NCS20081/2/4, NCV20081/2/4 1.2 MHz, 42 mA Low Power Operational Amplifier The NCS20081/2/4 is a family of single, dual and quad Operational Amplifiers (Op Amps) with 1.2 MHz of Gain-Bandwidth Product (GBWP) and draws only 42 mA of Quiescent current. The NCS2008x has Input Offset Voltage of 4 mV and operates from 1.8 V to 5.5 V supply voltage over a wide temperature range (-40C to +125C). The Rail-to-Rail In/Out operation allows the use of the entire supply voltage range while taking advantage of the 1.2 MHz GBWP. Thus, this family offers superior performance over many industry standard parts. These devices are AEC-Q100 qualified which is denoted by the NCV prefix. NCS2008x's low current consumption and low supply voltage performance in space saving packages, makes them ideal for sensor signal conditioning and low voltage current sensing applications in Automotive, Consumer and Industrial markets. Features * * * * * * * * * * Wide Bandwidth: 1.2 MHz Low Supply Current/ Channel: 42 mA typ (VS = 1.8 V) Low Input Offset Voltage: 4 mV max Wide Supply Range: 1.8 V to 5.5 V Wide Temperature Range: -40C to +125C Rail-to-Rail Input and Output Unity Gain Stable Available in Single, Dual and Quad Packages NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Applications * * * * * * www.onsemi.com 5 1 SC70-5 CASE 419A TSOP-5/SOT23-5 CASE 483 8 1 SOIC-8 CASE 751 Micro8]/MSOP8 CASE 846A 14 1 TSSOP-8 CASE 948S TSSOP-14 CASE 948G 6 14 1 SOIC-14 CASE 751A 1 UDFN6 CASE 517AP DEVICE MARKING INFORMATION Automotive Battery Powered/ Portable Sensor Signal Conditioning Low Voltage Current Sensing Filter Circuits Unity Gain Buffer See general marking information in the device marking section on page 2 of this data sheet. ORDERING INFORMATION See detailed ordering and shipping information on page 3 of this data sheet. This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice. (c) Semiconductor Components Industries, LLC, 2017 May, 2019 - Rev. 11 1 Publication Order Number: NCS2008/D NCS20081/2/4, NCV20081/2/4 MARKING DIAGRAMS Single Channel Configuration NCS20081, NCV20081 5 XXMG G 1 XXXAYWG G XX MG G 1 TSOP-5/SOT23-5 CASE 483 SC70-5 CASE 419A UDFN6 CASE 517AP Dual Channel Configuration NCS20082, NCV20082 8 8 XXXXXX ALYW G XXXX AYWG G XXX YWW AG 1 1 Micro8]/MSOP8 CASE 846A TSSOP-8 CASE 948S SOIC-8 CASE 751 Quad Channel Configuration NCS20084, NCV20084 14 14 XXXX XXXX ALYWG G XXXXX AWLYWWG 1 1 TSSOP-14 CASE 948G SOIC-14 CASE 751A XXXXX A WL, L Y WW, W G or G = Specific Device Code = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package (Note: Microdot may be in either location) www.onsemi.com 2 NCS20081/2/4, NCV20081/2/4 Single Channel Configuration NCS20081, NCV20081 OUT 1 5 IN+ VDD 1 5 VDD VSS 1 6 OUT NC 2 5 VDD IN- 3 4 IN+ VSS 2 IN+ 2 3 4 IN- IN- SOT23-5 (TSOP-5) SN2 Pinout - - - + VSS 3 4 OUT + + UDFN6 1.6 x 1.6 SC70-5, SOT23-5 (TSOP-5) SQ3, SN3 Pinout Quadruple Channel Configuration NCS20084, NCV20084 Dual Channel Configuration NCS20082, NCV20082 OUT 1 1 IN- 1 2 - 3 + IN+ 1 VSS 4 8 VDD 7 OUT 2 - 6 IN- 2 + 5 IN+ 2 OUT 1 1 IN- 1 2 - - 13 IN- 4 IN+ 1 3 + + 12 IN+ 4 VDD 4 IN+ 2 5 + + 10 IN+ 3 IN- 2 6 - - 9 IN- 3 OUT 2 7 8 OUT 3 14 OUT 4 11 VSS Figure 1. Pin Connections ORDERING INFORMATION Device Configuration Automotive NCS20081SQ3T2G NCS20081SN2T1G NCS20081SN3T1G NCS20081MUTAG No Single NCV20081SQ3T2G* Yes NCV20081SN2T1G* NCS20082DMR2G NCS20082DR2G NCS20082DTBR2G NCV20082DMR2G* No Dual Marking Package AAP SC70 AER SOT23-5/TSOP-5 AEU SOT23-5/TSOP-5 AP UDFN6 AAP SC70 AER SOT23-5/TSOP-5 2K82 Micro8/MSOP8 NCS20082 SOIC-8 K82 TSSOP-8 2K82 Micro8/MSOP8 NCS20082 SOIC-8 NCV20082DTBR2G* K82 TSSOP-8 NCS20084DR2G** TBD SOIC-14 TBD TSSOP-14 NCV20082DR2G* NCS20084DTBR2G** NCV20084DR2G** NCV20084DTBR2G** Yes No Quad** Yes TBD SOIC-14 TBD TSSOP-14 Shipping Contact local sales office for more information For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. **In Development. Not yet released. www.onsemi.com 3 NCS20081/2/4, NCV20081/2/4 ABSOLUTE MAXIMUM RATINGS (Note 1) Rating Symbol Limit Unit Supply Voltage (VDD - VSS) (Note 2) VS 6 V Input Voltage VI VSS - 0.5 to VDD + 0.5 V Differential Input Voltage VID Vs V Maximum Input Current II 10 mA Maximum Output Current IO 100 mA Continuous Total Power Dissipation (Note 2) PD 200 mW Maximum Junction Temperature TJ 150 C Storage Temperature Range TSTG -65 to 150 C Mounting Temperature (Infrared or Convection - 20 sec) Tmount 260 C ESDHBM ESDCDM 2000 2000 V ILU 100 mA MSL Level 1 ESD Capability (Note 3) Human Body Model Charge Device Model Latch-Up Current (Note 4) Moisture Sensitivity Level (Note 5) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Refer to ELECTRICAL CHARACTERISTICS for Safe Operating Area. 2. Continuous short circuit operation to ground at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150C. Output currents in excess of the maximum output current rating over the long term may adversely affect reliability. Shorting output to either VDD or VSS will adversely affect reliability. 3. This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per JEDEC standard Js-001-2017 (AEC-Q100-002) ESD Charged Device Model tested per JEDEC standard JS-002-2014 (AEC-Q100-011) 4. Latch-up Current tested per JEDEC standard JESD78E (AEC-Q100-004) 5. Moisture Sensitivity Level tested per IPC/JEDEC standard: J-STD-020A THERMAL INFORMATION Parameter Symbol Channels Single Junction to Ambient Thermal Resistance qJA Dual Quad Package Single Layer Board (Note 6) Multi-Layer Board (Note 7) SC-70 491 444 SOT23-5/TSOP-5 310 247 UDFN6 278 239 Micro8/MSOP8 236 167 SOIC-8 190 131 TSSOP-8 253 194 SOIC-14 130 99 TSSOP-14 178 140 Unit C/W 6. Value based on 1S standard PCB according to JEDEC51-3 with 1.0 oz copper and a 300 mm2 copper area 7. Value based on 1S2P standard PCB according to JEDEC51-7 with 1.0 oz copper and a 100 mm2 copper area OPERATING RANGES Parameter Symbol Min Max Unit VS 1.8 5.5 V VS V VICM VSS - 0.2 VDD + 0.2 V TA -40 125 C Operating Supply Voltage Differential Input Voltage VID Input Common Mode Range Ambient Temperature Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. www.onsemi.com 4 NCS20081/2/4, NCV20081/2/4 ELECTRICAL CHARACTERISTICS AT VS = 1.8 V TA = 25C; RL 10 kW; VCM = VOUT = mid-supply unless otherwise noted. Boldface limits apply over the specified temperature range, TA = -40C to 125C. (Note 8) Parameter Symbol Conditions Min Typ Max Unit 0.5 3.5 mV 4 mV INPUT CHARACTERISTICS Input Offset Voltage Offset Voltage Drift Input Bias Current (Note 8) VOS DVOS/DT 1 IIB 1 mV/C pA 1500 Input Offset Current (Note 8) IOS 1 pA 1100 Channel Separation XTLK f = 1 kHz pA pA 125 dB Differential Input Resistance RID 10 GW Common Mode Input Resistance RIN 10 GW Differential Input Capacitance CID 1 pF Common Mode Input Capacitance CCM 5 pF 73 dB 120 dB mA Common Mode Rejection Ratio CMRR VCM = VSS - 0.2 to VDD + 0.2 48 VCM = VSS + 0.2 to VDD - 0.2 45 OUTPUT CHARACTERISTICS Open Loop Voltage Gain AVOL 86 80 Short Circuit Current ISC Output to positive rail, sinking current 15 Output to negative rail, sourcing current 11 Output Voltage High VOH Voltage output swing from positive rail 3 Output Voltage Low VOL Voltage output swing from negative rail 3 19 mV 20 19 mV 20 AC CHARACTERISTICS Unity Gain Bandwidth UGBW Slew Rate at Unity Gain SR Phase Margin ym Gain Margin Am Settling Time tS Open Loop Output Impedance VIN = 1.2 Vpp, Gain = 1 VIN = 1.2 Vpp, Gain = 1 1.2 MHz 0.4 V/ms 60 19 dB Settling time to 0.1% 5 ms Settling time to 0.01% 6 ZOL See Figure 25 W NOISE CHARACTERISTICS Total Harmonic Distortion plus Noise THD+N VIN = 1.2 Vpp, f = 1 kHz, Av = 1 0.005 % Input Referred Voltage Noise en f = 1 kHz 30 nV/Hz f = 10 kHz 24 Input Referred Current Noise in f = 1 kHz 300 fA/Hz PSRR No Load 90 dB SUPPLY CHARACTERISTICS Power Supply Rejection Ratio 67 64 Power Supply Quiescent Current IDD Per channel, no load 8. Performance guaranteed over the indicated operating temperature range by design and/or characterization. www.onsemi.com 5 42 60 mA NCS20081/2/4, NCV20081/2/4 ELECTRICAL CHARACTERISTICS AT VS = 3.3 V TA = 25C; RL 10 kW; VCM = VOUT = mid-supply unless otherwise noted. Boldface limits apply over the specified temperature range, TA = -40C to 125C. (Note 9) Parameter Symbol Conditions Min Typ Max Unit 0.5 3.5 mV 4 mV INPUT CHARACTERISTICS Input Offset Voltage Offset Voltage Drift Input Bias Current (Note 9) VOS DVOS/DT 1 IIB 1 mV/C pA 1500 Input Offset Current (Note 9) IOS 1 pA 1100 Channel Separation XTLK f = 1 kHz pA pA 125 dB Differential Input Resistance RID 10 GW Common Mode Input Resistance RIN 10 GW Differential Input Capacitance CID 1 pF Common Mode Input Capacitance CCM 5 pF 76 dB 120 dB mA Common Mode Rejection Ratio CMRR VCM = VSS - 0.2 to VDD + 0.2 53 VCM = VSS + 0.2 to VDD - 0.2 48 OUTPUT CHARACTERISTICS Open Loop Voltage Gain AVOL 90 86 Short Circuit Current ISC Output to positive rail, sinking current 15 Output to negative rail, sourcing current 11 Output Voltage High VOH Voltage output swing from positive rail 3 Output Voltage Low VOL Voltage output swing from negative rail 3 24 mV 25 24 mV 25 AC CHARACTERISTICS Unity Gain Bandwidth UGBW Slew Rate at Unity Gain SR Phase Margin ym Gain Margin Am Settling Time tS Open Loop Output Impedance VIN = 2.5 Vpp, Gain = 1 VIN = 2.5 Vpp, Gain = 1 1.2 MHz 0.4 V/ms 60 18 dB Settling time to 0.1% 5 ms Settling time to 0.01% 6 ZOL See Figure 25 W NOISE CHARACTERISTICS Total Harmonic Distortion plus Noise THD+N VIN = 2.5 Vpp, f = 1 kHz, Av = 1 0.005 % Input Referred Voltage Noise en f = 1 kHz 30 nV/Hz f = 10 kHz 24 Input Referred Current Noise in f = 1 kHz 300 fA/Hz PSRR No Load 90 dB SUPPLY CHARACTERISTICS Power Supply Rejection Ratio 67 64 Power Supply Quiescent Current IDD Per channel, no load 9. Performance guaranteed over the indicated operating temperature range by design and/or characterization. www.onsemi.com 6 42 60 mA NCS20081/2/4, NCV20081/2/4 ELECTRICAL CHARACTERISTICS AT VS = 5.5 V TA = 25C; RL 10 kW; VCM = VOUT = mid-supply unless otherwise noted. Boldface limits apply over the specified temperature range, TA = -40C to 125C. (Note 10) Parameter Symbol Conditions Min Typ Max Unit 0.5 3.5 mV 4 mV INPUT CHARACTERISTICS Input Offset Voltage Offset Voltage Drift Input Bias Current (Note 10) VOS DVOS/DT 1 IIB 1 mV/C pA 1500 Input Offset Current (Note 10) IOS 1 pA 1100 Channel Separation XTLK f = 1 kHz pA pA 125 dB Differential Input Resistance RID 10 GW Common Mode Input Resistance RIN 10 GW Differential Input Capacitance CID 1 pF Common Mode Input Capacitance Common Mode Rejection Ratio CCM CMRR VCM = VSS - 0.2 to VDD + 0.2 55 VCM = VSS + 0.2 to VDD - 0.2 51 5 pF 79 dB 120 dB mA OUTPUT CHARACTERISTICS Open Loop Voltage Gain AVOL 90 86 Short Circuit Current ISC Output to positive rail, sinking current 15 Output to negative rail, sourcing current 11 Output Voltage High VOH Voltage output swing from positive rail 3 Output Voltage Low VOL Voltage output swing from negative rail 3 24 mV 25 24 mV 25 AC CHARACTERISTICS Unity Gain Bandwidth UGBW MHz 0.4 V/ms SR Phase Margin ym 60 Gain Margin Am 17 dB Settling Time tS 5 ms Open Loop Output Impedance VIN = 5 Vpp, Gain = 1 1.2 Slew Rate at Unity Gain VIN = 5 Vpp, Gain = 1 Settling time to 0.1% Settling time to 0.01% 6 ZOL See Figure 25 W NOISE CHARACTERISTICS THD+N VIN = 5 Vpp, f = 1 kHz, Av = 1 0.005 % Input Referred Voltage Noise en f = 1 kHz 30 nV/Hz f = 10 kHz 24 Input Referred Current Noise in f = 1 kHz 300 fA/Hz PSRR No Load 90 dB Total Harmonic Distortion plus Noise SUPPLY CHARACTERISTICS Power Supply Rejection Ratio 67 64 Power Supply Quiescent Current IDD Per channel, no load 48 70 mA 10. Performance guaranteed over the indicated operating temperature range by design and/or characterization. Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. www.onsemi.com 7 NCS20081/2/4, NCV20081/2/4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25C, RL 10 kW, VCM = VOUT = mid-supply unless otherwise specified 60 T = 125C 50 T = 25C 40 T = -40C 20 10 0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 40 20 10 0 -40 -20 5.5 5.0 60 80 100 120 140 Figure 3. Quiescent Current vs. Temperature 0.8 T = -40C 0.6 T = 25C 0.5 0.4 T = 125C 0.3 VS = 1.8 V 0.7 OFFSET VOLTAGE (mV) OFFSET VOLTAGE (mV) 40 Figure 2. Quiescent Current per Channel vs. Supply Voltage 0.2 VS = 3.3 V 0.6 VS = 5.5 V 0.5 0.4 0.3 0.2 0.1 0.1 1.5 2.0 2.5 3.0 3.5 4.0 4.5 0 -40 -20 5.5 5.0 0 20 40 60 80 100 120 140 SUPPLY VOLTAGE (V) TEMPERATURE (C) Figure 4. Offset Voltage vs. Supply Voltage Figure 5. Offset Voltage vs. Temperature 140 4 VS = 5.5 V 10 units 180 120 2 100 1 80 GAIN (dB) OFFSET VOLTAGE (mV) 20 TEMPERATURE (C) 0.7 3 0 SUPPLY VOLTAGE (V) 0.8 0 VS = 1.8 V 30 0 -1 Gain Phase Margin 60 -3 RL = 10 kW CL = 15 pF T = 25C 0 -4 -2.75 -2.00 -1.25 -0.50 0 0.50 1.25 2.00 2.75 90 40 20 -2 135 -20 1 10 100 45 1k 10k 100k 1M 0 10M 100M COMMON MODE VOLTAGE (V) FREQUENCY (Hz) Figure 6. Offset Voltage vs. Common Mode Voltage Figure 7. Open-loop Gain and Phase Margin vs. Frequency www.onsemi.com 8 PHASE MARGIN () 30 VS = 3.3 V 50 VS = 5.5 V SUPPLY CURRENT (mA) SUPPLY CURRENT (mA) 60 NCS20081/2/4, NCV20081/2/4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25C, RL 10 kW, VCM = VOUT = mid-supply unless otherwise specified 60 50 40 30 20 0 100 200 300 400 0.1 1 Figure 8. Phase Margin vs. Capacitive Load Figure 9. THD + N vs. Output Voltage 600 VOLTAGE NOISE (nV/Hz) THD+N (%) 0.01 OUTPUT VOLTAGE (Vrms) VS = 1.8 V 0.1 VS = 3.3 V VS = 5.5 V 0.01 10 100 1k 10k VS = 5.5 V 500 400 300 200 100 0 100k 1 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure 10. THD + N vs. Frequency Figure 11. Input Voltage Noise vs. Frequency 120 900 VS = 5.5 V 800 VS = 5.5 V, PSRR+ 100 700 600 PSRR (dB) CURRENT NOISE (fA/Hz) 0.01 CAPACITIVE LOAD (pF) AV = 1 500 400 300 200 VS = 5.5 V, PSRR- 80 VS = 1.8 V, PSRR+ 60 VS = 1.8 V, PSRR- 40 20 100 0 0.1 0.0001 500 1 0.001 1 0.001 10 0 VS = 5.5 V fIN = 1 kHz AV = 1 10 THD+N (%) PHASE MARGIN () 100 VS = 5.5 V RL = 10 kW T = 25C 1 10 100 1k 10k 100k 0 10 100 1k 10k 100k FREQUENCY (Hz) FREQUENCY (Hz) Figure 12. Input Current Noise vs. Frequency Figure 13. PSRR vs. Frequency www.onsemi.com 9 1M NCS20081/2/4, NCV20081/2/4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25C, RL 10 kW, VCM = VOUT = mid-supply unless otherwise specified 120 500 OUTPUT VOLTAGE TO POSITIVE RAIL (mV) AV = 1 VS = 5.5 V 100 CMRR (dB) VS = 3.3 V 80 VS = 1.8 V 60 40 20 10 100 1k 100k 300 200 VS = 3.3 V 100 VS = 5.5 V 0 1M 0 2 4 6 8 10 12 OUTPUT CURRENT (mA) Figure 14. CMRR vs. Frequency Figure 15. Output Voltage High to Rail 500 0.10 VS = 1.8 V Input CL = 10 pF CL = 100 pF 0.08 400 0.06 300 VS = 3.3 V 200 VS = 5.5 V 100 0 400 FREQUENCY (Hz) 0.04 0.02 0 -0.02 -0.04 -0.06 0 2.5 7.5 5.0 12.5 10.0 -0.08 -0.10 -2 15.0 -1 0 1 2 3 4 5 OUTPUT CURRENT (mA) TIME (ms) Figure 16. Output Voltage Low to Rail Figure 17. Non-Inverting Small Signal Transient Response 0.10 1.0 Input CL = 10 pF CL = 100 pF 0.08 0.06 0.6 0.04 0.02 0 -0.02 -0.04 0.4 0.2 0 -0.2 -0.4 -0.06 -0.6 -0.08 -0.10 -2 -0.8 -1.0 -5.0 -2.5 -1 0 1 2 3 6 Input Output 0.8 VOLTAGE (V) VOLTAGE (V) 10k VOLTAGE (V) OUTPUT VOLTAGE TO NEGATIVE RAIL (mV) 0 VS = 1.8 V 4 5 6 0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 TIME (ms) TIME (ms) Figure 18. Inverting Small Signal Transient Response Figure 19. Non-Inverting Large Signal Transient Response www.onsemi.com 10 NCS20081/2/4, NCV20081/2/4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25C, RL 10 kW, VCM = VOUT = mid-supply unless otherwise specified 2.0 600 Input Output 1.5 500 CURRENT (pA) VOLTAGE (V) 1.0 0.5 0 -0.5 -1.0 0 2.5 5.0 7.5 200 100 IOS -100 -40 -20 10.0 12.5 15.0 17.5 20.0 0 20 40 60 80 100 120 140 TIME (ms) TEMPERATURE (C) Figure 20. Inverting Large Signal Transient Response Figure 21. Input Bias and Offset Current vs. Temperature 6 6 4 4 IIB+ 2 VOLTAGE (mV) CURRENT (pA) -2.0 -2.5 IIB- 0 IOS -2 2 0 -2 -4 -4 -6 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 0 0 1 2 3 4 5 6 7 8 9 COMMON MODE VOLTAGE (V) TIME (s) Figure 22. Input Bias Current vs. Common Mode Voltage Figure 23. 0.1 Hz to 10 Hz Noise 5000 -60 4500 -100 -120 10 VS = 1.8 V VS = 3.3 V VS = 5.5 V VCM = VS/2 4000 -80 IMPEDANCE (W) CHANNEL SEPARATION (dB) IIB- 300 0 -1.5 -6 IIB+ 400 3500 3000 2500 2000 1500 1000 500 -140 100 1k 10k 100k 1M 0 10 10M 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) Figure 24. Channel Separation vs. Frequency Figure 25. Open Loop Output Impedance vs. Frequency www.onsemi.com 11 NCS20081/2/4, NCV20081/2/4 TYPICAL PERFORMANCE CHARACTERISTICS TA = 25C, RL 10 kW, VCM = VOUT = mid-supply unless otherwise specified 0.6 SLEW RATE (V/ms) 0.5 0.4 SR+ SR- 0.3 0.2 0.1 0 -40 -20 0 20 40 60 80 100 120 TEMPERATURE (C) Figure 26. Slew Rate vs. Temperature www.onsemi.com 12 140 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L A NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. G 5 4 -B- S 1 2 DIM A B C D G H J K N S 3 D 5 PL 0.2 (0.008) M B M N J C K H SOLDER FOOTPRINT 0.50 0.0197 0.65 0.025 0.65 0.025 0.40 0.0157 1.9 0.0748 www.onsemi.com 13 SCALE 20:1 mm inches INCHES MIN MAX 0.071 0.087 0.045 0.053 0.031 0.043 0.004 0.012 0.026 BSC --0.004 0.004 0.010 0.004 0.012 0.008 REF 0.079 0.087 MILLIMETERS MIN MAX 1.80 2.20 1.15 1.35 0.80 1.10 0.10 0.30 0.65 BSC --0.10 0.10 0.25 0.10 0.30 0.20 REF 2.00 2.20 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS TSOP-5 CASE 483 ISSUE L D 5X NOTE 5 2X NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A. 5. OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY. 0.20 C A B 0.10 T M 2X 0.20 T B 5 1 4 2 B S 3 K DETAIL Z G A A TOP VIEW DIM A B C D G H J K M S DETAIL Z J C 0.05 H SIDE VIEW C SEATING PLANE END VIEW MILLIMETERS MIN MAX 3.00 BSC 1.50 BSC 0.90 1.10 0.25 0.50 0.95 BSC 0.01 0.10 0.10 0.26 0.20 0.60 0_ 10 _ 2.50 3.00 SOLDERING FOOTPRINT* 0.95 0.037 1.9 0.074 2.4 0.094 1.0 0.039 0.7 0.028 SCALE 10:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 14 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS UDFN6 1.6x1.6, 0.5P CASE 517AP ISSUE O A B D 2X 0.10 C PIN ONE REFERENCE 2X 0.10 C E DETAIL A OPTIONAL CONSTRUCTION EXPOSED Cu TOP VIEW (A3) DETAIL B A 0.05 C 6X A1 0.05 C SIDE VIEW DETAIL A 6X L L1 EE EE EE NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30 mm FROM TERMINAL. 4. COPLANARITY APPLIES TO THE EXPOSED PAD AS WELL AS THE TERMINALS. C A1 SEATING PLANE EEE EEE DIM A A1 A3 b D E e D2 E2 K L L1 MOLD CMPD A3 DETAIL B OPTIONAL CONSTRUCTION SOLDERMASK DEFINED MOUNTING FOOTPRINT* D2 L 1 MILLIMETERS MIN MAX 0.45 0.55 0.00 0.05 0.13 REF 0.20 0.30 1.60 BSC 1.60 BSC 0.50 BSC 1.10 1.30 0.45 0.65 0.20 --- 0.20 0.40 0.00 0.15 1.26 3 E2 6X 6X K 6 5 6X 0.52 b e 0.10 C A B BOTTOM VIEW 0.05 C 0.61 1.90 1 NOTE 3 0.50 PITCH 6X 0.32 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 15 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS Micro8t CASE 846A-02 ISSUE J D HE PIN 1 ID -T- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846A-01 OBSOLETE, NEW STANDARD 846A-02. E e b 8 PL 0.08 (0.003) M T B S A DIM A A1 b c D E e L HE S SEATING PLANE A 0.038 (0.0015) A1 MILLIMETERS NOM MAX -- 1.10 0.08 0.15 0.33 0.40 0.18 0.23 3.00 3.10 3.00 3.10 0.65 BSC 0.40 0.55 0.70 4.75 4.90 5.05 MIN -- 0.05 0.25 0.13 2.90 2.90 L c RECOMMENDED SOLDERING FOOTPRINT* 8X 8X 0.48 0.80 5.25 0.65 PITCH DIMENSION: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 16 INCHES NOM -- 0.003 0.013 0.007 0.118 0.118 0.026 BSC 0.016 0.021 0.187 0.193 MIN -- 0.002 0.010 0.005 0.114 0.114 MAX 0.043 0.006 0.016 0.009 0.122 0.122 0.028 0.199 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 ISSUE AK -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 0.25 (0.010) M Y M 1 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X M J S STYLE 11: PIN 1. SOURCE 1 2. GATE 1 3. SOURCE 2 4. GATE 2 5. DRAIN 2 6. DRAIN 2 7. DRAIN 1 8. DRAIN 1 SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 17 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS TSSOP-8 CASE 948S ISSUE C 8x 0.20 (0.008) T U K REF 0.10 (0.004) S 2X L/2 8 L 0.20 (0.008) T U T U 1 J J1 4 V EEEE EEEE CCCC EEEE CCCC SECTION N-N -W- C 0.076 (0.003) D -T- SEATING PLANE NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S K1 K A -V- S S 5 B -U- PIN 1 IDENT M DETAIL E G 0.25 (0.010) N M N F DETAIL E www.onsemi.com 18 DIM A B C D F G J J1 K K1 L M MILLIMETERS MIN MAX 2.90 3.10 4.30 4.50 --1.10 0.05 0.15 0.50 0.70 0.65 BSC 0.09 0.20 0.09 0.16 0.19 0.30 0.19 0.25 6.40 BSC 0_ 8_ INCHES MIN MAX 0.114 0.122 0.169 0.177 --0.043 0.002 0.006 0.020 0.028 0.026 BSC 0.004 0.008 0.004 0.006 0.007 0.012 0.007 0.010 0.252 BSC 0_ 8_ NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS SOIC-14 NB CASE 751A-03 ISSUE K D A B 14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S DETAIL A h A X 45 _ A1 e DIM A A1 A3 b D E e H h L M C M SEATING PLANE SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. www.onsemi.com 19 MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ NCS20081/2/4, NCV20081/2/4 PACKAGE DIMENSIONS TSSOP-14 CASE 948G ISSUE B 14X K REF 0.10 (0.004) 0.15 (0.006) T U T U M V S S N 2X 14 L/2 0.25 (0.010) 8 M B -U- L PIN 1 IDENT. N F 7 1 0.15 (0.006) T U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-. S S DETAIL E K A -V- EEE CCC CCC EEE K1 J J1 SECTION N-N -W- C 0.10 (0.004) -T- SEATING PLANE D H G DETAIL E DIM A B C D F G H J J1 K K1 L M MILLIMETERS INCHES MIN MAX MIN MAX 4.90 5.10 0.193 0.200 4.30 4.50 0.169 0.177 --- 1.20 --- 0.047 0.05 0.15 0.002 0.006 0.50 0.75 0.020 0.030 0.65 BSC 0.026 BSC 0.50 0.60 0.020 0.024 0.09 0.20 0.004 0.008 0.09 0.16 0.004 0.006 0.19 0.30 0.007 0.012 0.19 0.25 0.007 0.010 6.40 BSC 0.252 BSC 0_ 8_ 0_ 8_ SOLDERING FOOTPRINT 7.06 1 0.65 PITCH 14X 0.36 14X 1.26 DIMENSIONS: MILLIMETERS Micro8 is a trademark of International Rectifier ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 www.onsemi.com 20 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative NCS2008/D