights reserved.
Figure 35: Single-Access Burst READ Operation—Fixed Latency
NOTE:
Non-default BCR settings: Fixed latency; latency code four (five clocks); WAIT active LOW; WAIT asserted during delay.
A[22:0]
VIH
VIL
ADV#
VIH
VIL
CE#
VIH
VIL
OE#
VIH
VIL
WE#
VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK
VIH
VIL
VOH
VOL
t
CLK
t
CEW
t
AVH
t
CO
t
AADV
t
AA
t
HD
VALID
OUTPUT
VALID
ADDRESS
High-Z
t
KOH
t
OHZ
t
SP
t
SP
LB#/UB#
VIH
VIL
t
CSP
t
CEM
High-Z
t
OLZ
t
HD
t
HD
t
SP
t
HZ
t
KP
t
KP
t
KHKL
t
HD
t
SP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
t
KHTL
t
BOE
High-Z
t
ACLK
Table 25: Burst READ Timing Parameters—Single Access, Fixed Latency
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 70 85 ns tHD 222ns
tAADV 70 70 85 ns tHZ 8 8 8 ns
tACLK 7911ns
tKHKL 1.6 1.8 2.0 ns
tAVH 222ns
tKHTL 7911ns
tBOE 20 20 20 ns tKOH 2 2 2 ns
tCEM 444µs
tKP 345ns
tCEW 17.517.517.5ns tOHZ 8 8 8 ns
tCLK 9.62 12.5 15 ns
tOLZ 333ns
tCO 70 70 85 ns tSP 3 3 3 ns
tCSP 345ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 43 ©2004 Micron Technology, Inc. All rights reserved.
Figure 36: 4-Word Burst READ Operation—Fixed Latency
NOTE:
Non-default BCR settings: Fixed latency; latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VOH
VOL
tAVH
tCLK
tKHKL
tCO
tAADV
tAA
High-Z
tKOH
tHZ
tHD
tSP
tSP
LB#/UB# VIH
VIL
High-Z
tOLZ
High-Z
tCBPH
tCSP
tCEM
tSP tHD
tSP tHD
tOHZ
tHD
tKP tKP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
tCEW tKHTL
tACLK
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
tBOE
VALID
ADDRESS
Table 26: Burst READ Timing Parameters—4-Word Burst, Fixed Latency
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 70 85 ns tCSP 345ns
tAADV 70 70 85 ns tHD 222ns
tACLK 7911ns
tHZ 8 8 8 ns
tAVH 222ns
tKHKL 1.6 1.8 2.0 ns
tBOE 20 20 20 ns tKHTL 7911ns
tCBPH 5 6 8 ns
tKOH 2 2 2 ns
tCEM 444µs
tKP 345ns
tCEW 17.517.517.5ns tOHZ 8 8 8 ns
tCLK 9.62 12.5 15 ns tOLZ 333ns
tCO 70 70 85 ns tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 44 ©2004 Micron Technology, Inc. All rights reserved.
Figure 37: READ Burst Suspend
NOTE:
1. Non-default BCR settings for READ burst suspend: Fixed or variable latency; latency code two (three clocks); WAIT active
LOW; WAIT asserted during delay.
2. CLK can be stopped LOW or HIGH, but must be static, with no LOW-to-HIGH transitions during burst suspend.
3. OE# can stay LOW during burst suspend. If OE# is LOW, DQ[15:0] will continue to output valid data.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VOH
VOL
tSP tHD
High-Z
tOLZ
tACLK
LB#/UB# VIH
VIL
tCLK
tSP
tCSP
tSP tHD
tHD
tSP tHD
tKOH
VALID
OUTPUT VALID
OUTPUT
UNDEFINED
DON’T CARE
VALID
ADDRESS
High-Z
t
CBPH
t
CEM
t
HZ
tOHZ
VALID
OUTPUT VALID
OUTPUT VALID
OUTPUT VALID
OUTPUT
tBOE
t
OHZ
tBOE
tOLZ
VALID
ADDRESS
NOTE 3
NOTE 2
High-Z
Table 27: Burst READ Timing Parameters—Burst Suspend
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tHD 222ns
tBOE 20 20 20 ns tHZ 8 8 8 ns
tCBPH 5 6 8 ns
tKOH 222ns
tCEM 444µs
tOHZ 8 8 8 ns
tCLK 9.62 12.5 15 ns
tOLZ 333ns
tCSP 3 4 5 ns
tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 45 ©2004 Micron Technology, Inc. All rights reserved.
Figure 38: Continuous Burst READ Showing an Output Delay
with BCR[8] = 0 for Variable Latency End-of-Row Condition
NOTE:
1. Non-default BCR settings for continuous burst READ, BCR[8] = 0: WAIT active LOW; WAIT asserted during delay. Do not
cross row boundaries with fixed latency.
2. CE# must not remain LOW longer than tCEM.
3. WAIT asserts for anywhere from LC to 2LC cycles. LC = Latency Code (BCR[13:11]).
tACLK tKOH
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VOH
VOL
tKHTL tKHTL
tCLK
LB#/UB# VIH
VIL
VALID
OUTPUT
VALID
OUTPUT
VALID
OUTPUT
DON’T CARE
VALID
OUTPUT
NOTE 3
NOTE 2
End of Row
Table 28: Burst READ Timing Parameters—BCR[8] = 0
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tKHTL 7911ns
tCLK 9.62 12.5 15 ns
tKOH 2 2 2 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 46 ©2004 Micron Technology, Inc. All rights reserved.
Figure 39: CE#-Controlled Asynchronous WRITE
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
IN
VALID ADDRESS
High-Z High-Z
tWC
tCEW tHZ
VALID INPUT
tAW
DON’T CARE
tWR
tCW tCPH
tDW
DQ[15:0]
OUT
tWHZ
tBW
tLZ
tDH
tAS
tWP
tWPH
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VOH
VOL
VIH
VIL
High-Z
Table 29: Asynchronous WRITE Timing Parameters—CE#-Controlled
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tHZ 88ns
tAW 70 85 ns tLZ 10 10 ns
tBW 70 85 ns tWC 70 85 ns
tCEW 1 7.5 1 7.5 ns tWHZ 88ns
tCPH 55ns
tWP 45 55 ns
tCW 70 85 ns tWPH 10 10 ns
tDH 00ns
tWR 00ns
tDW 20 20 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 47 ©2004 Micron Technology, Inc. All rights reserved.
Figure 40: LB#/UB#-Controlled Asynchronous WRITE
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
IN
VIH
VIL
VALID ADDRESS
High-Z
tWC
tCEW tHZ
VALID INPUT
tAW
DON’T CARE
tWR
tCW
tDW
DQ[15:0]
OUT
VOH
VOL
tWHZ
tBW
tLZ
tDH
tAS
tWP
tWPH
High-Z
High-Z
Table 30: Asynchronous WRITE Timing Parameters—LB#/UB#-Controlled
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tHZ 88ns
tAW 70 85 ns
tLZ 10 10 ns
tBW 70 85 ns
tWC 70 85 ns
tCEW 1 7.5 1 7.5 ns tWHZ 8 8 ns
tCW 70 85 ns
tWP 45 55 ns
tDH 0 0 ns
tWPH 10 10 ns
tDW 20 20 ns tWR 0 0 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 48 ©2004 Micron Technology, Inc. All rights reserved.
Figure 41: WE#-Controlled Asynchronous WRITE
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
IN
VIH
VIL
VALID ADDRESS
tWC
tCEW tHZ
VALID INPUT
tAW
DON’T CARE
tWR
tDW
DQ[15:0]
OUT
VOH
VOL
tWHZ
tBW
tCW
tLZ
tWP
tDH
tOW
tAS
tWPH
High-Z
High-Z
High-Z
Table 31: Asynchronous WRITE Timing Parameters—WE#-Controlled
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tLZ 10 10 ns
tAW 70 85 ns
tOW 55ns
tBW 70 85 ns
tWC 70 85 ns
tCEW 1 7.5 1 7.5 ns tWHZ 8 8 ns
tCW 70 85 ns
tWP 45 55 ns
tDH 0 0 ns
tWPH 10 10 ns
tDW 20 20 ns tWR 0 0 ns
tHZ 88ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 49 ©2004 Micron Technology, Inc. All rights reserved.
Figure 42: Asynchronous WRITE Using ADV#
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
A[22:0]
ADV#
CE#
LB#/UB#
OE#
WE#
WAIT
DQ[15:0]
IN
VIH
VIL
VALID ADDRESS
High-Z High-Z
tCEW tHZ
VALID INPUT
tVS
DON’T CARE
tCW
tDW
DQ[15:0]
OUT
VOH
VOL
tWHZ
tBW
tLZ
tWP
tDH
tOW
tAS
tWPH
tAS
tVPH
tAVH
tAVS
tVP
tAW
High-Z
Table 32: Asynchronous WRITE Timing Parameters Using ADV#
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tHZ 88ns
tAVH 22ns
tLZ 10 10 ns
tAVS 55ns
tOW 55ns
tAW 70 85 ns
tVP 57ns
tBW 70 85 ns
tVPH 10 10 ns
tCEW 1 7.5 1 7.5 ns tVS 70 85 ns
tCW 70 85 ns
tWHZ 8 8 ns
tDH 0 0 ns
tWP 45 55 ns
tDW 20 20 ns tWPH 10 10 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 50 ©2004 Micron Technology, Inc. All rights reserved.
Figure 43: Burst WRITE Operation—Variable Latency Mode
NOTE:
1. Non-default BCR settings for burst WRITE operation in variable latency mode: Latency code two (three clocks); WAIT
active LOW; WAIT asserted during delay; burst length four; burst wrap enabled.
2. WAIT asserts for LC cycles for both fixed and variable latency. LC = Latency Code (BCR[13:11]).
3. tAS required if tCSP > 20ns.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VIH
VIL
tCLK tKP
tSP
tAS3
tCSP
D[0]D[3]D[2]D[1]
VALID
ADDRESS
tHD
tSP
tHD
tSP
tHD
tHD
tSP
High-Z High-Z
LB#/UB# VIH
VIL
tSP tHD
tHD
DON’T CARE
WRITE Burst Identified
(WE# = LOW)
tCBPH
tKADV
tKHTL
tAS3
tHZ
tCEW
tKP tKHKL
NOTE 2
tCEM
Table 33: Burst WRITE Timing Parameters
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tAS 000ns
tHZ 888ns
tCBPH 5 6 8 ns
tKADV 466ns
tCEM 444µs
tKHKL 1.6 1.8 2.0 ns
tCEW 17.517.517.5ns tKHTL 7911ns
tCLK 9.62 12.5 15 ns
tKP 3 4 5 ns
tCSP 3 4 5 ns
tSP 3 3 3 ns
tHD 2 2 2 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 51 ©2004 Micron Technology, Inc. All rights reserved.
Figure 44: Burst WRITE Operation—Fixed Latency Mode
NOTE:
1. Non-default BCR settings for burst WRITE operation in fixed latency mode: Fixed latency; latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay; burst length four; burst wrap enabled.
2. WAIT asserts for LC cycles for both fixed and variable latency. LC = Latency Code (BCR[13:11]).
3. tAS required if tCSP > 20ns.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VIH
VIL
tCLK tKP
tSP
tAS3
tCSP
D[0]D[3]D[2]D[1]
VALID
ADDRESS
tHD
tSP
tHD
tSP
tHD
tSP
High-Z High-Z
LB#/UB# VIH
VIL
tSP tHD
tHD
tKADV
DON’T CARE
WRITE Burst Identified
(WE# = LOW)
tCBPH
tKHTL
tAS3
tHZ
tCEW
tKP tKHKL
NOTE 2
tCEM
tAVH
Table 34: Burst WRITE Timing Parameters
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tAS 000ns
tHD 2 2 2 ns
tAVH 222ns
tHZ 888ns
tCBPH 5 6 8 ns
tKADV 466ns
tCEM 444µs
tKHKL 1.6 1.8 2.0 ns
tCEW 17.517.517.5ns tKHTL 7911ns
tCLK 9.62 12.5 15 ns tKP 3 4 5 ns
tCSP 3 4 5 ns
tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 52 ©2004 Micron Technology, Inc. All rights reserved.
Figure 45: Continuous Burst WRITE Showing an Output Delay
with BCR[8] = 0 for Variable Latency End-of-Row Condition
NOTE:
1. Non-default BCR settings for continuous burst WRITE, BCR[8] = 0: WAIT active LOW; WAIT asserted during delay. Do not
cross row boundaries with fixed latency.
2. CE# must not remain LOW longer than tCEM.
3. WAIT asserts for anywhere from LC to 2LC cycles. LC = Latency Code (BCR[13:11]).
4. Taking CE# HIGH or ADV# LOW on the start-of-row cycle will abort the burst and not write the start-of-row data.
Devices from different CellularRAM vendors can assert WAIT so that the start-of-row data is input just before (as
shown), or just after WAIT asserts. This difference in behavior will not be noticed by controllers that monitor WAIT, or
that use WAIT to abort on the start-of-row input cycle.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE#
VIH
VIL
WE#
VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK VIH
VIL
VIH
VIL
tKHTL tKHTL
tCLK
tSP tHD
START OF ROW
(A[6:0] = 00h)
(NOTE 4)
END OF ROW
(A[6:0] = 7Fh)
VALID INPUTVALID INPUTVALID INPUTVALID INPUT
DON’T CARE
VIH
VIL
LB#/UB#
NOTE 3
NOTE 2
Table 35: Burst WRITE Timing Parameters—BCR[8] = 0
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tCLK 9.62 12.5 15 ns
tKHTL 7811ns
tHD 2 2 2 ns
tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 53 ©2004 Micron Technology, Inc. All rights reserved.
Figure 46: Burst WRITE Followed by Burst READ
NOTE:
1. Non-default BCR settings for burst WRITE followed by burst READ: Fixed or variable latency; latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
2. A refresh opportunity must be provided every tCEM. A refresh opportunity is satisfied by either of the following two
conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns. CE# can stay LOW between burst READ and burst
WRITE operations, but CE# must not remain LOW longer than tCEM. See burst interrupt diagrams (Figures 47–49,
pages 54 through 56) for cases where CE# stays LOW between bursts.
3. Only fixed latency requires tKADV.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
IN/OUT
VOH
VOL
CLK VIH
VIL
VIH
VIL
tCLK
tSP
tSP
tCSP
D[3]D[2]D[1]
D[0]
VALID
ADDRESS
tHD
tSP
tHD
tSP
tSP tHD
VALID
ADDRESS
tCSP tOHZ
tKOH
tACLK
VALID
OUTPUT
VALID
OUTPUT VALID
OUTPUT
VALID
OUTPUT
High-Z
High-Z VOH
VOL
LB#/UB# VIH
VIL
tHD
tSP tHD
tSP tHD
tHD
High-Z
UNDEFINED
DON’T CARE
tBOE
tCBPH
High-Z
tHD
tHD tSP
tKADV3
NOTE 2
Table 36: WRITE Timing Parameters—Burst WRITE Followed by Burst READ
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tCBPH 5 6 8 ns
tHD 222ns
tCLK 9.62 20 12.5 20 15 20 ns tKADV 466ns
tCSP 3 20420520ns tSP 3 3 3 ns
Table 37: READ Timing Parameters—Burst WRITE Followed by Burst READ
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tHD 222ns
tBOE 20 20 20 ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns
tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 54 ©2004 Micron Technology, Inc. All rights reserved.
Figure 47: Burst READ Interrupted by Burst READ or WRITE
NOTE:
1. Non-default BCR settings for burst READ interrupted by burst READ or WRITE: Fixed or variable latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay. All bursts shown for variable latency; no refresh collision.
2. Burst interrupt shown on first allowable clock (i.e., after the first data received by controller).
3. CE# can stay LOW between burst operations, but CE# must not remain LOW longer than tCEM.
4. For variable latency, WAIT asserts tKHTL after ADV# is clocked LOW. For fixed latency, WAIT asserts tCEW after ADV#
transitions LOW.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE#
2nd Cycle READ
VIH
VIL
OE#
2nd Cycle WRITE
VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0] OUT
2nd Cycle READ
VOH
VOL
CLK VIH
VIL
DQ[15:0] IN
2nd Cycle WRITE
VIH
VIL
tHD
tSP
tSP tHD
tCLK
tOHZ
tKOH
tACLK
VALID
OUTPUT
VALID
OUTPUT VALID
OUTPUT
VALID
OUTPUT
LB#/UB#
2nd Cycle READ
VIH
VIL
LB#/UB#
2nd Cycle WRITE
VIH
VIL
tSP tHD
UNDEFINED
DON’T CARE
tHD
tSP
tCSP
tSP tHD
VALID
ADDRESS
tOHZ
tKOH
tACLK
VALID
OUTPUT
High-Z
tBOE
tCEW
tSP tHD
tHD
tSP
VOH
VOL
tBOE
D[2] D[3]D[1]
D[0]
High-Z
tCEM (Note 3)
VALID
ADDRESS
READ Burst interrupted with new READ or WRITE. See Note 2.
High-Z
tKHTL
NOTE 4
tHD
High-Z
Table 38: READ Timing Parameters—Burst WRITE Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tHD 222ns
tBOE 20 20 20 ns tKHTL 7911ns
tCEW 17.517.517.5ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns
tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
Table 39: WRITE Timing Parameters—Burst WRITE Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tCLK 9.62 20 12.5 20 15 20 ns tHD 222 ns
tCSP 3 20 4 20 5 20 ns tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 55 ©2004 Micron Technology, Inc. All rights reserved.
Figure 48: Burst WRITE Interrupted by Burst WRITE or READ—
Variable Latency Mode
NOTE:
1. Non-default BCR settings for burst WRITE interrupted by burst WRITE or READ in variable latency mode: Variable latency;
latency code two (three clocks); WAIT active LOW; WAIT asserted during delay. All bursts shown for variable latency; no
refresh collision.
2. Burst interrupt shown on first allowable clock (i.e., after first data word written).
3. CE# can stay LOW between burst operations, but CE# must not remain LOW longer than tCEM.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE#
2nd Cycle WRITE
VIH
VIL
OE#
2nd Cycle READ
VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0] IN
2nd Cycle WRITE
DQ[15:0] OUT
2nd Cycle READ
VOH
VOL
CLK VIH
VIL
VIH
VIL
tCLK
tSP
tSP
tCSP
D[0]
VALID
ADDRESS
tHD
tSP
tHD
tSP
tSP tHD
VALID
ADDRESS
tHD
High-Z
LB#/UB#
2nd Cycle WRITE
LB#/UB#
2nd Cycle READ
VIH
VIL
VIH
VIL
tHD
tSP tHD
tKHTL
tSP tHD
UNDEFINED
DON’T CARE
D[2] D[3]D[1]
D[0]
tHD
tSP
tHD
tHD tSP
tOHZ
tBOE
tSP tHD
tKOH
tACLK
VALID
OUTPUT
VALID
OUTPUT VALID
OUTPUT
VALID
OUTPUT
High-Z
VOH
VOL
VOH
VOL
WRITE Burst interrupted with new WRITE or READ. See Note 2.
VALID
ADDRESS
tCEM (NOTE 3)
High-Z
High-Z
Table 40: WRITE Timing Parameters—Burst READ Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tCLK 9.62 20 12.5 20 15 20 ns tKHTL 7911ns
tCSP 3 20 4 20 5 20 ns tSP 3 3 3 ns
tHD 222ns
Table 41: READ Timing Parameters—Burst READ Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tHD 222ns
tBOE 20 20 20 ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns
tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 56 ©2004 Micron Technology, Inc. All rights reserved.
Figure 49: Burst WRITE Interrupted by Burst WRITE or READ—Fixed Latency Mode
NOTE:
1. Non-default BCR settings for burst WRITE interrupted by burst WRITE or READ in fixed latency mode: Fixed latency; latency
code two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. Burst interrupt shown on first allowable clock (i.e., after first data word written).
3. CE# can stay LOW between burst operations, but CE# must not remain LOW longer than tCEM.
A[22:0] VIH
VIL
ADV# VIH
VIL
CE# VIH
VIL
OE#
2nd Cycle WRITE
VIH
VIL
OE#
2nd Cycle READ
VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0] IN
2nd Cycle WRITE
DQ[15:0] OUT
2nd Cycle READ
VOH
VOL
CLK VIH
VIL
VIH
VIL
tCLK
tSP
tSP
tCSP
D[0]
VALID
ADDRESS
tHD
tSP
tHD
tSP
tSP
tSP
VALID
ADDRESS
tHD
High-Z
LB#/UB#
2nd Cycle WRITE
LB#/UB#
2nd Cycle READ
VIH
VIL
VIH
VIL
tSP tHD
tSP tHD
High-Z
UNDEFINED
DON’T CARE
tHD
D[2] D[3]D[1]
D[0]
tHD
tSP
High-Z
tHD tSP
tOHZ
tBOE
tKOH
tACLK
VALID
OUTPUT
VALID
OUTPUT VALID
OUTPUT
VALID
OUTPUT
High-Z
VOH
VOL
VOH
VOL
tKHTL
WRITE Burst interrupted with new WRITE or READ. See Note 2.
VALID
ADDRESS
tCEM (NOTE 3)
tKADV
tAVH tAVH
tHD
Table 42: WRITE Timing Parameters—Burst READ Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tAVH 222ns
tKADV 466ns
tCLK 9.62 20 12.5 20 15 20 ns tKHTL 7911ns
tCSP 3 20420520ns tSP 3 3 3 ns
tHD 222ns
Table 43: READ Timing Parameters—Burst READ Interrupted
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tHD 222ns
tBOE 20 20 20 ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 57 ©2004 Micron Technology, Inc. All rights reserved.
Figure 50: Asynchronous WRITE Followed by Burst READ
NOTE:
1. Non-default BCR settings for asynchronous WRITE followed by burst READ: Fixed or variable latency; latency code two
(three clocks); WAIT active LOW; WAIT asserted during delay.
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW
when transitioning to fixed-latency burst READs. A refresh opportunity must be provided every tCEM. A refresh opportu-
nity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
tCLK
tSP tHD
tSP
VALID
ADDRESS
tOHZ
tKOH
tACLK
High-Z
High-Z
VALID ADDRESS VALID ADDRESS
tAVS tAVH tAW tWR
tVP tVS
A[22:0] VIH
VIL
ADV# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
IN/OUT
VOH
VOL
CLK VIH
VIL
VIH
VIL
VOH
VOL
CE# VIH
VIL
LB#/UB# VIH
VIL
tCW
tCVS
tWPH
tAS
tAS
tWP
tWC
tDH tDW
DATA DATA
High-Z
tHD
tSP
tCEW
tSP tHD
tCSP
tWC
tWC
tBW
VALID
OUTPUT VALID
OUTPUT VALID
OUTPUT
VALID
OUTPUT
DON’T CARE UNDEFINED
tHD
tBOE
tCBPH
tVPH
NOTE 2
Table 44: WRITE Timing Parameters—Async WRITE Followed by Burst READ
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAVH 22ns
tDW 20 20 ns
tAS 00ns
tVP 57ns
tAVS 55ns
tVPH 10 10 ns
tAW 70 85 ns tVS 70 85 ns
tBW 70 85 ns tWC 70 85 ns
tCVS 77ns
tWP 45 55 ns
tCW 70 85 ns tWPH 10 10 ns
tDH 0 0 ns
tWR 0 0 ns
Table 45: READ Timing Parameters—Async WRITE Followed by Burst READ
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tCSP 3 4 5 ns
tBOE 20 20 20 ns tHD 2 2 2 ns
tCBPH 5 6 8 ns
tKOH 2 2 2 ns
tCEW 1 7.5 1 7.5 1 7.5 ns tOHZ 888 ns
tCLK 9.62 12.5 15 ns
tSP 3 3 3 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 58 ©2004 Micron Technology, Inc. All rights reserved.
Figure 51: Asynchronous WRITE (ADV# LOW) Followed By Burst READ
NOTE:
1. Non-default BCR settings for asynchronous WRITE, with ADV# LOW, followed by burst READ: Fixed or variable latency;
latency code two (three clocks); WAIT active LOW; WAIT asserted during delay.
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW
when transitioning to fixed-latency burst READs. A refresh opportunity must be provided every tCEM. A refresh opportu-
nity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
tCLK
tSP tHD
tHD
VALID
ADDRESS
tCSP
tKOH
tACLK
VALID
OUTPUT
High-Z
VALID ADDRESS VALID ADDRESS
A[22:0] VIH
VIL
ADV# VIH
VIL
OE# VIH
VIL
WE# VIH
VIL
WAIT
DQ[15:0]
IN/OUT
VOH
VOL
CLK VIH
VIL
VIH
VIL
VOH
VOL
CE# VIH
VIL
LB#/UB# VIH
VIL
tCW
tWPH
tWP
tWC
tDH tDW
DATA DATA
High-Z
tHD
tSP
tSP tHD
tWC tWC
tBW
tAW tWR
tSP
VALID
OUTPUT VALID
OUTPUT VALID
OUTPUT
UNDEFINED
DON’T CARE
tBOE
tOHZ
tCEW
tCBPH
High-Z
NOTE 2
Table 46: Asynchronous WRITE Timing Parameters—ADV# LOW
SYMBOL
-701/708 -856
UNITS SYMBOL
-701/708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAW 70 85 ns tWC 70 85 ns
tBW 70 85 ns tWP 45 55 ns
tCW 70 85 ns tWPH 10 10 ns
tDH 00ns
tWR 0 0 ns
tDW 20 20 ns
Table 47: Burst READ Timing Parameters
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 7911ns
tCSP 345ns
tBOE 20 20 20 ns tHD 222ns
tCBPH 5 6 8 ns
tKOH 2 2 2 ns
tCEW 17.517.517.5ns tOHZ 888 ns
tCLK 9.62 12.5 15 ns
tSP 333ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 59 ©2004 Micron Technology, Inc. All rights reserved.
Figure 52: Burst READ Followed by Asynchronous WRITE (WE#-Controlled)
NOTE:
1. Non-default BCR settings for burst READ followed by asynchronous WE#-controlled WRITE: Fixed or variable latency; latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW when transitioning from
fixed-latency burst READs; asynchronous operation begins at the falling edge of ADV#. A refresh opportunity must be provided every tCEM.
A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
A[22:0]
VIH
VIL
ADV#
VIH
VIL
CE#
VIH
VIL
OE#
VIH
VIL
WE#
VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK
VIH
VIL
VOH
VOL
VIH
VIL
t
SP
t
CLK
t
ACLK
t
CEW
t
HD
t
AW
tCW
t
WR
VALID
OUTPUT
VALID
ADDRESS
High-Z
t
KOH
t
DW
t
OHZ
t
SP
LB#/UB#
VIH
VIL
t
CSP
High-Z
t
OLZ
t
HD
t
WP
t
WPH
t
AS
t
DH
t
HD
t
BW
t
SP
t
HZ
t
HD
t
SP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
t
WC
t
HD
t
KHTL
t
BOE
VALID
ADDRESS
VALID
INPUT
High-Z
t
CEW
t
HZ
t
CBPH
NOTE 2
Table 48: Burst READ Timing Parameters
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 79 11ns tHD 222ns
tBOE 20 20 20 ns tHZ 8 8 8 ns
tCBPH 568ns
tKHTL 7911ns
tCEW 17.517.517.5ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns
tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
Table 49: Asynchronous WRITE Timing Parameters—WE# Controlled
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tHZ 88ns
tAW 70 85 ns tWC 70 85 ns
tBW 70 85 ns tWP 45 55 ns
tCW 70 85 ns tWPH 10 10 ns
tDH 00ns
tWR 0 0 ns
tDW 20 20 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 60 ©2004 Micron Technology, Inc. All rights reserved.
Figure 53: Burst READ Followed by Asynchronous WRITE Using ADV#
NOTE:
1. Non-default BCR settings for burst READ followed by asynchronous WRITE using ADV#: Fixed or variable latency; latency code two (three
clocks); WAIT active LOW; WAIT asserted during delay.
2. When transitioning between asynchronous and variable-latency burst operations, CE# must go HIGH. CE# can stay LOW when transitioning from
fixed-latency burst READs; asynchronous operation begins at the falling edge of ADV#. A refresh opportunity must be provided every tCEM.
A refresh opportunity is satisfied by either of the following two conditions: a) clocked CE# HIGH, or b) CE# HIGH for longer than 15ns.
A[22:0]
VIH
VIL
ADV#
VIH
VIL
CE#
VIH
VIL
OE#
VIH
VIL
WE#
VIH
VIL
WAIT
DQ[15:0]
VOH
VOL
CLK
VIH
VIL
VOH
VOL
t
SP
t
CLK
t
CEW
t
HD
t
VPH
t
VS
t
AVS
t
AVH
t
AW
tCW
VALID
OUTPUT
VALID
ADDRESS
High-Z
t
KOH
t
DW
t
OHZ
t
SP
t
HD
t
VP
LB#/UB#
VIH
VIL
t
CSP
High-Z
t
OLZ
t
HD
t
WP
t
WPH
t
AS
t
DH
t
HD
t
BW
t
SP
t
HZ
t
SP
UNDEFINED
DON’T CARE
READ Burst Identified
(WE# = HIGH)
t
KHTL
VALID
ADDRESS
VALID
INPUT
High-Z
t
CEW
t
HZ
t
CBPH
t
ACLK
t
BOE
t
AS
t
HD
NOTE 2
VIH
VIL
Table 50: Burst READ Timing Parameters
SYMBOL
-701 -708 -856
UNITS SYMBOL
-701 -708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
tACLK 79 11ns tHD 222ns
tBOE 20 20 20 ns tHZ 8 8 8 ns
tCBPH 568ns
tKHTL 7911ns
tCEW 17.517.517.5ns tKOH 2 2 2 ns
tCLK 9.62 12.5 15 ns
tOHZ 8 8 8 ns
tCSP 345ns
tSP 333ns
Table 51: Asynchronous WRITE Timing Parameters Using ADV#
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tDW 20 20 ns
tAVH 22ns
tHZ 88ns
tAVS 55ns
tVP 57ns
tAW 70 85 ns
tVPH 10 10 ns
tBW 70 85 ns
tVS 70 85 ns
tCEW 1 7.5 1 7.5 ns tWP 45 55 ns
tCW 70 85 ns
tWPH 10 10 ns
tDH 0 0 ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 61 ©2004 Micron Technology, Inc. All rights reserved.
Figure 54: Asynchronous WRITE Followed by Asynchronous READ—ADV# LOW
NOTE:
1. When configured for synchronous mode (BCR[15] = 0), CE# must remain HIGH for at least 5ns (tCPH) to schedule the
appropriate refresh interval. Otherwise, tCPH is only required after CE#-controlled WRITEs.
VALID ADDRESS VALID ADDRESS
A[22:0] VIH
VIL
ADV#
VIH
VIL
OE#
WE#
WAIT
DQ[15:0]
IN/OUT
VOH
VOL
VIH
VIL
VOH
VOL
CE#
LB#/UB# VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
tCW
tWPH
tWP
tAS
tWC
tDH tDW
DATA
High-Z
VALID ADDRESS
tAA
tBHZ
tCPH
VALID
OUTPUT
High-Z
tOE
tOLZ
tLZ
tBLZ
tOHZ
tHZ
tAW tWR
tBW
tWHZ
tHZ tHZ
DON’T CARE UNDEFINED
DATA
NOTE 1
Table 52: WRITE Timing Parameters—ADV# LOW
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tHZ 88ns
tAW 70 85 ns
tWC 70 85 ns
tBW 70 85 ns tWHZ 88 ns
tCPH 55ns
tWP 45 55 ns
tCW 70 85 ns
tWPH 10 10 ns
tDH 0 0 ns
tWR 0 0 ns
tDW 20 20 ns
Table 53: READ Timing Parameters—ADV# LOW
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 85 ns
tLZ 10 10 ns
tBHZ 88 ns tOE 20 20 ns
tBLZ 10 10 ns
tOHZ 88 ns
tHZ 88 ns tOLZ 33ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 62 ©2004 Micron Technology, Inc. All rights reserved.
Figure 55: Asynchronous WRITE Followed by Asynchronous READ
NOTE:
1. When configured for synchronous mode (BCR[15] = 0), CE# must remain HIGH for at least 5ns (tCPH) to schedule the
appropriate refresh interval. Otherwise, tCPH is only required after CE#-controlled WRITEs.
VALID ADDRESS VALID ADDRESS
tAVS tAVH
tVPH tVP tVS
A[22:0] VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
VIH
VIL
ADV#
OE#
WE#
WAIT
DQ[15:0]
IN/OUT
VOH
VOL
VIH
VIL
VOH
VOL
CE#
LB#/UB#
tCW
tWPH
tAS tWP
tWC
tDH tDW
DATA DATA
High-Z
VALID ADDRESS
tAA
tBHZ
tCPH
VALID
OUTPUT
High-Z
tCVS
tOLZ
tLZ
tAS
tBLZ
tOHZ
tHZ
tAW tWR
tBW
tWHZ
UNDEFINED
DON’T CARE
tOE
NOTE 1
Table 54: WRITE Timing Parameters—Async WRITE Followed by Async READ
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAS 00ns
tDW 20 20 ns
tAVH 22ns
tVP 57ns
tAVS 55ns
tVPH 10 10 ns
tAW 70 85 ns
tVS 70 85 ns
tBW 70 85 ns tWC 70 85 ns
tCPH 55ns
tWHZ 88ns
tCVS 77ns
tWP 45 55 ns
tCW 70 85 ns
tWPH 10 10 ns
tDH 00ns
tWR 00ns
Table 55: READ Timing Parameters—Async WRITE Followed by Async READ
SYMBOL
-701/-708 -856
UNITS SYMBOL
-701/-708 -856
UNITSMIN MAX MIN MAX MIN MAX MIN MAX
tAA 70 85 ns
tLZ 10 10 ns
tBHZ 88 ns tOE 20 20 ns
tBLZ 10 10 ns
tOHZ 88 ns
tHZ 88 ns tOLZ 33ns
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 63 ©2004 Micron Technology, Inc. All rights reserved.
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
E-mail: prodmktg@micron.com, Internet: http://www.micron.com, Customer Comment Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc.
CellularRAM is a trademark of Micron Technology, Inc., inside the U.S. and a trademark of Infineon Technologies outside the U.S.
All other trademarks are the property of their respective owners.
Figure 56: 54-Ball VFBGA
NOTE:
1. All dimensions in millimeters; MAX/MIN, or typical, as noted.
Data Sheet Designation: Production
Released: This data sheet contains minimum and
maximum limits specified over the complete power
supply and temperature range for production devices.
Although considered final, these specifications are
subject to change, as further product development
and data characterization sometimes occur.
BALL A1 ID
1.00 MAX
MOLD COMPOUND: EPOXY NOVOLAC
SUBSTRATE: PLASTIC LAMINATE
SOLDER BALL MATERIAL: 96.5% Sn, 3% Ag, 0.5% Cu
SOLDER BALL PAD: Ø 0.30 SOLDER MASK DEFINED
BALL A6 BALL A1
8.00 ±0.10
4.00 ±0.051.875 ±0.05
BALL A1 ID
54X Ø 0.37
SOLDER BALL DIAMETER
REFERS TO POST REFLOW
CONDITION. THE PRE-
REFLOW DIAMETER IS Ø 0.35
C
L
C
L
0.75 TYP
5.00 ±0.05
3.00 ±0.05
6.00
10.00 ±0.10
0.70 ±0.05
0.10 C C
SEATING PLANE
3.75
0.75 TYP
8 MEG x 16
ASYNC/PAGE/BURST CellularRAM 1.5 MEMORY
09005aef80ec6f79 pdf/09005aef80ec6f65 zip Micron Technology, Inc., reserves the right to change products or specifications without notice.
Burst CellularRAM 1.5_128Mb__2.fm - Rev. D 2/05 EN 64 ©2004 Micron Technology, Inc. All rights reserved.
Revision History
Rev. D, Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2/05
•Clarified
tKADV operation in fixed latency; removed
it from Figure 48 and Table 40 on page 55.
Added Figure 29, DPD Entry and Exit Timing
Parameters, on page 36.
•Added
tDPD and tDPDX to Table 19 on page 36.
•Changed I
CC specifications to match workgroup
specifications.
Deleted 4-word burst READ operation with LB#/
UB# timing diagram and parameters table.
Clarified end-of-row and start-of-row addressing
and vendor-based differences in CellularRAM
device operation—Figure 45 on page 52—diagram
and Note 4.
•Updated I
TCR chart.
Rev. C, Production. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12/04
Changed status to Production.
•Added
tACLK to first data output on fixed latency
READ diagrams.
Noted CE# must stay LOW for at least 10µs when
exiting DPD.
Updated LB#/UB# in timing diagrams, and clarified
LB#/UB# operation across Workgroup devices.
•Clarified I
SB operation.
Modified Figure 25 on page 30 to support non-color
printout.
•Added to tCEW definition and updated related
diagrams.
Clarified CE# LOW between burst operations.
Updated ADV# LOW and WAIT relative to burst
interrupts, and corrected interrupt latency in
diagrams.
Clarified VSSQ in Figure 26 on page 31.
Clarified end-of-row operation and added Note 4 to
Figure 45 on page 52.
Rev. B, Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11/04
Clarified CRE access.
•Changed
tCBPH to tCPH in Figures Figure 12 on
page 16 and Figure 13 on page 16.
•Added V
IH, VIL for register READ operation followed
by READ ARRAY operation, and burst READ
followed by async WRITE in Figures 52 and 53
respectively.
Defined the beginning of asynchronous operation
for each figure.
Adjusted valid address in Figure 23 on page 25.
Rev. A, Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9/04
Initial release.