,’
,0
*,
‘“
.,
ZENER OVERVOLTAGE TRANSIENT SUPPRESSOR
Mosorb devices are designed to protect voltage sensitive compo-
nentsfrom high voltage, high energy transients. They have excellent
clamping capability, high surge capability, Iowzener impedance and
fast response time, These devices are Motorola’s exclusive, cost-
effective, highly reliable Surmetic axial leaded package and are
ideally-suited for use in communication systems, numerical con-
trols, process controls, medical equipment, business machines,
power supplies and many other industrial/consumer applications,
to protect CMOS, MOS and Bipolar integrated circuits.
SPECIFICATION FEATURES
OStandard Voltage Range 5,0 to 200 V
Peak Power 1500 Watts @1.0 ms <1$,’
$.!l,:t,,.t.>
OMaximum Clamp Voltage @Peak Pulse Current ~.,~,i,
**.
~*$>;$\
OLow Leakage< 5,0 PA above 10 V;*,:~*+)L“v:
,/,;: ‘..il:
OStandard Back to Back Versions Available ‘~w. L\;
~\~...:l,,?k..
i~w
‘.~.\&sN>,.+>X
~~),$:,,,.~,.
!~.j,
.,$+’
,,,,,~$;:
,:;:.><
..s,,~
9.... ,.
~..>,i*>JiFi.
,> ,
‘>,,\>,
.**’*i$!. \
~:$F.., .*V\,..,!7:\
MAXIMUM RATINGS *:~’:<i),\!.,?,,.i~~
!(~.\$,},e
.,,i$<,}i\,..
Rating *l’@
.,?;
~~{,’%ymbol Valua Units
Peak Power Dissipation (1) ~..\.\ ,~:i
,\~>~.,,.
-*\;,l?.$\:. ppK 1500 Watts
@TL G25°C !* ,,.
:*, y.,
Steady State Power Dissipation ,~>ii’t$.,<’w” pD Watts
@T L G75°C, Lead Length ‘k~,@~~,.,k;$ 5,0
Derated above TL =75~{< ‘q 50 mWl°C
~,.., ,$:!
,:$ ,’~::?,~~
Forward Surge Current, (@$:’J’~ IFSM 200 Amps
@7A =25°C >:a !.t:,$~
.,s,..‘\\<.
Operating and St@f~~~&kperature Range TJ, Tstg -65to +175 Oc
Lead Tempera$$~@~~)ess than 1/16“ from the case for 10 seconds: 230°C
,,,.:. *..,.
MEc&&&],~rL CHARACTERISTICS
.’J.,’:.~,~~;s:.\.J.ii,.
C,#S,&$$:~)d-free, transfer-molded, thermosetting plastic
~~~: AJI external surfaces are corrosion resistant and leads are readily solderable
*:.?i, and weldable
POLARITY: Cathode indicated by polarity band. When operated in zener mode,
will be positive with respect to anode
MOUNTING POSITION: Any
NOTES: 1, Nonrepetitive Current Pulse per Figure 4and Derated above
TA =25°C per Figure 2.
2, 1/2 Square Wave (or equivalent), PW =8,3 ms,
Duty Cycle =4Pulses per minute maximum.
,,rmati. i. ,,,s AG-., kA( RA-, -,-I. i“.
IN59Q8
lN6373/lcTE=5,c
MPTE-5C
thru
l-N6389/lCTE-45,-C
MPTE-45,.c
I
K’U
Lo
NOTE:
1. LEAD FINISH ANO DIA
UNCONTROLLEDIN
AREA “F’:
CASE41.11
)MOTOROM INC., 19a2 DS705
B*9--
,, ,.-.
I,.
ELECTRICAL CHARACTERISTICS (TA =25°C unless otherwise noted] VF# 3,5 Vmex, IF”’= 100A
Breekdown Clamping Voltage
Maximum Peak Pulse Peak Pulse
Voltage Mexlmum Reverse Maximum Reverse Voltage Current @Current @
VBR @IT Strrrrd.Off Voltage Revar6e Leakage @iRSMt= 120A lpplt= 30A lpp2t =G? ‘%:’
(volts) (mA) VRWMq** @VRWM (Clamping Voltage) Vcl v~${?ps;$
Davioe Min [Volta) iR (gA} VRSM [Volta) [Volts max) [vo~~~fi,
1N5908 6.0 1.0 6.0 300 ~
8.5 7.6 ,,:h;y:?$
........ ...
ELECTRICAL CHARACTERISTIC (TA= 25°C unlassotharwise notad)VF#=3.5Vmax, IF’*= 100 A) (Csuffix denotes standard @o~WbP~versions,
f? ,,$.,>,, .
,.,$$ . ..
,.>.:..)i, J, :2, ?
Maximum %p&}v01te9e
Maximum Maximum Reverse
Braakdown Reveraa Meximum Raverae Voltage ‘&~~ulse Peek Pulee
Voltage Stend-Off Reveraa 8urge @lR8Mt ,,i i@+@rht @
VBR @IT Current @
Voltage Leakage Current (Clampi~i>.+ ~p;~t =10 AIPP2;;; oA
JEDEC volts (mA] VRWM*** @VRWM lRSMt Volta~~~j ,,;<P Vcl
Device Davioe Min (Volta) IR [PA) (Amps) VRS~j*! ~[Volts max) (Volta max)
1N6373 lcTE-5/MPTE-5 6.0 1,0 5,0 300 160 $:*3T9.4~$ 7,1 7.5
-lcTE-5c/MPTE-5c 6.0 1.0 “5.0 300 160 3:.,<F;$$9%4
1N6374 6.1 8.3
lcTE-8/MPTE-8 9.4 1,0 6.0 25 100 .s”$:$>:> 15.0 11.3 11,5
1N6362 lcTE-8c/MPTE-8c 9.4 1.0 6,0 25 lgo$t,, j15.0 11,4 11,6
1N6375 lCTE-10/MPTE-10 11.7 1.0 10 2,0 4~~* ““ ?“ 16,7 13.7 14,1
1N6383 ICTE-1OC/MPTE-l OC 11,7 1.0 10 2.0 -9q,.
1N6376 16.7
~+?l,: 14,1 14,5
ICTE-12/MPTE-l 214,1 1,0 12 2.0 ~70
~i:,,,, 21.2 16.1 16.5
1N6364 ICTE-12C/MPTE-l 2C 14,1 1,0 12 2.o<~:a~~:tb ~~70 21.2 16,7 17,1
.,., *.,
1N6377 ICTE-15/MPTE-l 517.6 1.0 15 Z*Q>:;,,%;i 60 25.0 20.1 20.6
1N6385 ICTE-15C/MPTE-l 5C 17,6 1.0 15 t%~:$~ 60 25,0 20.8 21.4
1N6378 ICTE-18/MPTE-l 821.2 1.0 18 ‘,. 50 30.0 24,2 25,2
1N6386 ICTE-16C/MPTE-l 8C 21.2 1,0 18 ~i+ 2.0 50 30,0 24,8 25,5
,.\,.
1N6379 lcTE,22/MPTE-22 25.9 1,0 2~?;.k> 2,0 40 37.5 ‘“
1N6387 29,8 32.0
lcTE!22c/MPTE-22c 25.9 1,0 ~ ~ .4.
~’..?2,0 40 37.5 30,6 32.0
1N6380 ICTE-36<MPTE-26 42.4 1.0 .++::*i> 2.0 23 65.2 50.6
1,0 ,ij:,:. “%@ 54.3
1N6388 lCTE-36C/MPTE-36C
\42.4 2.0 23 65,2 50,6
,,. .,... ,. 54.3
1N6381 lcTE-45/M~TE-45 52.9 1,o~tp:, $:~‘3” ‘~-45 2.0 19 78.9 63,3 70.0
1N6389 lcTE-45c/MPTE-45c 52.9 q+;$:, ~45 2.0 19 78,9 63,3 70.0
.,1,. ~*:,:
.,?,,<,13\
....,.,,
,.?.!! ,*..
_\\,.:l.
,X! 3, Maximum
~?ps .,.x,.
~v*ik!5$$W.,.
,:,,- ..,, Reverse
:>},, :\$ Wortirrg Maximum Voltage
‘?.\,y,t,,?
}.,!!. .,,.+.,~,.
‘J’””~’>$*.
, , Peak Maximum Reveraa @IRSM Maximum
~,s
,,,
>+$ ,,$.;.
A, .: Breakdown Voltage Reverse Reverse Surge (Clamping Temperature
..?
,\.::‘~,:i) VgR @tT Voltage Leakage Current Voltage)
JEDEC Coefficient
\..t\,
,t~.?y$ .<;volts (mA) VRWM @VRWM lRSMt
Device VRSM
Qqv?& “%C”” Min Nom Max of VBR
(volts) IR [~A) (Amps) (volts) [%/”c)
.,!,.<+\\,
1N6267 ~w$$ 6.~:*’
“\ 6.12 6.8 7.48 10 5.50 1000 139 10,8
:s,l,,!tfg $~A 0,057
1N6267A 6.46 6.S 7,14 10 5,80 1000 143 10,5
1N6268 ~v$ *’~~~K~7.5 6.75 7.5 0.057
8,25 10 6.05 500 128 11,7 0,061
1N6268& J:BKE7,5A 7.13 7.5 7.68 10 6.40 500 132 11.3 0.061
,~@.f$ *$! .*S1,5KE82 7.38 6.2 9.02 10 6.63 200
jN8%$$&” 1.5KE8.2A 120 12,5 0.065
7,79 8.2 8.61 10 7.02 200 124
~y*?@ 12,1
1,5KE9.1 8.19 9.1 0.065
10.0 1.0 7,37 50 109 13.8
*,@6270A 0,068
1,5KE9.1 A8.66 9.1 9.55 1,0 7.78 50 112 13,4 0.066
1N6271 1,5KE1O 9.00 10 11 1.0 8.10 10 100 15,0
1N6271A 0,073
1.5KEIOA 9.60 10 10.5 1.0 8.55 10 103 14.5
1N6272 1.5KE11 9.90 11 12.1 0.073
1.0 8,92 5.0 93,0 16,2
1N6272A 1.5KE11A 10.5, 11 11.6 0,075
1,0 9.40 5.0 96,0 15.6 0.075
mMOTOROLA Semiconductor Products Inc.
.\ 7
,.
*B*--
*ELECTRICAL CHARACTERISTICS (Continued)
1N6301 1.5 KE170 153.0 170 187.0 1.0
1N6301A I,5KE170A 162.0 170 179.0 1.0
1N6302 .l.5KE180 162.0 180 198.0 1.0
1N6302A 1.5 KE180A 171.0 160 189.0 1.0
1N6303 1.5KE200 180.0 200 220.0 1.0
1N6303A 1.5KE200A 190.0 200 210,0 1.0
tSurge Current Waveform per Figure 4and Derate per Figura 2.
indicates JEDEC Registered Data.
Working
Peak
Reverse
Voltage
VRWM
(volts)
138.0
145.0
146.0
154.0
162.0
171.0
Maximum
Reverse
Leakage
@VRWM
iR (YA)
Meximum
Reverse
Surge
Current
iRSMt
(Amps)
6.2
6.4
5.8
6.1
5.2
5.5
Maximum
Reverse
Voltage
@lRSM
‘(Clamping
Voltage}
VRSM
(volts)
244.0
234.0
256,0
246.0
287,0
274,0 ,,,,
,,,, .*
‘~l.\)\,kY
,,.
‘t$,$ ..
**1 /2 Square Equivalent Sine Wave, PW =8.3 ms, Duty Cycle 4Pulses per Minute maximum. ,.?~:~,,g,::~,>
*** ATran~ient Suppressor isnormallyselected according tothe maximum reverse stand-off voltage (VRWM), which shoul,~~s<~~ua$to Orgreater than thedc
s,............
FIGURE 1 PULSE RATING CURVE
BV, BREAKDOWNVOLTAGE(VOLTSI
:Eve
TA, AMBIENTTEMPERATURE(°C]
,rsus BREAKDOWN VOLTAGE
1N6267, A/1.5 KE6.8, A
thru
1N6303, A/1.6 KE200, A
1~ 11 1 1 11IU
II II I
II I 11IIll I I III1111
0I I I 1111111
010 100 1000
BV, BREAKOOWNVOLTAGE (VOLTS)
MOTOROLA Sernjconductor Products Inc.
FIGURE 4 STEADY STATE POWER DERATING
TL, LEAOTEMPERATURE (oC)
*$:,,,,
1N6373, ICTE-5, C, MPTE-5, C..
~,j;~
thru ,,. ~
@\:
1N6389, ICTE-45, c, MPTE-45, c J .:/$,
J“M III
:10 II I I
N
65,0 Ai1
1.0
0.3,, 5.0 7.0 10 20 30
1N6267, A/1.5 KE6.8, A
thru
1N6303, A/l .5 KE200, A
AVz, INSTANTANEOUS INCREASE IN Vz ABOVE Vz(Nom} (VOLTS)
Motorola reserves the right to make changes to anv products herein to improve reliability, function or design. Motorola does not assume any Iiabilitvarising
out of the explication or use of anv product or circuit described herein; neither does it convev any license under its patent rights nor the rights of others,
@MO~OROLA Semiconductor Products Inc.
,-,
0
0
e
*ELECTRICAL CHARACTERISTICS (Continued)
JEDEC
Device
1N6273
1N6273A
1N6274
1N6274A
1N6275
1N6275A
1N6276
1N6276A
1N6277
1N6277A
1N6278
1N6278A
1N6279
1N6279A
1N6280
1N6280A
1N6281
1N6281A
1N6282
1N6282A
1N6283
1N6283A
1N6284
1N6284A
1N6285
1N6285A
1N6286
1N6286A
1N6287
1N6287A
1N6286
1N6266A
1N6289
1N6289A
1N6290
1N6290A
1N6291
1N6291A
1N6292
1N6292A
1N6293
1N6293A,,CJ
1N6294 y
1N6$&@:~,t
$*~,.<t
lN#&$~ -“-
~@$~*A
T~~296
1N6296A
1N6297
1N6297A
1N6298
1N6298A
1N6299
1N6299A
1N6300
1N6300A
Device
1.5KE12
1.5 KE12A
1.5KE13
12.4
1.5KE15
1.5 KE15A
1.5KE16
1.5 KE16A
1.5KE18
1.5 KE18A
1,5KE20
1,5KE20A
1,5KE22
1.5KE22A
1.5KE24
1.5KE24A
1.5KE27
1.5KE27A
1,5KE30
1.5KE30A
1,5KE33
1.5KE33A
1,5KE36
1.5KE36A
1,5KE39
1.5KE39A
1,5KE43
1,5KE43A
1,5KE47
1.5KE47A
1.5KE51
1.5KE51 A
1.5KE56
1.5KE56
1.5KE62
1.5KE62A
1.5KE68 .+$
1.5KE68A~;> $:{’
1.5KE74$,’’$N.{!
1.5.49$$.,
,:%;+
&$ K@B2A
1.$kE9 1
f.5KE91A
1.5 KE1OO
1.5 KE1OOA
1.5KE110
1.5 KE11OA
1.5 KE120
1.5 KE120A
1.5 KE130
1.5KE1 30A
1.5 KE150
1.5 KE150A
1.5 KE160
1.5 KE160A
Min
10,8
11.4
11,7
13
13,5
14.3
14,4
15,2
16,2
17,1
18,0
19,0
19,8
20,9
21,6
22,8
24.3
25.7
27.0
28.5
29.7
31.4
32.4
34.2
35.1
37.1
38.7
40.9
42.3
44.7
45.9
48.5
50.4
5&9$
,g,@@l,,
~~s”
\@T.2
64.6
67.5
71.3
73.8
77.9
81.9
86,5
90.0
95.0
99.0
105.0
108,0
114.0
117.0
124,0
135,0
143,0
144,0
152.0
Breakdown Voltage
VBR
volts
Nom
12
12
13
13.7
15
15
16
16
18
18
20
20
22
22
24
24
27
27
30
30
33
33
36
36
39
39
43
43
47
47, %$f
~;5l~$’:h
,P‘*$,3$
,.
,i,g
62
62
68
68
75
75
82
82
91
91
100
100
110
110
120
120
130
130
150
150
160
160
Max
13.2
12.6
14.3
1.0
16,5
15.8
17,6
16.8
19,8
18,9
22.0
21,0
24.2
23,1
26,4
25.2
29,7
28.4
33,0
31,5
36.3
34,7
39.6
37.8
42,9
41,0
~$.%t:
~g5,3 ?
,,,} .$\\.,
:,5V$F
$;$3.4
“56.1
53.6
61.6
58.8
68.2
65.1
74.6
71.4
82.5
78.8
90.2
86.1
100.0
95.50
110.0
105.0
121.0
116.0
132.0
126.0
143.0
137.0
165.0
158.0
176.0
168.0
@IT
(mA}
1.0
1.0
1.0
11.1
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1.0
1.0
~1.0 ,$
:+~.o
?’%
?1,0
1,0
1,0
1.0
1.0
1.0
1.0
1.0
1.0
1,0
1,0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
Worting
Peak
Reverse
Voltage
VRWM
(Volta)
9,72
10.2
10.5
5,0
12.1
12.8
12.9
13.6
14.5
15.3
16.2
17.1
17.8
18,8
19.4
20.5
21,8
23.1 #v
,,>,.,
24.9 ‘y
.$g,~,
“~.~, ‘:J
fi$:tb$g~
::*..\:#.2
‘~i+29.1
30.8
31.6
33.3
34.8
36.8
38.1
40.2
41,3
43.6
45.4
47.8
50.2
53.0
55.1
58.1
60.7
64.1
66.4
70.1
73.7
77.8
81.0
85.5
89.2
94.0
97,2
102.0
105.0
111,0
121,0
128,0
130,0
136.0
Leakege
@VRWM
IR (PA)
5.0
5.0
5.0
82.0
5.0
5.0
5.0
5.0
5,0
5.0
5.0
5.0
5.0 .*a
~,.?
5.0 ‘%~,,f<,
,$G:B%3+”;
,:? +~$,:j
:F~”5.0
‘“~~5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5.0
5,0
5.0
5,0
5.0
5,0
5.0
5.0
5.0
5,0
5.0
5.0
5,0
5.0
5.0
5.0
5.0
5.0
5.0
5,0
Maximum
Reve rse
Surga
lRSMt
{Amps}
87.0
90.0
79.0
18.2
68.0
71.0
64.0
67.0
56,~:its
q::,:
‘a T)+:p:
‘$:3
yggg,$
‘37,0
49.0
43,0
45,0
38,5
40,0
34.5
36.0
31,5
33.0
29,0
30,0
26,5
28.0
24,0
25,3
22.2
23.2
20.4
21.4
18.6
19.5
16.9
17.7
15.3
16.3
13.9
14.6
12.7
13.3
11.4
12.0
10.4
11.0
9.5
9.9
8.7
9.1
8.0
8.4
7.0
7.2
6.5
6.8
Maximum
Reverse
Voltage
@lRsM
(Clampling
Voltage)
VRSM
(volts)
17.3
16.7
19.0 ~
0.081 $‘$
.r.:!~$,,.
22.6\$”’
$~++ y$
$’Q,@
;: 22’%
M+ 26.5
25.2
29.1
27.7
31.9
30.6
34.7
33.2
39.1
37.5
43.5
41.4
47.7
45.7
52.0
49.9
56.4
53.9
61.9
59.3
67.8
64.8
73.5
70.1
80.5
77.0
89.0
85.0
98.0
92.0
108.0
103,0
118,0
113.0
131,0
125,0
144,0
137.0
158,0
152,0
173.0
165,0
187,0
179,0
215.0
207.0
230.0
219.0
Maximum
Temperature
Coaticient
Of VB R’i+>?,
(%(eq~lt~::
;$”;;+G,:.
~, ‘&&Q\$d
::$.061
~‘-,~:
*F
~+.. 0.064
0.064
0.086
0.086
0.088
0.088
0.090
0.090
0.092
0.092
0,094
0,094
0,096
0.096
0.097
0.097
0.098
0.098
0.099
0.099
0.100
0.100
0.101
0.101
0.101
0.101
0.102
0.102
0.103
0.103
0.104
0.104
0.104
0.104
0.105
0.105
0.105
0.105
0.106
0.106
0,106
0.106
0.107
0.107
0.107
0,107
0,107
0,107
0,106
0,108
0.108
0,108
MOTOROLA Semiconductor Products Inc.
,.
.,,
,’
,,
,,
.,
APPLICATION NOTES
SPECIAL DEVICES
Matched sets and back-to-back configurations for
bidirectional applications can be ordered upon special
request. Contact your nearest Motorola representative.
RESPONSE TIME
In most applications, the transient Suppressor device
is placed in parallel with the equipment or component
to be protected. In this situation, there is atime delay
associated with the capacitance of the device and an
overshoot condition associated with the inductance of
the, device and the inductance of the connection method.
The capacitive effect is of minor importance in the parallel
protection scheme because it only produces atime delay
in, the transition from the operating voltage to the clamp
voltage as shown in Figure A.
The inductive effects in the device are due to actual
turn-on time (time required for the device to go from zero
current to full current) and lead inductance. This induc-
tive effect produces an overshoot in the voltage across
the equipment or component being protected as s~own
in Figure B, Minimizing thi,k overshoot is very im~~~$nt
in the application, since the main purPose ~@:i~w~n9
atransient suppressor is to clamp voltage ~f~eg,$~hese
devices have excellent response time, ,,/~>~&~FYin the
~p-,,..
picosecond range and negligible ind~t%~c~. However,
external ‘inductive effects could prd~.w$~ unacceptable
overshoot. Proper circuit layoutV;~~~@m lead lengths
and placing the suppressor d~vlc&$$& close as possible
to the equipment or compw~hts to be protected will
...::>.:l :“:;$
mlnl mize this overshoot..<* {,~,.;$
Some input impedan$&~~~rese nted by Zin is essential
*:,,t
to prevent overstre~&l~~$~&protection device. This impe-
dance should beNas’R~tias possible, without restricting
the circuit ope~~~~~
.?,!.,W,...e
Vin (Transient)
n
Inductive Effects
1
t
FIGURE Bt