®
Technology
SiI 164
PanelLink Transmitter
Data Sheet
Document # SiI-DS-0021-E.doc
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E ii
Silicon Image, Inc.
SiI-DS-0021-E
June 2005
Application Information
To obtain the most updated Application Notes and other useful information for your design, please visit the Silicon
Image web site at www.siliconimage.com or contact your local Silicon Image sales office.
Copyright Notice
This manual is copyrighted by Silicon Image, Inc. Do not reproduce, transform to any other format, or
send/transmit any part of this documentation without the expressed written permission of Silicon Image, Inc.
T rademark Acknowledgment
Silicon Image, the Silicon Image logo, PanelLink® and the PanelLink® Digital logo are registered trademarks of
Silicon Image, Inc. TMDSTM is a trademark of Silicon Image, Inc. VESA®, FPDTM are trademarks of the Video
Electronics Standards Association. I2C is a trademark of Philips Semiconductor. All other trademarks are the
property of their respective holders.
Disclaimer
This document provides technical information for the user. Silicon Image, Inc. reserves the right to modify the
information in this document as necessary. The customer should make sure that they have the most recent data
sheet version. Silicon Image, Inc. holds no responsibility for any errors that may appear in this document.
Customers should take appropriate action to ensure their use of the products does not infringe upon any patents.
Silicon Image, Inc. respects valid patent rights of third parties and does not infringe upon or assist others to
infringe upon such rights.
All information cont ained herein is subject to change without notice.
Revision History
Revision Date Comment
SiI-DS-0021-A 01/99 Full Release
SiI-DS-0021-B 03/99 Internal Revision B release
SiI-DS-0021-C 04/02 New format. I2C programming and strapping mode
description,TFT mapping and Design Recommendations,
pin names ISEL/RST changed to ISEL/RST# and PD to
PD#.
SiI-DS-0021-D 09/02 Included Pb-free package. Added De-skew range.
Corrected PD# pin number.
SiI-DS-0021-E 06/05 Corrected D1 dimension. Corrected JEDEC code.
Included VCC details for power measurement. Added
Register Reset values and additional sample programming
code.
© 2005 Silicon Image, Inc.
SiI 164 PanelLink Transmitter
Data Sheet
iii SiI-DS-0021-E
TABLE OF CONTENTS
General Description........................................................................................................................................ 1
Features ...................................................................................................................................................... 1
SiI 164 Pin Diagram ....................................................................................................................................... 1
Functional Description .................................................................................................................................... 2
PanelLink TMDS Digital Core ..................................................................................................................... 2
I2C Interface and Registers......................................................................................................................... 2
Data Capture Logic ..................................................................................................................................... 3
Electrical Specifications .................................................................................................................................. 4
Absolute Maximum Conditions ................................................................................................................... 4
Normal Operating Conditions ..................................................................................................................... 4
Digital I/O Specifications ............................................................................................................................. 4
DC Specifications........................................................................................................................................ 5
AC Specifications ........................................................................................................................................ 6
Input Timing Diagrams ................................................................................................................................ 7
Pin Descriptions.............................................................................................................................................. 9
Input Pins .................................................................................................................................................... 9
Configuration Pins..................................................................................................................................... 10
Input Voltage Reference Pin ..................................................................................................................... 11
Power Management Pins.......................................................................................................................... 11
Differential Signal Data Pins ..................................................................................................................... 11
Reserved Pins........................................................................................................................................... 11
Power and Ground Pins............................................................................................................................ 11
I2C Registers................................................................................................................................................. 12
I2C Register Mapping................................................................................................................................ 12
I2C Register Definitions............................................................................................................................. 13
I2C Slave Interface and Address ............................................................................................................... 15
Data De-skew Feature .............................................................................................................................. 16
Data Latching Modes ................................................................................................................................ 17
I2C Programming Sequence ..................................................................................................................... 18
Enabling Hot Plug Detection Mode........................................................................................................... 18
Non-I2C/Strap Mode Configuration ........................................................................................................... 19
TFT Panel Data Mapping.............................................................................................................................. 21
Design Recommendations ........................................................................................................................... 24
1.5V to 3.3V I2C Bus Level-Shifting .......................................................................................................... 24
Voltage Ripple Regulation......................................................................................................................... 25
Decoupling Capacitors.............................................................................................................................. 26
Series Damping Resistors on Outputs...................................................................................................... 27
Differential Trace Routing ......................................................................................................................... 27
Package Dimensions and Marking Specification ......................................................................................... 29
Ordering Information..................................................................................................................................... 29
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E iv
LIST OF TABLES
Table 1. Data De-Skew Estimated Values.................................................................................................... 16
Table 2. Sample Programming Sequence for SiI 164 in 12-bit Mode .......................................................... 18
Table 3. Non-I2C/Strap Mode Options .......................................................................................................... 20
Table 4. One Pixel/Clock Input/Output TFT Mode - VESA P&D and FPDI-2 Compliant.............................. 21
Table 5. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode................................ 22
Table 6. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode................................ 23
Table 7. Recommended Components for Bypass and Decoupling Circuits................................................. 26
LIST OF FIGURES
Figure 1. Pin Diagram for SiI 164 ................................................................................................................... 1
Figure 2. Functional Block Diagram ............................................................................................................... 2
Figure 3. Clock Cycle High/Low Times........................................................................................................... 7
Figure 4. Low Swing Differential Times .......................................................................................................... 7
Figure 5. ISEL/RST# Minimum Timing ........................................................................................................... 7
Figure 6. Input Data Setup/Hold Time to IDCK .............................................................................................. 8
Figure 7. VSYNC, HSYNC and CTL[3:1] Delay Time from DE ...................................................................... 8
Figure 8. DE High and Low Times.................................................................................................................. 8
Figure 9. I2C Data Valid Delay (driving Read Cycle data) .............................................................................. 8
Figure 10. I2C Byte Read.............................................................................................................................. 15
Figure 11. I2C Byte Write .............................................................................................................................. 15
Figure 12. SiI 164 Data De-skew Feature Timing ........................................................................................ 16
Figure 13. 12-bit Input Data Latching ........................................................................................................... 17
Figure 14. 24-bit Input Data Latching ........................................................................................................... 17
Figure 15. Non- I2C/Strap Mode Schematic Example .................................................................................. 19
Figure 16. I2C Bus Voltage Level-Shifting using Fairchild NDC7002N ........................................................ 24
Figure 17. I2C Bus Voltage Level Shifting using Philips GTL 2010 .............................................................. 24
Figure 18. Voltage Regulation using TL431 ................................................................................................. 25
Figure 19. Voltage Regulation using LM317 ................................................................................................ 25
Figure 20. Decoupling and Bypass Capacitor Placement............................................................................26
Figure 21. Decoupling and Bypass Schematic............................................................................................. 26
Figure 22. Series Input Damping Resistors for Driving Source ................................................................... 27
Figure 23. Example of Incorrect Differential Signal Routing ........................................................................ 27
Figure 24. Example of Correct Differential Signal Routing........................................................................... 28
Figure 25. Differential Trace Routing to DVI Connector(Top Side View) ..................................................... 28
Figure 26. 64-pin TQFP Package Dimensions (JEDEC code MS-026ACD) ............................................... 29
SiI 164 PanelLink Transmitter September 2002
Data Sheet
1 SiI-DS-0021-E
General Description
The SiI 164 transmitter uses PanelLink® Digital
technology to support displays ranging from VGA to
UXGA resolutions (25 - 165Mpps) in a single link
interface.
The SiI 164 transmitter has a highly flexible interface
with either a 12-bit mode (½ pixel per clock edge) or
24-bit mode 1 pixel per clock edge input for true color
(16.7 million) support. In 24-bit mode, the SiI 164
supports single or dual edge clocking. In 12-bit mode,
the SiI164 supports dual edge single clocking or
single edge dual clocking. The SiI 164 can be
programmed though an I2C interface. In addition the
SiI 164 also supports Receiver and Hot Plug
Detection.
PanelLink Digital technology simplifies PC design by
resolving many of the system level issues associated
with high-speed mixed signal design, providing the
system designer with a digital interface solution that
is quicker to market and lower in cost.
Features
Scaleable Bandwidth: 25 - 165MHz Flexible
Graphics Controller Interface: 12-bit or 24-bit
mode 1 pixel/clock inputs
Flexible Input Clocking: Single clock single
edge (24-bit), Single clock dual edge (12-/24-
bit), Dual clock single edge (12-bit)
I2C Slave Programming Interface up to 100kHz
Low Voltage Interface: 3.3V with option for 1.0
to 3.0V Low Voltage Signal Mode
Monitor Detection supported through hot plug
and receiver detection
De-skewing Option varies input clock to input
data timing
Low Power: 3.3V operation (120mA max.) and
Power Down mode (1mA max.)
Cable Distance Support: over 5m with twisted
pair and fiber-optics ready
Compliant with DVI 1.0 (DVI is backwards
compliant with VESA® P&DTM and DFP)
Standard and Pb-free packages (see pg 29)
SiI 164 Pin Diagram
VCC
DE
VREF
HSYNC
VSYNC
CTL3/A3/DK3
CTL2/A2/DK2
CTL1/A1/DK1
EDGE/HTPLG
PD#
MSEN
VCC
ISEL/RST#
DSEL/SDA
BSEL/SCL
GND
PGND
PVCC1
EXT_SWING
AGND
TXC-
TXC+
AVCC
TX0-
TX0+
AGND
TX1-
TX1+
AVCC
TX2-
TX2+
VCC
RESERVED
DKEN
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
GND
PVCC2
D11
D10
D9
D8
D7
D6
IDCK-
IDCK+
D5
D4
D3
D2
D1
D0
GND
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
SiI
164
64-Pin TQFP
(Top View)
AGND
Figure 1. Pin Diagram for SiI 164
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 2
Functional Description
The SiI 164 is a DVI 1.0 compliant PanelLink transmitter in a compact package. It provides 24-bit data Input to
allow for panel support up to UXGA resolution. Figure 2 shows the functional blocks of the chip.
Registers
&
Configuration
Logic Block
SCL
SDA
PD
EDGE/HTPLG
BSEL/SCL
DSEL/SDA
CTL/A/DK[3:1]
I
2
C
Slave
Machine
Data Capture
Logic Block
D[23:0]
IDCK+
IDCK-
VSYNC
HSYNC
TXC+
TX0+
TX1+
TX2+
VREF
DE
MSEN
PanelLink
Digital
core
ISEL/RST
EXT_SWIN
G
DKEN
A[3:1]
Figure 2. Functional Block Diagram
PanelLink TMDS Digital Core
The PanelLink TMDS core encodes video information onto three TMDS differential data lines and the differential
clock. The video data is input by the Data Capture Logic Block, as a 12- or 24-bit bus, using one or two clocks
with one or two edges per clock. An attached monitor may be sensed using the HTPLG pin or internally with
Receiver Sense. This detected state may be output onto the MSEN pin. The device may be powered down using
the PD# pin or with an internal register. The SiI 164 is reset using the ISEL/RST# pin. A resistor tied to the
EXT_SWING pin is used to control the TMDS swing amplitude.
I2C Interface and Registers
The SiI 164 uses a slave I2C interface, capable of running at 100kHz. The slave I2C interface is not 5V tolerant. If
the switching levels from the host are not 3.3V, then a voltage level shifter must be used. See Figure 16 and
Figure 17 on page 24 for a system diagram.
A connected display may be detected using the DVI Hot Plug signal, attached to the HTPLG pin; or with the
Receiver Sense logic internal to the SiI 164. The state of the detection, or an interrupt signal indicating a change
of state, may be sent to the MSEN pin. This is useful to the host controller monitoring the SiI 164.
SiI 164 PanelLink Transmitter
Data Sheet
3 SiI-DS-0021-E
Data Capture Logic
Video data is input to the SiI 164 by way of a 12-bit or 24-bit interface. The functionality of this interface is affected
by several of the configuration register settings, as follows.
BSEL selects between 12-bit and 24-bit input bus widths.
DSEL selects between single-edge and dual-edge modes for the input clocks.
EDGE selects between rising and falling edge on the input clocks.
CLK+ and CLK- provide the one or two clocks required for latching the input data bus.
The PD# input selects the chip power down mode and allows for disabling of the TMDS outputs.
The ISEL/RST# input resets the HDCP engine and internal registers and is asserted after power up and receipt of
a stable input pixel clock.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 4
Electrical Specifications
Absolute Maximum Conditions
Absolute Maximum Conditions are defined as the worst-case conditions the part will tolerate without sustaining
damage. Permanent device damage may occur if absolute maximum conditions are exceeded. Proper operation
under these conditions is not guaranteed. Functional operation should be restricted to the conditions described
under Normal Operating Conditions.
Symbol Parameter Min Typ Max Units
VCC Supply Voltage 3.3V -0.3 4.0 V
VI Input Voltage -0.3 VCC+ 0.3 V
VO Output Voltage -0.3 VCC+ 0.3 V
TJ Junction Temperature (with power applied) 125 °C
TSTG Storage Temperature -65 150 °C
Normal Operating Conditions
Symbol Parameter Min Typ Max Units
VCC Supply Voltage 3.0 3.3 3.6 V
VCCN Supply Voltage Noise 100 mVP-P
TA Ambient Temperature (with power applied) 0 25 70 °C
θJA Thermal Resistance (Junction to Ambient)1 64
°C/W
θJC Thermal Resistance (Junction to Case)1 20
°C/W
Note
1. Airflow at 0m/s.
Digital I/O Specifications
Under normal operating conditions unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
VIH High Swing High-level Input
Voltage
VREF = VCC 2.0 V
VIL High Swing Low-level Input
Voltage
VREF = VCC 0.8 V
VDDQ
2 Low Swing Voltage 1 3.0 V
VSH Low Swing High-level Input
Voltage
VREF = VDDQ/2 VDDQ/2 +
300mV
V
VSL Low Swing Low-level Input
Voltage
VREF = VDDQ/2 VDDQ/2 –
100mV
V
VCINL Input Clamp Voltage1 I
CL = -18mA GND -0.8 V
VCIPL Input Clamp Voltage1 I
CL = 18mA VCC + 0.8 V
IIL Input Leakage Current -10 10 µA
VIH High Swing High-level Input
Voltage
VREF = VCC 2.0 V
Notes
1. Guaranteed by design. Voltage undershoot or overshoot cannot exceed absolute maximum conditions
2. VDDQ defines the maximum voltage level of Low Swing input. It is not an actual input voltage. Chip characterization for
Low Swing operation is performed at 1.5V only. Voltage level of Low Swing input should never exceed absolute
maximum rating.
SiI 164 PanelLink Transmitter
Data Sheet
5 SiI-DS-0021-E
DC Specifications
Under normal operating conditions unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units
VOD Differential Voltage Single ended
peak to peak amplitude
RLOAD = 50, REXT_SWING = 510 510 550 590 mV
VDOH Differential High-level Output AVCC V
Voltage1
IDOS Differential Output Short Circuit
Current1
VOUT = 0 V 5 µA
IPD# Power-down Current2 0.2 1.0 mA
ICCT Transmitter Supply Current IDCK= 165 MHz, 1-pixel/clock
mode, REXT_SWING = 510,
Worst Case Pattern3
854 1205 mA
Notes
1. Guaranteed by design.
2. Assumes all inputs to the transmitter are not toggling.
3. Black and white checkerboard pattern, each checker is one pixel wide.
4. Measurement taken at VCC = 3.30V.
5. Measurement taken at VCC = 3.60V.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 6
AC Specifications
Under normal operating conditions unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Units Figure
TCIP IDCK Period, 1-pixel/clock 6 40 ns Figure 3
FCIP IDCK Frequency, 1-pixel/clock 25 165 MHz
TCIH IDCK High Time at 165MHz 2.0 ns Figure 3
TCIL IDCK Low Time at 165MHz 2.0 ns Figure 3
TIJIT Worst Case IDCK Clock Jitter2,3 2 ns
TSIDF Data, DE, VSYNC, HSYNC
Setup Time to IDCK falling edge
(Default De-skew Setting)
Single Edge
(DSEL = 0,
EDGE = 0)
1.0 ns
Figure 6
THIDF Data, DE, VSYNC, HSYNC
Hold Time from IDCK falling edge
(Default De-skew Setting)
Single Edge
(DSEL = 0,
EDGE = 0)
0.9 ns
Figure 6
TSIDR Data, DE, VSYNC, HSYNC
Setup Time to IDCK rising edge1
(Default De-skew Setting)
Single Edge
(DSEL = 0,
EDGE = 1)
1.0 ns
Figure 6
THIDR Data, DE, VSYNC, HSYNC
Hold Time from IDCK rising edge1
(Default De-skew Setting)
Single Edge
(DSEL = 0,
EDGE = 1)
0.9 ns
Figure 6
TSID Data, DE, VSYNC, HSYNC
Setup Time to IDCK falling/rising edge1
(Default De-skew Setting)
Dual Edge
(DSEL = 1,
BSEL = 0)
0.6 ns
THID Data, DE, VSYNC, HSYNC
Hold Time from IDCK falling/rising edge1
(Default De-skew Setting)
Dual Edge
(DSEL = 1,
BSEL = 0)
1.3 ns
TDDF VSYNC, HSYNC Delay from DE falling
edge1
1TCIP ns
Figure 7
TDDR VSYNC, HSYNC Delay to DE rising edge1 1TCIP ns
Figure 7
THDE DE high time1 8191TCIP ns Figure 8
TLDE DE low time1 128TCIP ns Figure 8
TSTEP De-skew step size increment DKEN = 0b1 260 ps
TRESET Duration of RESET signal Low required for
valid Reset
10 µs
Figure 5
CL = 10pf 700 ns TI2CDVD SDA Data Valid Delay from SCL high
to low transition3 CL = 400pf 2000 ns
Figure 9
SHLT Differential Swing High-to-Low Transition
Time
RLOAD = 50,
REXT_SWING =
510
170 200 230 ps Figure 4
SLHT Differential Swing Low-to-High Transition
Time
RLOAD = 50,
REXT_SWING =
510
170 200 230 ps Figure 4
Notes
1. Guaranteed by design.
2. Actual jitter tolerance may be higher depending on the frequency of the jitter.
3. All Standard mode I2C (100kHz) timing requirements are guaranteed by design. Fast mode I2C (400kHz) timing
requirements are guaranteed at 10pf loading.
SiI 164 PanelLink Transmitter
Data Sheet
7 SiI-DS-0021-E
Input Timing Diagrams
T
CIH
T
CIL
T
CIP
2.0 V
0.8 V
0.8 V
2.0 V 2.0 V
Figure 3. Clock Cycle High/Low Times
Figure 4. Low Swing Differential Times
ISEL/RST#
VCC
T
RESET
Figure 5. ISEL/RST# Minimum Timing
S
LHT
20% V
OD
80% V
OD
S
HLT
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 8
Figure 6. Input Data Setup/Hold Time to IDCK
Figure 7. VSYNC, HSYNC and CTL[3:1] Delay Time from DE
DE
T
LDE
T
HDE
0.8 V
2.0 V
0.8 V
2.0 V
Figure 8. DE High and Low Times
Figure 9. I2C Data Valid Delay (driving Read Cycle data)
D[23:0], DE,
HSYNC,VSYNC
IDCK
T
SIDF
T
HIDF
T
SIDR
T
HIDR
50 %
50 % 50 %
50 %
T
DDR
T
DDF
DE
VSYNC, HSYNC,
CTL[3:1]
0.8 V
0.8 V 0.8 V
0.8 V
DE
VSYNC, HSYNC,
CTL[3:1]
SCL
TI2
I2CDVD
SDA
SiI 164 PanelLink Transmitter
Data Sheet
9 SiI-DS-0021-E
Pin Descriptions
Input Pins
Pin Name Pin # Type Description
D[23:12]
36-47 In
Top half of 24-bit pixel bus.
When BSEL = HIGH,
this bus inputs the top half of the 24-bit pixel bus.
When BSEL = LOW,
these bits are not used to input pixel data. In this mode, the state of D[23:16] is input to the
I2C register CFG. This allows 8-bits of user configuration data to be read by the graphics
controller through the I2C interface (see I2C register definition). When not used D[23:16]
should be tied to ground. D[15:12] are reserved for SiI use only and should be tied to GND.
D[11:0] 50-
55,
58-63
In
Bottom half of 24-bit pixel bus / 12-bit pixel bus input.
When BSEL = HIGH,
this bus inputs the bottom half of the 24-bit pixel bus.
When BSEL = LOW,
this bus inputs ½ a pixel (12-bits) at every latch edge (both falling and/or rising) of the clock.
IDCK+ 57 In
Input Data Clock +. This clock is used for all input modes.
IDCK- 56 In
Input Data Clock –. This clock is only used in 12-bit mode when dual edge clocking is turned
off (DSEL = LOW). It is used to provide the ODD latching edges for dual clock single edge.
If BSEL = HIGH or DSEL = HIGH,
this pin is unused and should be tied to GND.
DE 2 In
Input Data Enable. This signal qualifies the active data area. DE is always required by the
transmitter and must be high during active display time and low during blanking time.
HSYNC 4 In
Horizontal Sync input control Signal
VSYNC 5 In
Vertical Sync input control signal.
CTL1/A1/DK1
CTL2/A2/DK2
CTL3/A3/DK3
8
7
6
In The use of these multi-function inputs depends on the settings of ISEL/RST# and DKEN.
These inputs are regular high-swing 3.3V CMOS level inputs. These pins contain weak pull-
down resistors so that if left unconnected, they will be LOW.
When ISEL/RST# = LOW, DKEN = LOW
General Purpose Input CTL[3:1] pins are active, for backward compatibility. These pins must
be used to send DC signals only during the blanking time.
When ISEL/RST# = LOW, DKEN = HIGH
DK[3:1] are active, these inputs are used to select the De-skewing setting for the input bus.
When ISEL/RST# = HIGH, DKEN = HIGH
A[3:1] are active, these bits are used to set the lower 3 bits of the I2C device address.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 10
Pin Descriptions (cont’d)
Configuration Pins
Pin Name Pin # Type Description
MSEN 11 Out
Monitor Sense. This pin is an open collector output. The behavior of this output depends on
whether I2C interface active:
I2C bus inactive (ISEL/RST# = LOW)
HIGH level indicates a powered on receiver is detected at the differential outputs.
A LOW level indicates a powered on receiver is not detected.
I2C bus is enabled (ISEL/RST# = HIGH)
The output is programmable through the I2C interface (see I2C Register Definitions).
An external 5K pull-up resistor to VDDQ is required on this pin.
ISEL/RST# 13 In I2C Interface Select.
ISEL/RST#=HIGH,
I2C interface is active.
ISEL/RST#=LOW,
I2C is inactive and the chip configuration is read from the configuration strapping pins. This pin
also acts as an asynchronous reset to the I2C interface controller. The reset is active when this
input is held LOW.
Note: When the I2C interface is active, DKEN must be set HIGH.
BSEL/SCL 15 In Input bus select / I2C clock. This pin is an open collector input. If I2C bus is enabled
(ISEL/RST# = HIGH), then this pin is the I2C clock input. If the I2C is disabled (ISEL/RST# =
LOW), then this pin selects the input bus width.
Input Bus Select:
HIGH selects 24-bit input mode
LOW selects 12-bit input mode
DSEL/SDA 14 In/Out
Dual edge clock select / I2C Data. This pin is an open collector input/output. If I2C bus is
enabled (ISEL/RST# = HIGH), then this pin is the I2C data line. If the I2C bus is disabled
(ISEL/RST# = LOW), then this pin selects whether single clock dual edge is used.
Dual Edge clock select:
When HIGH, IDCK+ latches input data on both falling and rising clock edges.
When LOW, IDCK+/IDCK- latches input data on only falling or rising clock edges.
In 24-/12-bit mode:
If HIGH (dual edge), IDCK+ is used to latch data on both falling and rising edges.
If LOW (single edge), IDCK+ latches 1st half data and IDCK- latches 2nd half data.
EDGE/
HTPLG
9 In
Edge select / Hot Plug input. If the I2C bus is enabled (ISEL/RST# = HIGH), then this pin is
used to monitor the “Hot Plug” detect signal (Please refer to the DVITM or VESA® P&DTM and
DFP standards). This Input is ONLY 3.3V tolerant and has no internal de-bouncer circuit.
If I2C bus is disabled (ISEL/RST# = LOW), then this pin selects the clock edge that will latch
the data. How the EDGE setting works depends on whether dual or single edge latching is
selected:
Dual Edge Mode (DSEL = HIGH)
EDGE = LOW, the primary edge (first latch edge after DE is asserted) is the falling edge.
EDGE = HIGH, the primary edge (first latch edge after DE is asserted) is the rising edge.
Note: In 24-bit Single Clock Dual Edge mode, EDGE is ignored.
Single Edge Mode (DSEL = LOW)
EDGE = LOW, the falling edge of the clock is used to latch data.
EDGE = HIGH, the rising edge of the clock is used to latch data.
DKEN 35 In
De-skewing enable.
I2C mode (ISEL/RST# = HIGH)
DKEN pin must be set to HIGH. DK[3:1] pins are ignored and the De-skewing increments are
selected through the I2C interface (see the I2C register definitions).
Non I2C mode (ISEL/RST# = LOW)
DKEN = LOW, then default De-skewing setting is used.
DKEN = HIGH, then DK[3:1] is used as the De-skewing setting. The De-skewing increments
are TSTEP. Please see Data De-skew Feature for an illustration.
SiI 164 PanelLink Transmitter
Data Sheet
11 SiI-DS-0021-E
Pin Descriptions (cont’d)
Input Voltage Reference Pin
Pin Name Pin # Type Description
VREF 3 Analog In Input Reference Voltage. Selects the Swing range of the digital inputs, which include only
D[23:0], IDCK+, IDCK-, DE, VSYNC, and HSYNC. Input pins SCL and SDA, RST, BSEL,
DSEL, EDGE and PD# require 3.3V high swing signals and are not changed by the VREF
input.
To set the digital inputs to 3.3V High Voltage Swing, VREF must be set to 3.3V.
To set the digital inputs to Low Voltage Swing, VREF must be set to ½ of VDDQ where
VDDQ is swing level of input signal. Thus for DVO mode (1.5V Low Voltage Swing) VREF
should be set to 0.75V and BSEL=LOW.
Power Management Pins
Pin Name Pin # Type Description
PD# 10 In
Power Down (active LOW). A HIGH level indicates normal operation. A LOW level indicates
Power Down mode. In Power Down mode the Analog core is disabled and Output
buffers/pins are tri-stated however the Input buffer/pins and I2C Block for read and write are
active. PD# pin is disabled during I2C mode. PD# should be tied low during I2C mode.
Differential Signal Data Pins
Pin Name Pin # Type Description
TX0+
TX0-
TX1+
TX1-
TX2+
TX2-
25
24
28
27
31
30
Analog
Analog
Analog
Analog
Analog
Analog
TMDS Low Voltage Differential Signal input data pairs.
These pins are tri-stated when PD# is pulled low.
TXC+
TXC-
22
21
Analog
Analog
TMDS Low Voltage Differential Signal input clock pair.
These pins are tri-stated when PD# is pulled low.
EXT_SWING 19 Analog Voltage Swing Adjust. A resistor should tie this pin to AVCC. This resistor sets the
amplitude of the voltage swing. A smaller resistor value sets a larger voltage swing and
vice versa. For remote display applications a 510 with + 5% (max) tolerance resistor is
recommended. While for notebook computers 680 is recommended to ensure voltage
swing is not overdriven over a short cable distance.
Reserved Pins
Pin Name Pin # Type Description
RESERVED 34 In
Must be tied LOW for normal operation.
Power and Ground Pins
Pin Name Pin # Type Description
VCC 1,12,33 Power Digital VCC, must be set to 3.3V nominal.
GND 16,48,64 Ground Digital GND.
AVCC 23,29 Power Analog VCC, must be set to 3.3V nominal.
AGND 20,26,32 Ground Analog GND.
PVCC1 18 Power Primary PLL Analog VCC, must be set to 3.3V nominal.
PVCC2 49 Power Filter PLL Analog VCC, must be set to 3.3V nominal.
PGND 17 Ground PLL Analog GND.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 12
I2C Registers
I2C Register Mapping
Addr Reset
Value Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0x00 0x01 VND_IDL
0x01 0x00 VND_IDH
0x02 0x06 DEV_IDL
0x03 0x00 DEV_IDH
0x04 0x00 DEV_REV
0x05 0x00 RSVD
0x06 0x19 FRQ_LOW
0x07 0x64 FRQ_HIGH
0x08 00●●●●
0
RSVD VEN HEN DSEL BSEL EDGE PD#
0x09 000
0●●0 RSVD MSEL TSEL RSEN HTPLG MDI
0x0A 0x90 DK[3:1] DKEN CTL[3:1] RSVD
0x0B ●●●●
●●●● CFG[7:0]
0x0C ●●●0
●●●● SCNT RSVD PLLF[3:0] PFEN
0x0D 0x80 RSVD
0x0E 0x00 RSVD
0x0F 0x00 RSVD
Notes
1. All values are Bit 7 [MSB] and Bit 0 [LSB].
2. Bits and registers bold like this are read only. All others are Read/Write.
3. Bits and registers in italics and bold like this are undefined after RESET, although they are accessible by read or write.
4. RSVD is a reserved register or bit field. It is available for future use by Silicon Image. All RSVD fields are read-only and
are not affected by data written to them.
5. 0x0C is also called the VDJK Register. Default setting for the VDJK register 0x0C is 0x89, which is optimum for most
applications.
I2C Reset values are shown in the column at the left of the table. Bits or registers which have no default value
after power-on, or which have no defined value after RESET, are shown with the symbol in the table. All
registers Hexadecimal values use a prefix of ‘0x’. Binary values use a prefix of ‘0b’. To enable the device,
registers 0x08, 0x09, 0x0A and 0x0C must be programmed. A sample programming sequence is listed on page
18 for 12-bit mode.
SiI 164 PanelLink Transmitter
Data Sheet
13 SiI-DS-0021-E
I2C Register Definitions
Register Name Access Description
VND_IDL RO Vendor ID Low byte (01h)
VND_IDH RO Vendor ID High byte (00h)
DEV_IDL RO Device ID Low byte (06h)
DEV_IDH RO Device ID High byte (00h)
DEV_REV RO Device Revision (00h)
FRQ_LOW RO Low frequency limit at 1-pixel/clock mode (MHz) (19h)
FRQ_HIGH RO High frequency limit at 1-pixel/clock mode Max frequency minus 65MHz (MHz) (64h)
PD RW Power Down mode (same function as PD# pin)
0 – Power Down (Default after RESET)
1 – Normal operation
EDGE RW Edge Select (same function as EDGE pin)
0 – Input data is falling edge latched (falling edge latched first in dual edge
mode)
1 – Input data is rising edge latched (rising edge latched first in dual edge
mode)
BSEL RW Input Bus Select (same function as BSEL pin)
0 – Input data bus is 12-bits wide
1 – Input data bus is 24-bits wide
DSEL RW Dual Edge Clock Select (same function as DSEL pin)
0 – Input data is single edge latched
1 – Input data is dual edge latched
HEN RW Horizontal Sync Enable:
0 – HSYNC input is transmitted as fixed LOW
1 – HSYNC input is transmitted as is
VEN RW Vertical Sync Enable:
0 – VSYNC input is transmitted as fixed LOW
1 – VSYNC input is transmitted as is
MDI RW Monitor Detect Interrupt
0 – Detection signal has changed logic level (write one to this bit to clear)
1 – Detection signal has not changed state
HTPLG RO Hot Plug Detect input, the state of HTPLG pin can be read from this bit
RSEN RO Receiver Sense (only available for use in DC coupled systems)
0 – Active/Powered Receiver not detected
1 – Active/Powered Receiver detected
TSEL RW Interrupt Generation Method
0 – Interrupt bit (MDI) is generated by monitoring RSEN
1 – Interrupt bit (MDI) is generated by monitoring HTPLG
MSEL[2:0] RW Select source of the MSEN output pin
000 – Force MSEN outputs high (disabled – default after RESET)
001 – Outputs the MDI bit (interrupt)
010 – Output the RSEN bit (receiver sense detect)
011 – Outputs the HTPLG bit (hotplug detect)
1xx – RESERVED
VLOW RO VREF setting
1 – Indicates High Swing Input Mode
0 – Indicates Low Swing Input Mode
CTL[3:1] RW General purpose inputs (same as CTL[3:1] pins). These bits are only transmitted
during blanking period.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 14
I2C Register Definitions (cont’d)
Register Name Access Description
CFG[7:0] RO Contains state of inputs D[23:16]. These pins can be used to provide user selectable
configuration data through the I2C bus. Only available in 12-bit mode
PFEN RW PLL Filter Enable in the VDJK Register 0x0C.
1 – To enable PLL Filter (recommended setting)
0 – To disable PLL Filter
PLLF[3:1] RW Set characteristics of PLL filter in VDJK Register 0x0C.
100 – Recommended value
All other values are not recommended.
SCNT RW SYNC Continuous
1 – To enable (recommended setting)
0 – To disable
DK[3:1] RW De-skewing Setting. Increment 260psec.
000 – 1 step -> minimum setup / maximum hold
001 – 2 step
010 – 3 step
011 – 4 step
100 – 5 step -> default (recommended setting)
101 – 6 step
110 – 7 step
111 – 8 step -> maximum setup / minimum hold
Please see Data De-Skew Feature for an illustration
DKEN RW De-skewing Enable through DK[3:1] bits. When DKEN pin is HIGH via pin or set to 1,
then De-skew is enabled. When set to 0 De-skew is disabled. Please see Data De-
skew Feature on page 16 for an illustration.
SiI 164 PanelLink Transmitter
Data Sheet
15 SiI-DS-0021-E
I2C Slave Interface and Address
The SiI 164 slave state machine does not require an internal clock and support only byte read and write. Page
mode is not supported. The 7-bit binary address of the I2C machine is “0111 A3A2A1R” where R =1 sets a read
operation while R=0 sets a write operation. Please see Figure 10 for a Byte Read operation and Figure 11 for a
byte write operation. For more detailed information on I2C protocols please refer to I2C Bus Specification version
2.1 available from Philips Semiconductors Inc.
When ISEL/RST# = HIGH and DKEN = HIGH, pins 6,7,8 functions as A[3:1]. Each pin can be set to HIGH or LOW
to select a desired I2C address for the SiI 164. To set the SiI 164 to 0x72, tie pin 7 and 6 to ground and pull pin 8 to
VCC via 2.2K resistor. The recommended setting is to tie pins 6,7 and 8 to ground to set “000” or address 0x70 in
I2C mode .
SA
3A
2A
1
A
C
K
S
A
3A
2A
1
A
C
K
A
C
K
P
Slave
Address Register Address Slave
Address
Data
Stop
Start
Start
Bus Activity :
SiI 164
Bus Activity :
Master
SDA Line
Figure 10. I2C Byte Read
SA
3A
2A
1
A
C
K
A
C
K
P
Slave
Address Address Data
Stop
Start
Bus Activity :
SiI 164
Bus Activity :
Master
SDA Line
A
C
K
Figure 11. I2C Byte Write
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 16
Data De-skew Feature
The de-skew feature allows adjustment of the clock-to-data delay on the input of the SiI 164. When driven by a
chip with clock and data timings which do not meet the setup and hold time requirements of an SiI 164, the de-
skew register value can be modified to position the clock in the middle of the valid data time and meet the input
setup and hold times. As shown in Figure 12, changing the DK[3:1] value from 0b100 to 0b111 delays the internal
clock by approximately 750ps to 900ps, increasing setup time and reducing hold time. This is useful when the
input clock, IDCK, arrives too early.
The default values for DK[3:1] are shown in Table 1, along with approximate times per setting. Note that the
default is different when enabling I2C mode (ISEL/RST#=HIGH) versus non-I2C mode (ISEL/RST#=LOW).
Positive values of TCD move the clock later, increasing setup time. Negative values of TCD move the clock earlier,
increasing hold time.
Where:
T
CD is the amount of setup/hold timing variation
DK[3:1] is the setting of the de-skew configuration pins or I2C registers
Table 1. Data De-Skew Estimated Values
DK[3:1] De-Skew Time
TCD
0b111 +0.75ns to +0.90ns
0b110 +0.50ns to +0.70ns
0b101 +0.20ns to +0.35ns
0b100 0 Default De-Skew
0b011 -0.20ns to -0.35ns
0b010 -0.50ns to –0.70ns
0b001 -0.75ns to –0.90ns
0b000 -1.0ns to -1.2ns
TCD
CLK+
CLK-
D K [3 :1] 0b000 0b100 0b111
D [2 3:0 ],
DE, VSY NC,
HSYNC,
CTL[3:1]
-TCD
default
Figure 12. SiI 164 Data De-skew Feature Timing
SiI 164 PanelLink Transmitter
Data Sheet
17 SiI-DS-0021-E
Data Latching Modes
SiI 164 can be set to different to operate in either 12-bit or 24-bit input mode. In either mode the SiI 164 can be
set to latch data at either rising or falling edge of the clock or support dual edge clocking mode. Figure 13
illustrates the latching edge for a 12-bit data input (BSEL = 0) by changing DSEL and EDGE option. Clock edges
represented by arrows signify the latching edge. For Dual Edge mode, the dark arrows indicate the primary latch
edge.
P
0
LP
O
H
IDCK+
D[11:0]
P
1
LP
1
HP
N-1
HP
N
LP
N
H
DE
IDCK+
IDCK-
IDCK+
IDCK+
IDCK-
DSEL = 1
DSEL = 0
DSEL = 1
DSEL = 0
EDGE = 1
EDGE = 0
L = Low half pixel
H = High half pixel
First Latch Edge
Figure 13. 12-bit Input Data Latching
Figure 14 illustrates the latching edge for a 24-bit data input (BSEL=1) with DSEL and EDGE option. EDGE pin
has no affect in 24-bit Single Clock Dual Edge Mode.
First Latching Edge
P
0
D[23:0]
P
1
P
N-1
P
N
DE
DSEL = 1, EDGE = 0
DSEL = 1, EDGE = 1
IDCK+
IDCK+
DSEL =0, EDGE = 1
IDCK+
DSEL = 0, EDGE = 0
IDCK+
Figure 14. 24-bit Input Data Latching
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 18
I2C Programming Sequence
To program the SiI 164 in data latched on 12-bit mode Dual Edge Clock with Primary Edge as the rising edge or
falling edge, De-skew enabled with Hotplug based monitor detection use the following sample programming
sequence listed in Table 2. It is important to note that the suggested I2C address for SiI 164 be set to 0x70 by
tying pins A1, A2 and A3 to ground.
Table 2. Sample Programming Sequence for SiI 164 in 12-bit Mode
Register(Hex) Value(Hex) Description
0x08
Setting 1: 0x30
Setting 2: 0x32
Setting 1: Enable HEN, VEN, 1st data
latched on falling edge with PD low until
all registers are programmed.
Setting 2: Enable HEN, VEN, 1st data
latched on rising edge with PD low until
all registers are programmed.
0x09 0x30
Monitor detection mode via Hotplug
input.
0x0A 0x90
De-skew enabled with default 100 value.
CTL is not used.
0x0C 0x89
SCNT, PLL Filter Enable and PLL
Bandwidth Filter set to default.
0x08
Setting 1: 0x31
Setting 2: 0x33
Setting 1: Recover from Power Down
mode and enable output.
Setting 2: Recover from Power Down
mode and enable output.
Enabling Hot Plug Detection Mode
As documented in the VESA Digital Flat Panel Standard, all monitors are required to support Hot Plug Detection
but support is optional for the host. The SiI 164 supports the Hot Plug Detect feature. In I2C mode, pin 9 functions
as HTPLG input. It should be noted that the HTPLG pin on the SiI 164 is only 3.3V tolerant therefore HTPLG
voltage level from the DVI connector should be level shifted or clamped at 3.3V.
When the voltage level at the HTPLG pin is 3.3V, the HTPLG bit will be set to 1. To output the HTPLG bit via the
MSEN pin, register MSEL[2:0] should be programmed to 0b011.
The SiI 164 can also be programmed to enable the Hot Plug Detection Mode via the Receiver Sense function. In
this mode, HTPLG pin is not required. By programming MSEL[2:0] to 0b010, SiI 164 will output the RSEN=1 bit
though the MSEN pin when the SiI 164 is connected to a powered receiver.
SiI 164 PanelLink Transmitter
Data Sheet
19 SiI-DS-0021-E
Non-I2C/Strap Mode Configuration
The SiI 164 can be set to program itself at power up without writing any SiI 164 registers via I2C. The SiI 164 is
extremely flexible and can be set to operate in any input format that can be set in I2C mode. In non I2C mode,
specific configuration pins need to be strapped to either high or low to set the desired mode. Figure 15 provides a
schematic example of all the pins that can be configured to enable the various modes in non I2C mode. Table 3
lists resistors to be stuffed for a specific mode.
D4
R18
15K
3.3V
R10
33K
BSEL
D6
R11
33K
3.3V
R6 330 EDGE
D2
B
DKEN
A
DK1
R8
33K
R2
2.2K
R15 0
R3
2.2K
R12 330
D[11..0]
1.5V or VDDQ
D10
R17
2.2K
D8
R14 0
D1
D7
C
R4 330
AVCC
R13 0
D9
DK3
DK2
D0
VREF
R19
15K
R16
510
1%
Sil 164
3
6
7
8
9
10
13
14
15
19
34
35
36
37
38
39
40
41
42
43
44
45
46
47
50
51
52
53
54
55
58
59
60
61
62
63
VREF
DK3
DK2
DK1
EDGE/CHG/SIN
PD
ISEL/RST
DSEL/SDA
BSEL/SCL
EXT_RES
RSVD
DKEN
D23
D22
D21
D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
D5
PD
R1
2.2K
3.3V
D
D11
R9
33K
DSEL
D3
R7
33K
R5 330
Figure 15. Non- I2C/Strap Mode Schematic Example
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 20
Non-I2C/Strap Mode Configuration (cont’d)
ISEL/RST# and RSVD pins must always be tied to ground for strap or non- I2C mode. PD# must be tied high or
the SiI 164 will still be in Power Down mode when VCC is applied.
In Figure 15 Block A corresponds to the upper 12-bits (D [23:12]) of the SiI 164. When not in use, they should
always be tied to ground. Block B controls the Input Bus data width, Dual Edge Clock Select and Edge Select.
IDCK- is only used in 12-bit mode. In 24-bit mode or Dual Edge Clock select IDCK- should be tied to ground.
Block C controls the De-skew options. Block D determines the input voltage level swing. A full description of
each pin can be found in the Pin Description section of this document.
Table 3. Non-I2C/Strap Mode Options
MODE BLOCK A BLOCK B BLOCK C BLOCK D
1. 24-bit1
2. Single Clock
3. Dual Edge
4. Falling Edge
latching 1st pixel
5. De-skewing
enabled to 100
6. High Voltage
Swin
g
Connect D[23:12] to
Graphics Host
Stuff only
R1, R2, R6
Stuff only
R8, R13, R14, R11
Stuff Only
R17
1. 24-bit
2. Single Clock
3. Single Edge
4. Falling Edge
5. De-skewing
disabled
6. High Voltage
Swing.
Connect D[23:12] to
Graphics Host
Stuff only
R1, R5, R6
Stuff only
R12, R13, R14, R15
Stuff Only
R17
1. 12-bit2
2. Single Clock
3. Dual Edge
4. Rising Edge of
IDCK+ latching 1st
½ pixel
5. De-skewing
disabled
6. High Voltage
Swing.
Ground D[23:12] Stuff only
R4, R2, R3
Stuff only
R12, R13, R14, R15
Stuff Only
R17
1. 12-bit3
2. Dual Clock
3. Dual Edge,
4. Falling Edge of
IDCK+ latching 1st
½ pixel
5. De-skewing
enabled to 100
6. Low Swing Mode
Ground D[23:12] Stuff only
R4, R5, R6
Stuff only
R8, R13, R14, R11
Stuff Only
R18, R19
Notes
1. In 24-bit IDCK+ is input clock. IDCK- should be tied to ground.
2. In 12-bit dual edge (non-DVO) mode, IDCK- is not used.
3. This setting is equivalent to DVO mode. In DVO mode both IDCK+ and IDCK- must be connected.
SiI 164 PanelLink Transmitter
Data Sheet
21 SiI-DS-0021-E
TFT Panel Data Mapping
The following TFT data mapping tables are strictly listed for single link TFT applications only. SiI 143B, SiI 151B,
SiI 153B and SiI 161B all have the same pinout. As such mapping will be the same when SiI 143B or SiI 151B or
SiI 153B is used in place of SiI 161B.
Table 4. One Pixel/Clock Input/Output TFT Mode - VESA P&D and FPDI-2 Compliant
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 18-bpp 160 164 161B 141B 24-bpp 18-bpp
B0 DIE0 D0 QE0 Q0 B0
B1 DIE1 D1 QE1 Q1 B1
B2 B0 DIE2 D2 QE2 Q2 B2 B0
B3 B1 DIE3 D3 QE3 Q3 B3 B1
B4 B2 DIE4 D4 QE4 Q4 B4 B2
B5 B3 DIE5 D5 QE5 Q5 B5 B3
B6 B4 DIE6 D6 QE6 Q6 B6 B4
B7 B5 DIE7 D7 QE7 Q7 B7 B5
G0 DIE8 D8 QE8 Q8 G0
G1 DIE9 D9 QE9 Q9 G1
G2 G0 DIE10 D10 QE10 Q10 G2 G0
G3 G1 DIE11 D11 QE11 Q11 G3 G1
G4 G2 DIE12 D12 QE12 Q12 G4 G2
G5 G3 DIE13 D13 QE13 Q13 G5 G3
G6 G4 DIE14 D14 QE14 Q14 G6 G4
G7 G5 DIE15 D15 QE15 Q15 G7 G5
R0 DIE16 D16 QE16 Q16 R0
R1 DIE17 D17 QE17 Q17 R1
R2 R0 DIE18 D18 QE18 Q18 R2 R0
R3 R1 DIE19 D19 QE19 Q19 R3 R1
R4 R2 DIE20 D20 QE20 Q20 R4 R2
R5 R3 DIE21 D21 QE21 Q21 R5 R3
R6 R4 DIE22 D22 QE22 Q22 R6 R4
R7 R5 DIE23 D23 QE23 Q23 R7 R5
Shift CLK Shift CLK IDCK IDCK ODCK ODCK Shift CLK Shift CLK
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE DE DE
For 18-bit mode, the Flat Panel Graphics Controller interfaces to the transmitter exactly the same as in the 24-bit
mode; however, 6 bits per channel (color) are used instead of 8. It is recommended that unused data bits be tied
low. As can be seen from the above table, the data mapping for less than 24-bit per pixel interfaces are MSB
justified. The data is sent during active display time while the control signals are sent during blank time. Note that
the three data channels (CH0, CH1, CH2) are mapped to Blue, Green and Red data respectively.
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 22
Table 5. 24-bit One Pixel/Clock Input with 24-bit Two Pixels/Clock Output TFT Mode
TFT VGA Output Tx Input Data Rx Output Data TFT Panel Input
24-bpp 160 164 161B 24-bpp
B0 DIE0 D0 QE0 B0 - 0
B1 DIE1 D1 QE1 B1 - 0
B2 DIE2 D2 QE2 B2 - 0
B3 DIE3 D3 QE3 B3 - 0
B4 DIE4 D4 QE4 B4 - 0
B5 DIE5 D5 QE5 B5 - 0
B6 DIE6 D6 QE6 B6 - 0
B7 DIE7 D7 QE7 B7 - 0
G0 DIE8 D8 QE8 G0 - 0
G1 DIE9 D9 QE9 G1 - 0
G2 DIE10 D10 QE10 G2 - 0
G3 DIE11 D11 QE11 G3 - 0
G4 DIE12 D12 QE12 G4 - 0
G5 DIE13 D13 QE13 G5 - 0
G6 DIE14 D14 QE14 G6 - 0
G7 DIE15 D15 QE15 G7 - 0
R0 DIE16 D16 QE16 R0 - 0
R1 DIE17 D17 QE17 R1 - 0
R2 DIE18 D18 QE18 R2 - 0
R3 DIE19 D19 QE19 R3 - 0
R4 DIE20 D20 QE20 R4 - 0
R5 DIE21 D21 QE21 R5 - 0
R6 DIE22 D22 QE22 R6 - 0
R7 DIE23 D23 QE23 R7 - 0
QO0 B0 - 1
QO1 B1 - 1
QO2 B2 - 1
QO3 B3 - 1
QO4 B4 - 1
QO5 B5 - 1
QO6 B6 - 1
QO7 B7 - 1
QO8 G0 - 1
QO9 G1 - 1
QO10 G2 - 1
QO11 G3 - 1
QO12 G4 - 1
QO13 G5 - 1
QO14 G6 - 1
QO15 G7 - 1
QO16 R0 - 1
QO17 R1 - 1
QO18 R2 - 1
QO19 R3 - 1
QO20 R4 - 1
QO21 R5 - 1
QO22 R6 - 1
QO23 R7 - 1
Shift CLK IDCK IDCK ODCK Shift CLK/2
VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE
SiI 164 PanelLink Transmitter
Data Sheet
23 SiI-DS-0021-E
Table 6. 18-bit One Pixel/Clock Input with 18-bit Two Pixels/Clock Output TFT Mode
TFT VGA Output Tx Input Data Tx Output Data TFT Panel Input
18-bpp 160 164 161B 141B 18-bpp
DIE0 D0 QE0
DIE1 D1 QE1
B0 DIE2 D2 QE2 Q0 B0 - 0
B1 DIE3 D3 QE3 Q1 B1 - 0
B2 DIE4 D4 QE4 Q2 B2 - 0
B3 DIE5 D5 QE5 Q3 B3 - 0
B4 DIE6 D6 QE6 Q4 B4 - 0
B5 DIE7 D7 QE7 Q5 B5 - 0
DIE8 D8 QE8
DIE9 D9 QE9
G0 DIE10 D10 QE10 Q6 G0 - 0
G1 DIE11 D11 QE11 Q7 G1 - 0
G2 DIE12 D12 QE12 Q8 G2 - 0
G3 DIE13 D13 QE13 Q9 G3 - 0
G4 DIE14 D14 QE14 Q10 G4 - 0
G5 DIE15 D15 QE15 Q11 G5 - 0
DIE16 D16 QE16
DIE17 D17 QE17
R0 DIE18 D18 QE18 Q12 R0 - 0
R1 DIE19 D19 QE19 Q13 R1 - 0
R2 DIE20 D20 QE20 Q14 R2 - 0
R3 DIE21 D21 QE21 Q15 R3 - 0
R4 DIE22 D22 QE22 Q16 R4 - 0
R5 DIE23 D23 QE23 Q17 R5 - 0
QO0
QO1
QO2 Q18 B0 - 1
QO3 Q19 B1 - 1
QO4 Q20 B2 - 1
QO5 Q21 B3 - 1
QO6 Q22 B4 - 1
QO7 Q23 B5 - 1
QO8
QO9
QO10 Q24 G0 - 1
QO11 Q25 G1 - 1
QO12 Q26 G2 - 1
QO13 Q27 G3 - 1
QO14 Q28 G4 - 1
QO15 Q29 G5 - 1
QO16
QO17
QO18 Q30 R0 - 1
QO19 Q31 R1 - 1
QO20 Q32 R2 - 1
QO21 Q33 R3 - 1
QO22 Q34 R4 - 1
QO23 Q35 R5 - 1
Shift CLK IDCK IDCK ODCK Shift CLK/2 Shift CLK/2
VSYNC VSYNC VSYNC VSYNC VSYNC VSYNC
HSYNC HSYNC HSYNC HSYNC HSYNC HSYNC
DE DE DE DE DE DE
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 24
Design Recommendations
1.5V to 3.3V I2C Bus Level-Shifting
To program the SiI 164 via I2C mode SDA and SCL swing level must be 3.3V. DVO sources have I2C swing of
1.5V. To ensure proper initialization of the SiI 164 a bi-directional voltage level-shifting circuit between the SiI 164
I2C bus and the VGA or driving source should be implemented. Two suggested components that can be used to
achieve this is by using either a dual N-channel transistor like Fairchild Semiconductor’s NDC7002N or the Philips
GTL2010 High Speed Bus Switch. Refer to Figure 16 for a schematic example using a dual N-channel transistor
for translating an I2C 1.5V signal to 3.3V I2C signal and vice versa.
1.5V
1.5V
1K
1.5V I
2
C DATA FROM VGA
2.2K
2.9V 3.3V
1K G
S D
Q2
2N7002
3
1
2
1.5V I
2
C CLK FROM VGA
3.3V2.9V
3.3V I
2
C CLK TO SiI 164
2.2K
3.3V I
2
C DATA TO SiI 164
G
S D
Q4
2N7002
3
1
2
Figure 16. I2C Bus Voltage Level-Shifting using Fairchild NDC7002N
Figure 17 illustrates a schematic example using the Philips GTL 2010 to achieve a 1.5V to 3.3V bi-directional
level-shift.
1.5V I
2
C DATA FROM VGA
R1
1K
3.3V I
2
C DATA TO SiI 164
R4
2.2K
R5
2.2K
3.3V I
2
C CLK TO SiI 164
3.3V
R3
200K
1.5V
R2
1K
5V
1.5V I
2
C CLK FROM VGA
U1
GTL2010
1
2
3
4
24
23
22
21
20
19
18
17
16
15
14
13
5
6
7
8
9
10
11
12
GND
SREF
S1
S2
GREF
DREF
D1
D2
D3
D4
D5
D6
D7
D8
D9
D10
S3
S4
S5
S6
S7
S8
S9
S10
Figure 17. I2C Bus Voltage Level Shifting using Philips GTL 2010
SiI 164 PanelLink Transmitter
Data Sheet
25 SiI-DS-0021-E
Voltage Ripple Regulation
The power supply to PVCC is very important to the proper operation of the Transmitter chips. PVCC does not
draw much current so any voltage regulator that can supply 50mA or more is sufficient. Two suggested voltage
regulators are TL431 from Texas Instruments or LM317 from National Semiconductor. Two examples are shown
in Figure 18 and Figure 19
V
in
(5V) V
out
(3.3V) to PVCC1
and PVCC2
TL431
100-150 ohms
1K ohms
1%
3K ohms
1%
V
ref
Cathode
Anode
Ref
Figure 18. Volt age Regulation using TL431
Decoupling and bypass capacitors are also involved with power supply connections, as described in detail in
Figure 20 and Figure 21.
V
out
(3.3V) to PVCC1
and PVCC2
V
in
(5V)
240 ohms
390 ohms
V
IN
V
OUT
ADJ
LM317EMP
Figure 19. Volt age Regulation using LM317
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 26
Decoupling Capacitors
Designers should include decoupling and bypass capacitors at each power pin in the layout. These are shown
schematically in Figure 21. Place these components as closely as possible to the SiI 164 pins, and avoid routing
through vias if possible, as shown in Figure 20, which is representative of the various types of power pins on the
transmitter.
C1
VCC
Ferrite
Via to GND
VCC
GND
C2
C3
L1
Figure 20. Decoupling and Bypass Capacitor Placement
VCCPIN
C1 C2
L1
C3
VCC
Figure 21. Decoupling and Bypass Schematic
The values shown in Table 7 are recommendations that should be adjusted according to the noise characteristics
of the specific board-level design. Pins in one group (such as VCC) may share C2, L1, and C3, each pin having
C1 placed as closely to the pin as possible.
Table 7. Recommended Components for Bypass and Decoupling Circuits
C1 C2 C3 L1
100 – 300 pF 2.2 – 10 µF 10 µF 200+
SiI 164 PanelLink Transmitter
Data Sheet
27 SiI-DS-0021-E
Series Damping Resistors on Outputs
Series resistors are effective in lowering the data-related emissions and reducing reflections. Series resistors with
suggested value of 22 or 33 should be placed close to the output pins of the VGA Source or Graphics chip, as
shown in Figure 22.
D[23..0]
VGA
Figure 22. Series Input Damping Resistors for Driving Source
Differential Trace Routing
The routing for the SiI 164 chip is relatively simple since no spiral skew compensation is needed. However, a few
small precautions are required to achieve the full performance and reliability of DVI.
The Transmitter can be placed fairly far from the output connector, but care should be taken to route each
differential signal pair together and achieve impedance of 100 between the differential signal pair. However,
note that the longer the differential traces are between the transmitter and the output connector, the higher the
chance that external signal noise will couple onto the low-voltage signals and affect image quality.
Do not split or have asymmetric trace routing between the differential signal pair. Vias are very inductive and can
cause phase delay problems if applied unevenly within a differential pair. Vias should be minimized or avoided if
possible by placing all differential traces on the top layer of the PCB.
Figure 23 illustrates an incorrect routing of the differential signal from the SiI 164 to the DVI connector. Figure 24
illustrates the correct method to route the differential signal from the SiI 164 to the DVI connector. Figure 25
illustrates recommended routing for differential traces at the DVI connector.
TX
Figure 23. Example of Incorrect Differential Signal Routing
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 28
TX
Figure 24. Example of Correct Differential Signal Routing
TxC-
TxC+
Tx0-
Tx0+
Tx1-
Tx1+
Tx2-
Tx2+
18
9
16
1724
Figure 25. Differential Trace Routing to DVI Connector(Top Side View)
SiI 164 PanelLink Transmitter
Data Sheet
29 SiI-DS-0021-E
Package Dimensions and Marking Specification
SiIDDDDDD
LLLLLL.LLLL
YYWW
X.XX
Device #
Lot #
Date Code
SiI Rev. #
E1 F1
D1
G1
A2
A1
eb
L1
c
JEDEC Package Code MS-026ACD
typ max
A Thickness 1.20
A1 Stand-off 0.15
A2 Body Thickness 1.00 1.05
D1 Body Size 10.00
E1 Body Size 10.00
F1 Footprint 12.00
G1 Footprint 12.00
L1 Lead Length 1.00
b Lead Width 0.22
c Lead Thickness 0.20
e Lead Pitch 0.50
Dimensions in millimeters.
Overall thickness A=A1+A2.
Device Device Number
DDDDDDDDD
Standard SiI164CT64
Pb-Free SiI164CTG64
Legend Description
LLLLLL.LLLL Lot Number
YY Year of Mfr
WW Work Week of Mfr.
X.XX Revision
Figure 26. 64-pin TQFP Package Dimensions (JEDEC code MS-026ACD)
Ordering Information
Standard Part Number: SiI164BCT64
Pb-Free Part Number: SiI164CTG64('G' designates Pb-free packaging)
SiI 164 PanelLink Transmitter
Data Sheet
SiI-DS-0021-E 30
© 2005 Silicon Image. Inc. 06/05 SiI-DS-0021-E
Silicon Image, Inc. Tel: (408) 616-4000
1060 E. Arques Avenue Fax: (408) 830-9530
Sunnyvale, CA 94085 E-mail: salessupport@SiImage.com
USA Web: www.siliconimage.com