IR MOSFET
StrongIRFET™
IRF40DM229
Application
Brushed Motor drive applications
BLDC Motor drive applications
Battery powered circuits
Half-bridge and full-bridge topologies
Synchronous rectifier applications
Resonant mode power supplies
OR-ing and redundant power switches
DC/DC and AC/DC converters
DC/AC Inverters
Benefits
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dv/dt and di/dt Capability
Lead-Free, RoHS Compliant
Base part number Package Type
Standard Pack Orderable Part Number
Form Quantity
IRF40DM229 DirectFET MF Tape and Reel 4800 IRF40DM229
VDSS 40V
RDS(on) typ. 1.4m
max 1.85m
ID (Silicon Limited) 159A
Fig 1. Typical On-Resistance vs. Gate Voltage Fig 2. Maximum Drain Current vs. Case Temperature
DirectFET ISOMETRIC
MF
DirectFETN-Channel Power MOSFET
1 2016-3-2
DD
S
GS
S
S
46810 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
0.0
1.0
2.0
3.0
4.0
5.0
6.0
RDS(on)
, Drain-to -Source On Resistance (m
)
ID = 97A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150
TC , Case Temperature (°C)
0
25
50
75
100
125
150
175
ID, Drain Current (A)
IRF40DM229
2 2016-3-2
Notes:
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Used double sided cooling , mounting pad with large heatsink.
Absolute Maximum Ratings 
Symbol Parameter Max. Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 159
ID @ TC = 100°C Continuous Drain Current, VGS @ 10V (Silicon Limited) 101 A
IDM Pulsed Drain Current  636
PD @TC = 25°C Maximum Power Dissipation 83 W
Linear Derating Factor 0.67 W/°C
VGS Gate-to-Source Voltage ± 20 V
TJ Operating Junction and -55 to + 150 °C
TSTG Storage Temperature Range
Avalanche Characteristics 
EAS (Thermally limited) Single Pulse Avalanche Energy  72
EAS (tested) Single Pulse Avalanche Energy Tested Value  195
IAR Avalanche Current  See Fig.15,16, 23a, 23b A
EAR Repetitive Avalanche Energy  mJ
Thermal Resistance 
Symbol Parameter Typ. Max. Units
RJA Junction-to-Ambient  ––– 45
°C/W
RJA Junction-to-Ambient  12.5 –––
RJA Junction-to-Ambient  20 –––
RJC Junction-to-Case  ––– 1.5
RJ-PCB Junction-to-PCB Mounted 1.0 –––
mJ
EAS (Thermally limited) Single Pulse Avalanche Energy  169
Static @ TJ = 25°C (unless otherwise specified) 
Symbol Parameter Min. Typ. Max. Units Conditions
V(BR)DSS Drain-to-Source Breakdown Voltage 40 ––– ––– V VGS = 0V, ID = 250µA
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 32 ––– mV/°C Reference to 25°C, ID = 1.0mA
RDS(on) Static Drain-to-Source On-Resistance ––– 1.4 1.85 m VGS = 10V, ID = 97A
––– 3.0 –––VGS = 6.0V, ID = 49A
VGS(th) Gate Threshold Voltage 2.2 2.8 3.9 V VDS = VGS, ID = 100µA
IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 40V, VGS = 0V
––– ––– 150 VDS = 40V, VGS = 0V, TJ = 125°C
IGSS Gate-to-Source Forward Leakage ––– ––– 100 VGS = 20V
Gate-to-Source Reverse Leakage ––– ––– -100 VGS = -20V
RG Internal Gate Resistance ––– 1.0 –––
nA
TC measured with thermocouple mounted to top (Drain) of part.
Surface mounted on 1 in. square Cu
board (still air).
Mounted to a PCB with small clip
heatsink (still air)
Mounted on minimum footprint full size
board with metalized back and with
small clip heatsink (still air)
IRF40DM229
3 2016-3-2
D
S
G
Dynamic @ TJ = 25°C (unless otherwise specified) 
Symbol Parameter Min. Typ. Max. Units Conditions
gfs Forward Transconductance 87 ––– ––– S VDS = 10V, ID = 97A
Qg Total Gate Charge ––– 107 161
nC
ID = 97A
Qgs Gate-to-Source Charge ––– 30 ––– VDS =20V
Qgd Gate-to-Drain ("Miller") Charge ––– 39 ––– VGS = 10V
Qsync Total Gate Charge Sync. (Qg - Qgd) ––– 68 –––
td(on) Turn-On Delay Time ––– 16 –––
ns
VDD = 20V
tr Rise Time ––– 66 ––– ID = 30A
td(off) Turn-Off Delay Time ––– 54 ––– RG = 2.7
tf Fall Time ––– 54 ––– VGS = 10V
Ciss Input Capacitance ––– 5317 –––
pF
VGS = 0V
Coss Output Capacitance ––– 866 ––– VDS = 25V
Crss Reverse Transfer Capacitance ––– 575 ––– ƒ = 1.0MHz
Coss eff. (ER) Effective Output Capacitance (Energy Related) ––– 1037 ––– VGS = 0V, VDS = 0V to 32V
Coss eff. (TR) Effective Output Capacitance (Time Related) ––– 1237 ––– VGS = 0V, VDS = 0V to 32V
Diode Characteristics 
Symbol Parameter Min. Typ. Max. Units Conditions
IS Continuous Source Current ––– ––– 83
A
MOSFET symbol
(Body Diode) showing the
ISM Pulsed Source Current ––– ––– 636 integral reverse
(Body Diode) p-n junction diode.
VSD Diode Forward Voltage ––– ––– 1.2 V TJ= 25°C,IS = 97A, VGS = 0V
dv/dt Peak Diode Recovery ––– 3.2 ––– V/ns
TJ =150°C,IS = 97A,VDS = 40V
trr Reverse Recovery Time ––– 26 ––– ns TJ = 25° C VR = 34V
––– 27 ––– TJ = 125°C IF = 97A
Qrr Reverse Recovery Charge ––– 24 ––– TJ = 25°C di/dt = 100A/µs
––– 23 ––– TJ = 125°C
IRRM Reverse Recovery Current ––– 1.2 ––– A TJ = 25°C
nC
Notes:
Repetitive rating; pulse width limited by max. junction
temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.015mH
RG = 50, IAS = 97A, VGS =10V.
ISD 97A, di/dt 862A/µs, VDD V(BR)DSS, TJ 150°C.
Pulse width 400µs; duty cycle 2%.
Coss eff. (TR) is a fixed capacitance that gives the
same charging time as Coss while VDS is rising from 0
to 80% VDSS.
Coss eff. (ER) is a fixed capacitance that gives the
same energy as Coss while VDS is rising from 0 to
80% VDSS.
When mounted on 1" square PCB (FR-4 or G-10
Material). For recommended footprint and soldering
techniques refer to application note # AN-994.
http://www.irf.com/technical-info/appnotes/an-994.pdf
R
is measured at TJ approximately 90°C.
This value determined from sample failure population,
starting TJ = 25°C, L= 0.015mH, RG = 50, IAS = 97A,
V
GS =10V.
Limited by TJmax, starting TJ = 25°C, L = 1mH
RG = 50, IAS = 18A, VGS =10V.
IRF40DM229
4 2016-3-2
Fig 6. Normalized On-Resistance vs. Temperature
Fig 5. Typical Transfer Characteristics
Fig 4. Typical Output Characteristics
Fig 3. Typical Output Characteristics
Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage
Fig 7. Typical Capacitance vs. Drain-to-Source Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 150°C
4.5V
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 97A
VGS = 10V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20 40 60 80 100 120 140
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 32V
VDS= 20V
VDS= 8.0V
ID= 97A
3456789
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 150°C
VDS = 10V
60µs PULSE WIDTH
IRF40DM229
5 2016-3-2
Fig 10. Maximum Safe Operating Area
Fig 11. Drain-to-Source Breakdown Voltage
Fig 9. Typical Source-Drain Diode Forward Voltage
Fig 13. Typical On-Resistance vs. Drain Current
Fig 12. Typical Coss Stored Energy
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Temperature ( °C )
39
41
43
45
47
49
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 1.0mA
-5 0 5 10 15 20 25 30 35 40 45
VDS, Drain-to-Source Voltage (V)
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Energy (µJ)
025 50 75 100 125 150 175 200
ID, Drain Current (A)
0
2
4
6
8
10
12
14
RDS(on), Drain-to -Source On Resistance (
m)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 150°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
DC
IRF40DM229
6 2016-3-2
Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 16. Maximum Avalanche Energy vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in Figures
23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 14, 15).
t
av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
Z
thJC(D, tav) = Transient thermal resistance, see Figures 13)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
I
av = 2T/ [1.3·BV·Zth]
E
AS (AR) = PD (ave)·tav
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z
thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
1000
Avalanche Current (A)
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming j = 25°C and
Tstart = 125°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 125°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
10
20
30
40
50
60
70
80
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 97A
Fig 15. Avalanche Current vs. Pulse Width
IRF40DM229
7 2016-3-2
Fig 17. Threshold Voltage vs. Temperature
Fig 21. Typical Stored Charge vs. dif/dt
Fig 18. Typical Recovery Current vs. dif/dt
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th), Gate threshold Voltage (V)
ID = 100µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
100 200 300 400 500 600 700
diF /dt (A/µs)
0
2
4
6
8
10
IRRM (A)
IF = 65A
VR = 34V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700
diF /dt (A/µs)
0
2
4
6
8
10
IRRM (A)
IF = 97A
VR = 34V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700
diF /dt (A/µs)
25
50
75
100
125
150
175
200
QRR (nC)
IF = 65A
VR = 34V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700
diF /dt (A/µs)
25
50
75
100
125
150
175
200
225
QRR (nC)
IF = 97A
VR = 34V
TJ = 25°C
TJ = 125°C
Fig 20. Typical Stored Charge vs. dif/dt
Fig 19. Typical Recovery Current vs. dif/dt
IRF40DM229
8 2016-3-2
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs
Fig 23a. Unclamped Inductive Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 25a. Gate Charge Test Circuit
tp
V
(BR)DSS
I
AS
Fig 23b. Unclamped Inductive Waveforms
Fig 24a. Switching Time Test Circuit Fig 24b. Switching Time Waveforms
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Fig 25b. Gate Charge Waveform
VDD
IRF40DM229
9 2016-3-2
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
DirectFET™ Board Footprint, MF Outline
(Medium Size Can, E-Designation)
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
G
DS
DD
D
S
S
IRF40DM229
10 2016-3-2
DirectFET™ Outline Dimension, MF Outline
(Medium Size Can, E-Designation)
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all
recommendations for stencil and substrate designs.
DirectFET™ Part Marking
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Dimensions are shown in
millimeters (inches)
CODE
A
B
C
D
E
F
G
H
J
L
0.017
0.085
0.156
0.044
0.018
0.024
MAX
0.250
0.38
2.035
3.85
1.08
0.35
0.58
MIN
6.25
4.80
0.42
2.165
3.95
1.12
0.45
0.62
MAX
6.35
5.05
0.015
0.080
0.152
0.043
0.023
0.014
MIN
0.189
0.246
METRIC IMPERIAL
DIMENSIONS
0.93 0.97
1.28 1.32
0.0380.037
0.0520.050
J1 0.0230.620.58 0.024
0.0330.9650.835 0.038K
0.199
M
P
0.028
0.007
0.59
0.08
0.70
0.17
0.023
0.003
N0.02 0.08 0.0008 0.003
PART NUMBER
BATCH NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
GATE MARKING
LOGO
IRF40DM229
11 2016-3-2
DirectFET™ Tape & Reel Dimension (Showing component orientation).
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
LOADED TAPE FEED DIRECTION
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
IMPERIAL
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
METRIC
DIMENSIONS
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. Ordered as IRF40DM229.
REEL DIMENSIONS
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
IMPERIAL
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
STANDARD OPTION (QTY 4800)
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
METRIC
IRF40DM229
12 2016-3-2
Published by
Infineon Technologies AG
81726 München, Germany
© Infineon Technologies AG 2015
All Rights Reserved.
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third
party.
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of
the product of Infineon Technologies in customer’s applications.
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of
customer’s technical departments to evaluate the suitability of the product for the intended application and the
completeness of the product information given in this document with respect to such application.
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest
Infineon Technologies office (www.infineon.com).
WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question
please contact your nearest Infineon Technologies office.
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Qualification Information
Qualification Level
Industrial *
(per JEDEC JESD47F†† guidelines)
Moisture Sensitivity Level DFET 1.5
MSL1
(per JEDEC J-STD-020D††)
RoHS Compliant Yes
† Qualification standards can be found at International Rectifier’s web site: http://www.irf.com/product-info/reliability
†† Applicable version of JEDEC standard at the time of product release.
* Industrial qualification standards except autoclave test conditions.