
NIS5431 Series
www.onsemi.com
5
attenuate the power supply noise and the possible voltage
spikes caused by inductive loads. The values of these
capacitors depend on the characteristics of the power supply
and the inductance observed by the device at its input and
output, however, minimum values of 1 mF for the input
capacitor and 22 mF for the output capacitor are
recommended for most applications.
Power Limit
Refer to Application Note AND9042/D for ILIMSE
limitations.
Current Limit
The current limit circuit uses a SENSEFET along with a
reference and amplifier to control the peak current in the
device. The SENSEFET allows for a small fraction of the
load current to be measured, which has the advantage of
reducing the losses in the sense resistor as well as increasing
the value and decreasing the power rating of the sense
resistor. Sense resistors are typically in the tens of ohms
range with power ratings of several milliwatts making them
very inexpensive chip resistors.
The current limit circuit has two limiting values, one for
overload events which are defined as the mode of operation
in which the gate is high and the FET is fully enhanced. The
short circuit mode of operation occurs when the device is
actively limiting the current and the gate is at an intermediate
level. For a more detailed description of this circuit please
refer to application note AND8140.
Overvoltage Clamp
The overvoltage clamp consists of an amplifier and
reference. It monitors the output voltage and if the input
voltage exceeds the specified Vout maximum for the device,
the gate drive of the main FET is reduced to limit the output.
This is intended to allow operation through transients while
protecting the load. If an overvoltage condition exists for
many seconds, the device may overheat due to the voltage
drop across the FET combined with the load current. In this
event, the thermal protection circuit would shut down the
device.
Undervoltage Lockout
The undervoltage lockout circuit uses a comparator with
hysteresis to monitor the input voltage. If the input voltage
drops below the specified level, the output switch will be
switched to a high impedance state.
dv/dt Circuit
The dv/dt circuit brings the output voltage up under a
linear, controlled rate regardless of the load impedance
characteristics. An internal ramp generator creates a linear
ramp, and a control circuit forces the output voltage to
follow that ramp, scaled by a factor.
The default ramp time is approximately 0.6 ms. This can
be modified by adding an external capacitor at the dv/dt pin.
This pin includes an internal current source of
approximately 1 mA. Since the current level is very lo w, it i s
important to use a ceramic cap or other low leakage
capacitor. Aluminum electrolytic capacitors are not
recommended for this circuit.
The ramp time from 0 to the nominal output voltage can
be determined by the following equation, where t is in
seconds:
t0−3 +8.25 E5 @Cext
Where:
C is in Farads
t is in Seconds
Any time that the unit shuts down due to a fault, enable
shut−down, or recycling of input power, the timing capacitor
will be discharged and the output voltage will ramp from 0
at turn on.
Enable/Fault
The Enable/Fault Pin is a multi−function, bidirectional
pin that can control the output of the chip as well as send
information to other devices regarding the state of the chip.
When this pin is low, the output of the fuse will be turned off.
When this pin is high the output of the fuse will be
turned−on. If a thermal fault occurs, this pin will be pulled
low to an intermediate level by an internal circuit.
To use as a simple enable pin, an open drain or open
collector device should be connected to this pin. Due to its
tri−state operation, it should not be connected to any type of
logic with an internal pullup device.
If the chip shuts down due to the die temperature reaching
its thermal limit, this pin will be pulled down to an
intermediate level. This signal can be monitored by an
external circuit to communicate that a thermal shutdown has
occurred. If this pin is tied to another device in this family,
a thermal shutdown of one device will cause both devices to
disable their outputs. Both devices will turn on once the fault
is removed for the auto−retry devices.
For the latching thermal device, the outputs will be
enabled after the enable pin has been pulled to ground with
an external switch and then allowed to go high or after the
input power has been recycled. For the auto retry devices,
both devices will restart as soon as the die temperature of the
device in shutdown has been reduced to the lower thermal
limit. The thermal options are listed in the ordering table.
Thermal Protection
The NIS5431 includes an internal temperature sensing
circuit that senses the temperature on the die of the power
FET. If the temperature reaches 175°C, the device will shut
down, and remove power from the load. Output power can
be restored by either recycling the input power or toggling
the enable pin. Power will automatically be reapplied to the
load for auto−retry devices once the die temperature has
been reduced by 45°C.
The thermal limit has been set high intentionally, to
increase the trip time during high power transient events. It
is not recommended to operate this device above 150°C for
extended periods of time.