Copyright © Cirrus Logic, Inc. 2009
(All Rights Reserved)
http://www.cirrus.com
114 dB, 192 kHz 6-Channel D/A Converter
Features
Advanced Multi-bit Delta Sigma Architecture
24-bit Conversion
Up to 192 kHz Sample Rates
114 dB Dynamic Range
-100 dB THD+N
Direct Stream Digital® (DSD) Mode
On-chip 50 kHz Filter
Matched PCM and DSD Analog Output Levels
Selectable Digital Filters
Volume Control with 1 dB Step Size and Soft
Ramp
Low Clock-jitter Sensitivity
+5 V Analog Supply, +2.5 V Digital Supply
Separate 1.8 to 5 V Logic Supplies for the
Control & Serial Ports
Description
The CS4362A is a complete 6-channel digital-to-analog
system. This D/A system includes digital de-emphasis,
1 dB step size volume control, ATAPI channel mixing,
selectable fast and slow digital interpolation filters fol-
lowed by an oversampled, multi-bit delta-sigma
modulator which includes mismatch shaping technolo-
gy that eliminates distortion due to capacitor mismatch.
Following this stage is a multi-element switched capac-
itor stage and low-pass filter with differential analog
outputs.
The CS4362A also has a proprietary DSD processor
which allows for 50 kHz on-chip filtering without an in-
termediate decimation stage. The CS4362A is available
in a 48-pin LQFP package in both Commercial (-40°C to
+85°C) and Automotive grades (-40°C to +105°C). The
CDB4362A Customer Demonstration board is also
available for device evaluation and implementation sug-
gestions. Please see “Ordering Information” on page 48
for complete details.
The CS4362A accepts PCM data at sample rates from
4 kHz to 216 kHz, DSD audio data, and delivers excel-
lent sound quality. These features are ideal for multi-
channel audio systems inclu ding SACD players, A/V re-
ceivers, digital TV’s, mixing consoles, effects
processors, sound cards, and automotive audio
systems.
Control Port Supply = 1.8 V to 5 V
Register/Hardware
Configuration Internal Voltage
Reference
Reset
Serial Interface
Level Trans lato r
Level Translator
Digital Supply = 2.5 V
Hardware Mode or
I2C/SPI Software Mode
Control Data
Analog Supply = 5 V
Six Channels of
Differential
Outputs
PCM S erial
Audio Input
Volume
Controls Digital
Filters Switch-Cap
DAC and
Analog Filters
Multi-bit ∆Σ
Modulators
DSD Audio
Input DSD Processor
-50 kHz filter
External Mute
Control Mute Signals
Serial Audio Port
Supply = 1.8 V to 5 V
6
6
6
6
CS4362A
JAN '09
DS617F2
2DS617F2
CS4362A
TABLE OF CONTENTS
1. PIN DESCRIPTION ................................................................................................................................. 6
2. CHARACTERISTICS AND SPECIFICATIONS ...................................................................................... 8
RECOMMENDED OPERATING CONDITIONS .................................................................................... 8
ABSOLUTE MAXIMUM RATINGS ........................................................................................................ 8
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ) ............................................................. 9
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ) ........................................................... 10
POWER AND THERMAL CHARACTERISTICS .................................................................................. 11
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 12
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE ...................................... 13
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE ............................................ 13
DIGITAL CHARACTERISTI CS ......................... ... ... ... .... ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ... ... ...... 14
SWITCHING CHARACTERISTICS - PCM .......................................................................................... 15
SWITCHING CHARACTERISTICS - DSD ........................................................................................... 16
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT ............................................. 17
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT ...................... ... ... .... ... ... ... ... 18
3. TYPICAL CONNECTION DIAGRAM .................................................................................................. 19
4. APPLICATIONS ................................................................................................................................... 21
4.1 Master Clock .................................................................................................................................. 21
4.2 Mode Select ................................................................................................................................... 21
4.3 Digital Interface Formats ................................................................................................................ 23
4.4 Oversampling Modes ..................................................................................................................... 24
4.5 Interpolation Filter .......................................................................................................................... 24
4.6 De-emphasis .................................................................................................................................. 24
4.7 ATAPI Specification ....................................................................................................................... 25
4.8 Direct Stream Digital (DSD) Mode .......... .... ... ... ... .... ................ ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 26
4.9 Grounding and Power Supply Arrangements ................................................................................ 26
4.9.1 Capacitor Placement ............................................................................................................. 26
4.10 Analog Output and Filtering ............... ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... .... ............ 26
4.11 Mute Control ............ .... ... ... ... .... ... ................ ... ... .... ... ... ... ................ .... ... ... ... .... ... ......................... 27
4.12 Recommended Power-Up Sequence .......................................................................................... 28
4.12.1 Hardware Mode ................................................................................................................... 28
4.12.2 Software Mode .................................................................................................................... 28
4.13 Recommended Procedure for Switching Operational Modes ...................................................... 29
4.14 Control Port Interface ......... ... .... ...... ... .......................................................................................... 29
4.14.1 MAP Auto Increment ........................................................................................................... 29
4.14.2 I²C Mode .......... .... ... ... ................ ... .... ... ... ................ .... ... ... ... ... ................. ... ... ... ... ................ 29
4.14.2.1 I²C Write ......... ... .... ... ... ... ... ................. ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 29
4.14.2.2 I²C Read .. ... ................ ... ... .... ... ... ................ .... ... ... ... ................ .... ... ... ... ................... 30
4.14.3 SPI Mode ............................................................................................................................. 30
4.14.3.1 SPI Write ........ ... .... ... ... ... ................ .... ... ... ... .... ... ... ................ ... .... ... ... ... ... ................ 30
4.15 Memory Address Pointer (MAP) ................................................................................................. 31
4.16 INCR (Auto Map Increment Enable) ............................................................................................ 31
4.16.1 MAP4-0 (Memory Address Pointer) ....... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ................ ... ... 31
5. REGISTER QUICK REFERENCE ........................................................................................................ 32
6. REGISTER DESCRIPTION .................................................................................................................. 33
6.1 Mode Control 1 (Address 01h) ....................................................................................................... 33
6.1.1 Control Port Enable (CPEN) .. ... ... ... .... ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... ... .... ... ......... 33
6.1.2 Freeze Controls (FREEZE) ................................................................................................... 33
6.1.3 Master Clock Divide Enable (MCLKDIV) ............................................................................... 33
6.1.4 DAC Pair Disable (DACx_DIS ) . ... ... .... ... ... ................ .... ... ... ... ... .... ... ................ ... ... .... ... ... ... ...33
6.1.5 Power Down (PDN) ............................................................................................................... 34
6.2 Mode Control 2 (Address 02h) ....................................................................................................... 34
DS617F2 3
CS4362A
6.2.1 Digital Interface Format (DIF) ................................................................................................ 34
6.3 Mode Control 3 (Address 03h) ....... ... ... ... .... ... ................ ... .... ... ... ... ... .... ... ... ... .... ... ... ... ................... 35
6.3.1 Soft Ramp and Zero Cross Control (SZC) .. .... ... ................ ... ... .... ... ... ... .... ................ ... ... ... ... 35
6.3.2 Single Volume Control (SNGLVOL) ...................................................................................... 36
6.3.3 Soft Volume Ramp-Up After Error (RMP_UP) ...................................................................... 36
6.3.4 Mutec Polarity (MUTEC+/-) ................................................................................................... 36
6.3.5 Auto-Mute (AMUTE) .............................................................................................................. 36
6.3.6 Mute Pin Control (MUTEC1, MUTEC0) ................................................................................. 37
6.4 Filter Control (Address 04h) ........................................................................................................... 37
6.4.1 Interpolation Filter Select (FILT_SEL) ...................................................................................37
6.4.2 De-Emphasis Control (DEM) ................................................................................................. 37
6.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN) .... ................ .... ... ... ... ... ................ 37
6.5 Invert Control (Address 05h) ... .... ... ... ... .......................................................................................... 38
6.5.1 Invert Signal Polarity (Inv_Xx) ............................................................................................... 38
6.6 Mixing Control Pair 1 (Channels A1 & B1)(Address 06h)
Mixing Control Pair 2 (Channels A2 & B2)(Address 09h)
Mixing Control Pair 3 (Channels A3 & B3)(Address 0C h) .............. ................ ................ ................ ...... 38
6.6.1 Channel A Volume = Channel B Volume (A=B) .................................................................... 38
6.6.2 ATAPI Channel Mixing and Muting (ATAPI) .......................................................................... 39
6.6.3 Functional Mode (FM) ........................................................................................................... 40
6.7 Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0E h) ..... ... ... .... ... ... ... .... ................ ... ... ... ... 40
6.7.1 Mute (MUTE) ......................................................................................................................... 40
6.7.2 Volume Control (XX_VOL) .................................................................................................... 41
6.8 Chip Revision (Address 12h) ......................................................................................................... 41
6.8.1 Part Number ID (PART) [Read Only] .................................................................................... 41
6.8.2 Revision ID (REV) [Read Only] ............................................................................................. 41
7. FILTER PLOTS ..................................................................................................................................... 42
8. PARAMETER DEFINITIONS ................................................................................................................ 46
9. PACKAGE DIMENSIONS .................................................................................................................... 47
10. ORDERING INFORMATIO N ....................... ................. ... ... ... .... ... ... ... ... .... ................ ... ... ... .... ... ......... 48
11. REFERENCES ... .... ... ... ... .... ... ................ ... ... .... ... ... ... .... ................ ... ... ... .... ... ... ................................... 48
12. REVISION HISTORY ...... .... ... ... ... .... ... ... ... ... .... ................ ... ... .... ... ... ... ................ .... ... ... ... ................... 49
4DS617F2
CS4362A
LIST OF FIGURES
Figure 1.Serial Audio Interface Timing ......... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... ................. ... ... ... ... ................ 15
Figure 2.Direct Stream Digital - Serial Audio Input Timing ........................................................................ 16
Figure 3.Control Port Timing - I²C Format . ... ... ... .... ... ... ... .... ... ................ ... ... .... ... ... ... .... ... ... ... ... .... ............ 17
Figure 4.Control Port Timing - SPI Format ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ................ ... ... .... ............ 18
Figure 5.Typical Connection Diagram, Software Mode .......... ............. ............. ............. ............ ............. ...19
Figure 6.Typical Connection Diagram, Hardware Mode ........................................................................... 20
Figure 7.Format 0 - Left-Justified up to 24-bit Data .................................................................................. 23
Figure 8.Format 1 - I²S up to 24-bit Data .................................................................................................. 23
Figure 9.Format 2 - Right-Justified 16-bit Data ......................................................................................... 23
Figure 10.Format 3 - Right-Justified 24-bit Data ....................................................................................... 23
Figure 11.Format 4 - Right-Justified 20-bit Data ....................................................................................... 24
Figure 12.Format 5 - Right-Justified 18-bit Data ....................................................................................... 24
Figure 13.De-Emphasis Curve ........ ... ................ .... ... ... ... .... ... ... ... .... ... ... ... ... .... ................ ... ... ... ................ 25
Figure 14.ATAPI Block Diagram (x = channel pair 1, 2, or 3) ... ... .... ... ... ... ... .... ... ... ... .... ................ ... ... ... ... 25
Figure 15.Full-Scale Output ............ ... .... ... ... ... ... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ................ ... ...................... 27
Figure 16.Recommended Output Filter ..................................................................................................... 27
Figure 17.Recommended Mute Circuitry ........... .... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ......... 28
Figure 18.Control Port Timing, I²C Mode .................................................................................................. 30
Figure 19.Control Port Timing, SPI Mode ................................................................................................. 31
Figure 20.Single-Speed (fast) Stopband Rejection ................................................................................... 42
Figure 21.Single-Speed (fast) Transition Band ......................................................................................... 42
Figure 22.Single-Speed (fast) Transition Band (detail) ............................................................................. 42
Figure 23.Single-Speed (fast) Passband Ripple ....................................................................................... 42
Figure 24.Single-Speed (slow) Stopband Rejection ................................................................................. 42
Figure 25.Single-Speed (slow) Transition Band ........................................................................................ 42
Figure 26.Single-Speed (slow) Transition Band (detail) ............................................................................ 43
Figure 27.Single-Speed (slow) Passband Ripple ...................................................................................... 43
Figure 28.Double-Speed (fast) Stopband Rejection ................................................................................. 43
Figure 29.Double-Speed (fast) Transition Band ........................................................................................ 43
Figure 30.Double-Speed (fast) Transition Band (detail) ............................................................................ 43
Figure 31.Double-Speed (fast) Passband Ripple ...................................................................................... 43
Figure 32.Double-Speed (slow) Stopband Rejection .......................... ................ ... ... .... ... ... ... ... .... ... ... ... ... 44
Figure 33.Double-Speed (slow) Transition Band ......... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... ................ 44
Figure 34.Double-Speed (slow) Transition Band (detail) .......... ................................................................ 44
Figure 35.Double-Speed (slow) Passband Ripple ....... ... .... ... ... ... ................ .... ... ... ... .... ... ... ... ... ................ 44
Figure 36.Quad-Speed (fast) Stopband Rejection .................... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ...... 44
Figure 37.Quad-Speed (fast) Transition Band .................... ... ... ... .... ... ... ... ... .... ... ... ................ ... .... ... ......... 44
Figure 38.Quad-Speed (fast) Transition Band (det ail) ................. .... ... ... ... ... .... ... ... ... .... ... ................ ... ...... 45
Figure 39.Quad-Speed (fast) Passband Ripple ........................................................................................ 45
Figure 40.Quad-Speed (slow) Stopband Rejection ................................................................................... 45
Figure 41.Quad-Speed (slow) Transition Band ......................................................................................... 45
Figure 42.Quad-Speed (slow) Transition Band (detail) ............................................................................. 45
Figure 43.Quad-Speed (slow) Passband Ripple ....................................................................................... 45
DS617F2 5
CS4362A
LIST OF TABLES
Table 1. Common Clock Frequencies ....................................................................................................... 21
Table 2. Digital Interface Format, Stand-Alone Mode Options ............ ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... ... 22
Table 3. Mode Selection, Stand-Alone Mode Options ........ ... ... ... .... ... ... ... ... .... ... ... ... .... ... ... ... ... .... ... ... ... .. .22
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options ........... ................ .... ... ... ... ... .... ............ 22
Table 5. Digital Interface Formats - PCM Mode ........................................................................................ 34
Table 6. Digital Interface Formats - DSD Mode ........................................................................................ 35
Table 7. ATAPI Decode .. ................ ... .... ... ... ... ... .... ... ... ................ .... ... ... ... ... .... ... ... ... ................................ 39
Table 8. Example Digital Volume Settings ................................................................................................ 41
6DS617F2
CS4362A
1. PIN DESCRIPTION
Pin Name # Pin Description
VD 4 Digital Power (Input) - Positive power supply for the digital section. Refer to the Recom-
mended Operating Conditions for appropriate voltages.
GND 5,31 Ground (Input) - Ground reference. Should be connected to analog ground.
MCLK 6 Master Clock (Input) - Clock source for the delta-sigma modulator and digital filters. Table 1
illustrates several standard audio sample rates and the required master clock frequencies.
LRCK 7 Left Right Clock (Input) - Determines which channel, Left or Right, is currently active on the
serial audio data line. The frequency of the left/right clock must be at the audio sample rate, Fs.
SDIN1
SDIN2
SDIN3
8
11
13 Serial Data Input (Input) - Input for two’s complement serial audio data.
SCLK 9 Serial Clock (Input) - Serial clocks for the serial audio interface.
TST 10,12
14,44
45 Test - These pin s ne ed to be tied to analog ground.
RST 19 Reset (Input) - The device enters a low power mode and all internal registers are reset to their
default settings when low.
VA 32 Analog Power (Input) - Positive power supply for the analog section. Refer to the Recom-
mended Operating Conditions for appropriate voltages.
VLS 43 Serial Audio Interface Power (Input) - Determines the required signal level for the serial audio
interface. Refer to the Recommended Operating Conditions for appropriate voltages.
VLC 18 Control Port Power (Input) - Determines the required signal level for the control port and hard-
ware mode configuration pins. Refer to the Recommended Operating C onditions for appropri-
ate voltages.
SDIN3
GND
AOUTB2-
AOUTA3+
AOUTB3-
AOUTB2+
VA
AOUTA3-
AOUTB3+
MUTEC2
MUTEC3
6
2
4
8
10
1
3
5
7
9
11
12
13 14 15 16 17 18 19 20 21 22 23 24
31
35
33
29
27
36
34
32
30
28
26
25
48 47 46 45 44 43 42 41 40 39 38 37
MCLK
DSDB1
VD
SDIN1
TST
DSDA2
DSDA1
GND
SCLK
SDIN2
TST
LRCK(DSD_EN)
M3(DSD_SCLK)
DSDB3
DSDA3
TST
CS4362A
TST
VLS
TST
M2(SCL/CCLK)
M1(SDA/CDIN)
VLC
RST
FILT+
VQ
MUTEC6
MUTEC5
MUTEC4
M0(AD0/CS)
AOUTA2+
AOUTA2-
AOUTB1+
AOUTB1-
AOUTA1-
AOUTA1+
DSDB2
MUTEC1
DS617F2 7
CS4362A
VQ 21
Quiescent Voltage (Output) - Filter conne ction for internal quiescent voltage. VQ must be
capacitively coupled to analog ground, as shown in the Typical Connection Diagram. The nom-
inal voltage level is specified in the Analog Characteristics and Speci fica ti ons section. VQ pre-
sents an appreciable source impedance and any current drawn from this pin will alter device
performance. However, VQ can be used to bias the analog circuitry assuming there is no AC
signal component and the DC current is less then the maximum specified in the Analog Charac-
teristics and Specifications section.
FILT+ 20 Positive Voltage Reference (Output) - Positive reference voltage for the internal sampling cir-
cuits. Requires the capacitive decoupling to analog ground as shown in the T ypical Connection
Diagram.
AOUTA1 +,-
AOUTB1 +,-
AOUTA2 +,-
AOUTB2 +,-
AOUTA3 +,-
AOUTB3 +,-
39,40
38,37
35,36
34,33
29,30
28,27
Differential Analog Output (Output) - The full-scale differential analog output level is specified
in the Analog Characteristics specification table.
MUTEC1
MUTEC2
MUTEC3
MUTEC4
MUTEC5
MUTEC6
41
26
25
24
23
22
Mute Control (Output) - These pins are intended to be used as a control for external mute cir-
cuits on the line outputs to prevent the clicks and pops that can occur in any single supply sys-
tem. Use of Mute Control is not mandatory but recommended for designs requiring the absolute
minimum in extraneous clicks and pops.
Hardware Mode Definitions
M0
M2
M3
17
16
15
42
Mode Selection (Input) - Determines the operational mode of the device as detailed in Table 6
and Table 7.
Soft ware Mode Definitions
SCL/CCLK 15 Serial Control Port Clock (Input) - Serial clock for the serial control port. Requires an external
pull-up resistor to the logic interface voltage in I²C® Mode as shown in the Typical Connection
Diagram.
SDA/CDIN 16 Serial Control Port Dat a (Input/Output) - SDA is a data I/O line in I²C Mode and is open drain,
requiring an external pull-up resistor to the logic interface voltage, as shown in the Typical Con-
nection Diagram; CDIN is the input data line for the control po rt interface in SPI™ mode.
AD0/CS 17 Address Bit 0 (C) / Control Port Chip Select (SPI) (Input) - AD0 is a chip address pin in I²C
Mode; CS is the chip select signal for SPI mode.
DSD Definitions
DSDA1
DSDB1
DSDA2
DSDB2
DSDA3
DSDB3
3
2
1
48
47
46
Direct Stream Digital Input (Input) - Input for Direct Stream Digital serial audio data.
DSD_SCLK 42 DSD Serial Clock (Input) - Serial clock for the Direct Stream Digital serial audio interface.
DSD_EN 7 DSD Enable (Input) - When held at logic ‘1’, the device will enter DSD Mode (Stand-Alone Mode
only).
Pin Name # Pin Description
8DS617F2
CS4362A
2. CHARACTERISTICS AND SPECIFICATIONS
RECOMMENDED OPERATING CONDITIONS
(GND = 0 V; all voltages with respect to ground.)
ABSOLUTE MAXIMUM RATINGS
(GND = 0 V; all voltages with respect to ground.)
WARNING:Operation at or beyond these limits may result in permanent damage to the device. Normal operation
is not guaranteed at these extremes.
Parameters Symbol Min Typ Max Units
DC Power Supply Analog Power
Digital Internal Power
Serial Data Port Interface Power
Control Port Interface Power
VA
VD
VLS
VLC
4.75
2.37
1.71
1.71
5.0
2.5
5.0
5.0
5.25
2.63
5.25
5.25
V
V
V
V
Ambient Operating Temperature (power applied)
Commercial Grade (-CQZ)
Automotive Grade (-DQZ) TA-40
-40 -
-+85
+105 °C
°C
Parameters Symbol Min Max Units
DC Power Supply Analog Power
Digital Internal Power
Serial Data Port Interface Power
Control Port Interface Power
VA
VD
VLS
VLC
-0.3
-0.3
-0.3
-0.3
6.0
3.2
6.0
6.0
V
V
V
V
Input Current Any Pin Except Supplies Iin 10mA
Digital Input Voltage Serial Data Port Interface
Control Port Interface VIND-S
VIND-C
-0.3
-0.3 VLS+ 0.4
VLC+ 0.4 V
V
Ambient Operating Temperature (power applied) Top -55 125 °C
Storage Temperature Tstg -65 150 °C
DS617F2 9
CS4362A
DAC ANALOG CHARACTERISTICS - COMMERCIAL (-CQZ)
Test Conditions (unless otherwise specified): VA = VLS = VLC = 5 V; VD = 2.5 V; TA = 25°C; Full-Scale 997 Hz
input sine wave (Note 1); Tested under max ac-load resistance; Valid with FILT+ and VQ capacitors as shown in
“Typical Connection Diagram” on page 19; Measurement Bandwidth 10 Hz to 20 kHz.
Notes: 1. One-half LSB of triangular PDF dither is added to data.
2. Performance limited by 16-bit quantization noise.
3. VFS is tested under load RL and include s attenuation due to ZOUT
Parameters Symbol Min Typ Max Unit
FS = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
Unweighted
16-bit A-weighted
(Note 2) Unweighted
108
105
-
-
114
111
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise 24-bit
0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-100
-91
-51
-94
-74
-34
-94
-
-45
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-noise Ratio - 114 - dB
Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB
Gain Drift - 100 - ppm/°C
Analog Output
Full-scale Differential Output Voltage VFS 128%•VA132%•VA136%•VAVpp
Output Impedance (Note 3) ZOUT -130-
Max DC Current Draw From an AOUT Pin IOUTmax -1.0-mA
Min AC-load Resistance RL-3-k
Max Load Capacitance CL-100-pF
Quiescent Voltage VQ- 50%V
A-VDC
Max Current draw from VQIQMAX -10-µA
10 DS617F2
CS4362A
DAC ANALOG CHARACTERISTICS - AUTOMOTIVE (-DQZ)
Test Conditions (unless otherwise specified): VA = 4.75 to 5.25 V; VLS = 1.71 to 5.25 V; VLC = 1.71 to 5.25 V; VD
= 2.37 to 2.63 V; TA = -40°C to 85°C; Full-Scale 997 Hz input sine wave (Note 1); Tested under max ac-load resis-
tance; Valid with FILT+ and VQ capacitors as shown in “Typical Connection Diagram” on page 19; Measurement
Bandwidth 10 Hz to 20 kHz.
Parameters Symbol Min Typ Max Unit
FS = 48 kHz, 96 kHz, 192 kHz and DSD
Dynamic Range 24-bit A-weighted
Unweighted
16-bit A-weighted
(Note 2) Unweighted
105
102
-
-
114
111
97
94
-
-
-
-
dB
dB
dB
dB
Total Harmonic Distortion + Noise 24-bit
0 dB
-20 dB
-60 dB
(Note 2) 16-bit 0 dB
-20 dB
-60 dB
THD+N
-
-
-
-
-
-
-100
-91
-51
-94
-74
-34
-91
-
-42
-
-
-
dB
dB
dB
dB
dB
dB
Idle Channel Noise / Signal-to-no ise Ratio - 114 - dB
Interchannel Isolation (1 kHz) - 110 - dB
DC Accuracy
Interchannel Gain Mismatch - 0.1 - dB
Gain Drift - 100 - ppm/°C
Analog Output
Full-scale Differential Output Voltage VFS 128%•VA132%•VA136%•VAVpp
Output Impedance (Note 3) ZOUT - 130 -
Max DC Current Draw From an AOUT Pin IOUTmax -1.0-mA
Min AC-load Resistance RL-3-k
Max Load Capacitance CL- 100 - pF
Quiescent Voltage VQ- 50%•VA-VDC
Max Current draw from VQIQMAX -10-µA
DS617F2 11
CS4362A
POWER AND THERMAL CHARACTERISTICS
Notes: 4. Cur rent consumption increases with increasing FS within a given speed mode and is sign al-dependent.
Max values are based on highest FS and highest MCLK.
5. ILC measured with no external loading on the SDA pin.
6. Power-down Mode is defined as RST pin = Low with all clock and data lines held static.
7. Valid with the recommended capacitor values on FILT+ and VQ as shown in Figure 5 and Figure 6.
Parameters Symbol Min Typ Max Units
Power Supplies
Power Supply Current Normal Operation, VA= 5 V
(Note 4) VD= 2.5 V
(Note 5) Interface Current, VLC=5 V
VLS=5 V
(Note 6) Power-down State (all supplies)
IA
ID
ILC
ILS
Ipd
-
-
-
-
-
60
16
2
84
200
65
22
-
-
-
mA
mA
µA
µA
µA
Power Dissipation (Note 4) VA = 5V, VD = 2.5V
Normal Operation
(Note 6) Power-down -
-340
1390
-mW
mW
Package Thermal Resistance Multi-layer
Two-layer θJA
θJA
θJC
-
-
-
48
65
15
-
-
-
°C/Watt
°C/Watt
°C/Watt
Power Supply Rejection Ratio (Note 7) (1 kHz)
(60 Hz) PSRR -
-60
40 -
-dB
dB
12 DS617F2
CS4362A
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
The filter charact er istics have been norm a lized to th e sample rate (Fs) and can be referenced to the desired sam-
ple rate by multiplying the given characteristic by Fs.
See Note 12.
Notes: 8. Slow roll-off interpolation filter is only available in Software Mode.
9. Response is clock-dependent and will scale with Fs.
10. For Single-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Double-Speed Mode, the Measurement Bandwidth is from stopband to 3 Fs.
For Quad-Speed Mode, the Measurement Bandwidth is from stopband to 1.34 Fs.
11. De-emphasis is available only in Single-Speed Mode; only 44.1 kHz De-emphasis is available in Hard-
ware Mode.
12. Amplitude vs. Frequency plots of this data are available in Section 7. “Filter Plots” on page 42.
Parameter Fast Roll-Off UnitMin Typ Max
Combined Digital and On -chip Analog Filter Response - Single-Speed Mode - 48 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.454
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
St op Band 0.547 - - Fs
Stop-band Attenuation (Note 10) 102 - - dB
Group Delay - 10.4/Fs - s
De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
±0.23
±0.14
±0.09
dB
dB
dB
Combined Digital and On-chip Analog Filter Response - Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.430
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .583 - - Fs
Stop-band Attenuation (Note 10) 80 - - dB
Group Delay - 6.15/Fs - s
Combined Digital and On-chip Analog Filter Response - Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.105
.490 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .635 - - Fs
Stop-band Attenuation (Note 10) 90 - - dB
Group Delay - 7.1/Fs - s
DS617F2 13
CS4362A
COMBINED INTERPOLATION & ON-CHIP ANALOG FILTER RESPONSE
(CONTINUED)
DSD COMBINED DIGITAL & ON-CHIP ANALOG FILTER RESPONSE
Parameter Slow Roll-Off (Note 8) UnitMin Typ Max
Single-Spe e d Mo d e - 48 k Hz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-0.417
0.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .583 - - Fs
Stop-band Attenuation (Note 10) 64 - - dB
Group Delay - 7.8/Fs - s
De-emphasis Error (Note 11) Fs = 32 kHz
(Relative to 1 kHz) Fs = 44.1 kHz
Fs = 48 kHz
-
-
-
-
-
-
±0.36
±0.21
±0.14
dB
dB
dB
Double-Speed Mode - 96 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.296
.499 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .792 - - Fs
Stop-band Attenuation (Note 10) 70 - - dB
Group Delay - 5.4/Fs - s
Quad-Speed Mode - 192 kHz
Passband (Note 9) to -0.01 dB corner
to -3 dB corner 0
0-
-.104
.481 Fs
Fs
Frequency Response 10 Hz to 20 kHz -0.01 - +0.01 dB
Stop Band .868 - - Fs
Stop-band Attenuation (Note 10) 75 - - dB
Group Delay - 6.6/Fs - s
Parameter Min Typ Max Unit
DSD Processor mode
Passband (Note 9) to -3 dB corner 0 - 50 kHz
Frequency Response 10 Hz to 20 kHz -0.05 - +0.05 dB
Roll-off 27 - - dB/Oct
14 DS617F2
CS4362A
DIGITAL CHARACTERISTICS
13. Any pin except supplies. Transient currents of up to ±100 mA on the input pins will not cause SCR latch-
up.
Parameters Symbol Min Typ Max Units
Input Leakage Current (Note 13) Iin --±10µA
Input Capacitance - 8 - pF
High-level Input Voltage Serial I/O
Control I/O VIH
VIH
70%
70% -
--
-VLS
VLC
Low-level Input Voltage Serial I/O
Control I/O VIL
VIL
-
--
-30%
30% VLS
VLC
Low-level Output Voltage (IOL = -1.2 mA) Control I/O = 3.3 V, 5 V
Control I/O = 1.8 V, 2.5 V VOL
VOL
-
--
-20%
25% VLC
VLC
Maximum MUTEC Drive Current Imax -3-mA
MUTEC High-level Output Voltage VOH -VA-V
MUTEC Low-level Output Voltage VOL -0-V
DS617F2 15
CS4362A
SWITCHING CHARACTERISTICS - PCM
(Inputs: Logic 0 = GND, Logic 1 = VLS, CL = 30 pF)
Notes: 14. After powering up, RST should be held low until after the power supplies and clocks are settled.
15. See Table 1 on page 21 for suggested MCLK frequencies.
Parameters Symbol Min Max Units
RST pin Low Pulse Width (Note 14) 1-ms
MCLK Frequency 1.024 55.2 MHz
MCLK Duty Cycle (Note 15) 45 55 %
Input Sample Rate - LRCK Single-speed Mode
Double-speed Mode
Quad-speed Mode
Fs
Fs
Fs
4
50
100
54
108
216
kHz
kHz
kHz
LRCK Duty Cycle 45 55 %
SCLK Duty Cycle 45 55 %
SCLK High Time tsckh 8-ns
SCLK Low Time tsckl 8-ns
LRCK Edge to SCLK rising edge tlcks 5-ns
SDIN Setup Time before SCLK rising edge tds 3-ns
SDIN Hold Time af ter SCLK rising edge tdh 5-ns
SDINx
tds
SCLK
LRCK
MSB
tdh
tsckh tsckl
tlcks
MSB-1
Figure 1. Serial Audio Interface Timing
16 DS617F2
CS4362A
SWITCHING CHARACTERISTICS - DSD
(Logic 0 = AGND = DGND; Logic 1 = VLS; CL=20pF)
Parameter Symbol Min Typ Max Unit
MCLK Duty Cycle 40 - 60 %
DSD_SCLK Pulse Width Low tsclkl 160 - - ns
DSD_SCLK Pulse Width High tsclkh 160 - - ns
DSD_SCLK Frequency (64x Oversampled)
(128x Oversampled) 1.024
2.048 -
-3.2
6.4 MHz
MHz
DSD_A / _B valid to DSD_SCLK rising setup time tsdlrs 20 - - ns
DSD_SCLK rising to DSD_A or DSD_B hold time tsdh 20 - - ns
sclkh
t
sclkl
t
DSDxx
DSD_SCLK
sdlrs
tsdh
t
Figure 2. Direct Stream Digital - Serial Audio Input Timing
DS617F2 17
CS4362A
SWITCHING CHARACTERISTICS - CONTROL PORT - I²C FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Notes: 16. Data must be held for sufficient time to bridge the transition time, tfc, of SCL.
Parameter Symbol Min Max Unit
SCL Clock Frequency fscl - 100 kHz
RST Rising Edge to Start tirs 500 - ns
Bus Free Time Between Transmissions tbuf 4.7 - µs
Start Condition Hold Time (prior to first clock pulse) thdst 4.0 - µs
Clock Low time tlow 4.7 - µs
Clock High Time thigh 4.0 - µs
Setup Time for Repeated Start Condition tsust 4.7 - µs
SDA Hold Time from SCL Falling (Note 16) thdd 0-µs
SDA Setup time to SCL Rising tsud 250 - ns
Rise T ime of SCL and SDA trc, trc -1µs
Fall Time SCL and SDA tfc, tfc -300ns
Setup Time for Stop Condition tsusp 4.7 - µs
Acknowledge Delay from SCL Falling tack 300 1000 ns
t
buf thdst
t
hdst
t
low
t
r
t
f
t
hdd
thigh
t
sud
t
sust
t
susp
Stop S ta rt
Start
Stop
Repeated
SDA
SCL
t
irs
RST
Figure 3. Control Port Timing - I²C Format
18 DS617F2
CS4362A
SWITCHING CHARACTERISTICS - CONTROL PORT - SPI FORMAT
(Inputs: Logic 0 = GND, Logic 1 = VLC, CL=30pF)
Notes: 17. tspi only needed before first falling edge of CS after RST rising edge. tspi = 0 at all other times.
18. Data must be held for sufficient time to bridge the transition time of CCLK.
19. For FSCK < 1 MHz.
Parameter Symbol Min Max Unit
CCLK Clock Frequency fsclk -6MHz
RST Rising Edge to CS Falling tsrs 500 - ns
CCLK Edge to CS Falling (Note 17) tspi 500 - ns
CS High Time Between Transmissions tcsh 1.0 - µs
CS Falling to CCLK Edge tcss 20 - ns
CCLK Low Time tscl 66 - ns
CCLK High Time tsch 66 - ns
CDIN to CCLK Rising Setup Time tdsu 40 - ns
CCLK Rising to DATA Hold Time (Note 18) tdh 15 - ns
Rise Time of CCLK and CDIN (Note 19) tr2 - 100 ns
Fall Time of CCLK and CDIN (Note 19) tf2 - 100 ns
tr2 tf2
tdsu t
dh
t
sch
tscl
CS
CCLK
CDIN
tcss t
csh
tspi
tsrs
RST
Figure 4. Control Port Timing - SPI Format
DS617F2 19
CS4362A
3. TYPICAL CONNECTION DIAGRAM
VLS
MCLK
VD
AOUTA1+
8
32
0.1 µF +1 µF
+2.5 V
SDIN1
9
1 µF 0.1 µF
+
+
20
21
FILT+
CMOUT
7
6
LRCK
SCLK
SDIN3
SDIN2
39
40
0.1 µF47 µF
VA
0.1 µF
+
1 µF
0.1 µF
+1 .8 V to +5 V
+5 V
4
43
13
Analog Conditioning
and Muting
AOUTA1-
AOUTB1+ 38
37 Analog Conditioning
and Muting
AOUTB1-
AOUTA2+ 35
36 Analog Conditioning
and Muting
AOUTA2-
AOUTB2+ 34
33 Analog Conditioning
and Muting
AOUTB2-
AOUTA3+ 29
30 Analog Conditioning
and Muting
AOUTA3-
AOUTB3+ 28
27 Analog Conditioning
and Muting
AOUTB3-
MUTEC1 41
26
Mute
Drive
MUTEC2
11
Micro-
Controller
VLC
0.1 µF
+1.8 V to + 5 V 18
2
48 DSDB2
3
42 DSD_SCLK
DSDA1
DSDB3
DSDA3
DSDB1
DSDA2
46
47
1
16
15 SCL/CCLK
SDA/CDIN
ADO/CS
RST
19
17
2 K
2 K
No te *: N e c e ss a ry fo r I2C
control port operation
Note*
MUTEC3 25
24
MUTEC4
MUTEC5 23
22
MUTEC6
CS4362A
31
GND GND
5TST
10, 12,
14, 44, 45
DSD
Audio
Source
220 Ω
470 Ω
470 Ω
Digital
Audio
Source
PCM
Figure 5. Typical Connection Diagram, Software Mode
20 DS617F2
CS4362A
VLS CS4362A
MCLK
VD
AOUTA1+
8
32
0.1 µF +1 µF
+2.5 V
SDIN1
9
1 µF 0.1 µF
+
+
20
21
FILT+
CMOUT
7
6
LRCK
SCLK
SDIN3
SDIN2
39
40
0.1 µF47 µF
VA
0.1 µF
+
1 µF
0.1 µF
+1.8 V to + 5 V
+5 V
4
43
13
AOUTA1-
AOUTB1+ 38
37
AOUTB1-
AOUTA2+ 35
36
AOUTA2-
AOUTB2+ 34
33
AOUTB2-
AOUTA3+ 29
30
AOUTA3-
AOUTB3+ 28
27 Analog Conditioning
and Muting
AOUTB3-
11
VLC
0.1 µF
+1.8 V to +5 V 18
DSD
2
48 DSDB2
3
42 M3(DSD_SCLK)
DSDA1
DSDB3
DSDA3
DSDB1
DSDA2
46
47
1
M2
M1
M0
RST
47 K
VLS NoteDSD
NoteDSD
NoteDSD: For DSD operation:
rem ain s tatic h igh.
2) M3 PCM stand-alone configuration
pin becomes DSD_SCLK
22
MUTEC6
Analog Conditioning
and Muting
23
MUTEC5
Analog Conditioning
and Muting
24
MUTEC4
Analog Conditioning
and Muting
25
MUTEC3
Analog Conditioning
and Muting
26
MUTEC2
Analog Conditioning
and Muting
41
MUTEC1
Stand-Alone
Mode
Configuration
1) LRCK mu s t be tie d to VL S an d
31
GND GND
5TST
10, 12,
14, 44, 45
Digital
Audio
Source
PCM
Audio
Source
220 Ω
470 Ω
470 Ω
16
15
19
17
47 K
Optional
Figure 6. Typical Connection Diagram, Hardware Mode
DS617F2 21
CS4362A
4. APPLICATIONS
The CS4362A serially accepts two’s-complement formatted PCM data at standard audio sample rates including 48,
44.1, and 32 kHz in SSM, 96, 88.2, and 64 kHz in DSM, and 192, 176.4, and 128 kHz in QSM. Audio data is input
via the serial data input pins (SDINx). The Left/Right Clock (LRCK) determines which channel is currently being input
on SDINx, and the Serial Clock (SCL K) clocks audio data into the input data buffer.
The CS4362A can be configured in Hardware Mode by the M0, M1, M2, M3, an d DSD_EN pins and in Soft ware
Mode through I²C or SPI.
4.1 Master Clock
MCLK/LRCK must be an integer ratio as shown in Table 1. The LRCK frequency is equal to Fs, the frequen-
cy at which words for e ach channel are input to the device. The M CLK-to-LRCK frequency ratio is de tected
automatically during the initialization sequence by counting th e number of MCLK tra nsitions during a single
LRCK period. Internal dividers are then set to generate the proper internal clocks. Table 1 illustrates several
standard audio sample rates and the required MCLK and LRCK frequencies. Please note there is no re-
quired phase relationship, but MCLK, LRCK, and SCLK must be synchronous.
4.2 Mode Select
In Hardware Mode, operation is determined by the Mode Select pins. The states of these pin s are continu-
ally scanned for any changes; however, the mode should only be changed while the device is in reset
(RST pin low) to ensure proper switching from one mode to anothe r. These pins require co nnection to sup-
ply or ground as outlined in Figure 6. VLC supplies M0, M1, and M2. VLS supplies M3 and DSD_EN.
Tables 2 - 4 show the deco de of these pins.
In Software Mode, the operational mode and data format are set in the FM and DIF registers. See “Digital
Interface Format (DIF)” on page 34 and “Functional Mode (FM)” on page 40.
Speed Mode
(sample-rate range)
Sample
Rate
(kHz) MCLK (MHz) Software
Mode Only
MCLK Ratio 256x 384x 512x 768x 1024x*
Single-Speed
(4 to 50 kHz) 32 8.1920 12.2880 16.3840 24.5760 32.7680
44.1 11.2896 16.9344 22.5792 33.8688 45.1584
48 12.2880 18.4320 24.5760 36.8640 49.1520
MCLK Ratio 128x 192x 256x 384x 512x*
Double-Speed
(50 to 100 kHz) 64 8.1920 12.2880 16.3840 24.5760 32.7680
88.2 11.2896 16.9344 22.5792 33.8688 45.1584
96 12.2880 18.4320 24.5760 36.8640 49.1520
MCLK Ratio 64x 96x 128x 192x 256x*
Quad-Speed
(100 to 200 kHz) 176.4 11.2896 16.9344 22.5792 33.8688 45.1584
192 12.2880 18.4320 24.5760 36.8640 49.1520
Note: These modes are only available in Software Mode by setting the MCLKDIV bit = 1.
Table 1. Common Clock Frequencies
22 DS617F2
CS4362A
M1
(DIF1) M0
(DIF0) DESCRIPTION FORMAT FIGURE
00
Left-justified, up to 24-bit data 0Figure 7
01
I²S, up to 24-bit data 1Figure 8
10
Right-justified, 16-bit Data 2Figure 9
11
Right-justified, 24-bit Data 3Figure 10
Table 2. Digital Interface Format, Stand-Alone Mode Options
M3 M2
(DEM) DESCRIPTION
00
Single-speed without De-emphasis (4 to 50 kHz sample rate s)
01
Single-speed with 44.1 kHz De-Emphasis; see Figure 13
10
Double-speed (50 to 100 kHz sample rates)
11
Quad-speed (1 00 t o 200 kHz sample rates)
Table 3. Mode Selection, Stand-Alone Mode Options
DSD_EN
(LRCK) M2 M1 M0 DESCRIPTION
1 000
64x oversampled DSD data with a 4x MCLK to DSD data rate
1 001
64x oversampled DSD data with a 6x MCLK to DSD data rate
1 010
64x oversampled DSD data with a 8x MCLK to DSD data rate
1 011
64x oversampled DSD data with a 12x MCLK to DSD data rate
1 100
128x oversampled DSD dat a with a 2x MCLK to DSD data rate
1 101
128x oversampled DSD dat a with a 3x MCLK to DSD data rate
1 110
128x oversampled DSD dat a with a 4x MCLK to DSD data rate
1 111
128x oversampled DSD dat a with a 6x MCLK to DSD data rate
Table 4. Direct Stream Digital (DSD), Stand-Alone Mode Options
DS617F2 23
CS4362A
4.3 Digital Interface Formats
The serial port operates as a slave and supports the I²S, Left-justified, and Right-justified digital interface
formats with varying bit depths from 16 to 24 as shown in Figures 7-12. Data is clocked into the DAC on the
rising edge.
LRCK
SCLK
Left Channel Right Channel
SDINx +3 +2 +1+5 +4
-1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
MSB LSB MSB LSB
Figure 7. Format 0 - Left-Justified up to 24-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx +3 +2 +1+5 +4
-1 -2 -3 -4 -5 +3 +2 +1+5 +4
-1 -2 -3 -4
MSB MSB
LSB LSB
Figure 8. Format 1 - I²S up to 24-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10 6543210987
15 14 13 12 11 10
32 clocks
Figure 9. Format 2 - Right-Justified 16-bit Data
LRCK
SCLK
Left Channel
SDINx 65432107
23 22 21 20 19 18 65432107
23 22 21 20 19 18
32 clocks
0
Right Channel
Figure 10. Format 3 - Right-Justified 24-bit Data
24 DS617F2
CS4362A
4.4 Oversampling Modes
The CS4362A operates in one of three oversampling modes based on the input sample rate. Mode selection
is determined by the DSD_EN, M3, and M2 pins in Hardware Mode or the FM bits in Software Mode. Single-
speed mode supports input sample rates up to 50 kHz and uses a 128x oversampling ratio. Double-speed
Mode supports inpu t sample rates up to 100 kHz and uses an oversampling ratio of 64x. Quad-speed Mode
supports input sample rates up to 200 kHz and uses an oversa mpling ratio of 32x.
4.5 Interpolation Filter
To accommodate the increasingly complex requirements of digital audio systems, the CS4362A incorpo-
rates selectable interpolation filters for each mode of operation. A “fast” and a “slow” roll-off filter is available
in each of Single, Double, and Quad-Speed modes. These filters have been designed to accommodate a
variety of musical tastes and styles. The FILT_SEL bit is used to select which filter is used ( see the “Filter
Plots” on page 42 for more details).
When in Hardware Mode, only the “fast” roll-off filter is available.
Filter specifications can be found in Section 2, and filter response plots can be found in Figures 20 to 43.
4.6 De-emphasis
The CS4362A inclu des on -chip digit al de -emph asis f ilters. The de-emphasis feature is included to accom-
modate older audio recordings that utilize pre-emphasis equalization as a means of noise reduction.
Figure 13 shows the de-emphasis curve. The frequency response of the de-emphasis curve will scale pro-
portionally with changes in sample rate (Fs) if the input sample rate does not match the coefficient which
has been selected.
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10
10 6543210987
15 14 13 12 11 10
17 16 17 16
32 clocks
19 18 19 18
Figure 11. Format 4 - Right-Justified 20-bit Data
LRCK
SCLK
Left Channel Right Channel
SDINx 6543210987
15 14 13 12 11 10
10 6543210987
15 14 13 12 11 10
17 16 17 16
32 clocks
Figure 12. Format 5 - Right-Justified 18-bit Data
DS617F2 25
CS4362A
In Software Mode, the requ ired de-emp hasis filter coefficients for 32 kHz, 44.1 kHz, or 48 kHz are selected
via the de-emphasis contro l bits.
In Hardware Mode, only the 44.1 kHz coefficient is available (enabled through the M2 pin). If the input sam-
ple rate is not 44.1 kHz and de-emphasis has been selected, the corner frequencies of the de-emphasis
filter will be scaled by a factor of the actual Fs over 44,100.
4.7 ATAPI Specification
The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The
ATAPI functions are applied per A-B pair. Refe r to Table 8 on page 41 and Figure 14 for additional informa-
tion.
Gain
dB
-10dB
0dB
Frequency
T2 = 15 µs
T1=50 µs
F1 F2
3.183 k Hz 10.61 kHz
Figure 13. De-Emphasis Curve
ΣΣ
A Channel
Volume
Control AoutAx
AoutBx
Left Channel
Audio Data
Right Channel
Audio Data
BChannel
Volume
Control
MUTE
MUTE
SDINx
Figure 14. ATAPI Block Diagram (x = channel pair 1, 2, or 3)
26 DS617F2
CS4362A
4.8 Direct Stream Digital (DSD) Mode
In Stand-alone Mode, DSD operation is selected by holding DSD_EN(LRCK) high and applying the DSD
data and clocks to the appropriate pins. The M[2:0] pins set the expected DSD rate and MCLK ratio.
In Control Port Mode, the FM bits set the device into DSD Mode (DSD_EN pin is not required to be held
high). The DIF register then controls the expected DSD rate and MCLK ratio.
During DSD operation, the PCM related pins should either be tied low or remain active with clocks (except
LRCK in Stand-alone Mode). When the DSD related pins are not being used, they should either be tied static
low or remain active with clocks (except M3 in Stand-alone Mode).
4.9 Grounding and Power Supply Arrangements
As with any high-resolu tion converter, the CS4362A re quires careful at tention to po wer supply and ground-
ing arrangements if its potential pe rforma nce is to be realized . T he Typica l Conn ection Diagra m sho ws the
recommended power arrangeme nts, with VA, VD, VLC, and VLS connected to clean supplies. If th e ground
planes are split betw een digital grou nd and analog grou nd, the GND pins of the CS4362A should be con-
nected to the analog ground plane.
All signals, especially clocks, should be kept away from the FILT+ and VQ pins in order to avoid unwanted
coupling into the DAC.
4.9.1 Capacitor Placement
Decoupling capacitors shou ld be plac ed as clos e to the DAC as possible, with the low-value ceramic ca-
pacitor being the closest. To further minimize impedance, these capacitors should be located on the same
layer as the DAC. If desired, all supply pins with similar voltage ratings may be connected to the same
supply, but a decoupling capacitor should still be placed on each supply pin.
Notes: All decoupling capacitors should be referenced to analog ground .
The CDB4362A evaluation board demon s trates the optimum layout and power supply arrangements.
4.10 Analog Output and Filtering
The application note “Design Notes for a 2-pole Filter with Differential Input” discusses the second-order
Butterworth filte r and diff er ential -to- single-e nded convert er whic h was implem ente d on the CS4 362A eva l-
uation board, CDB4362A, as seen in Figure 16. The CS4362A does not include phase or amplitude com-
pensation for an external filter. Therefore, the DAC system phase and amplitude response will be dependent
on the external analog circuitry. The off-chip filter has been designed to attenuate the typical full-scale out-
put level to below 2 Vrms.
Figure 15 shows how the full-scale differential analog output level specification is derived.
DS617F2 27
CS4362A
4.11 Mute Control
The Mute Control pins go active during power-up initialization, muting, or if the MCLK-to-LRCK ratio is in-
correct. These pins are intended to be used as control for external mute circuits to prevent the clicks and
pops that can occur in any single-ended, single-supply system. The MUTEC output pins are high impedance
at the time of reset. The external mute circuitry ne eds to be self biased int o an active state in order to be
muted during reset. Once reset has been rele ased, the MUTEC pins are active high in hardware m ode and
the active state is set by the MUTEC+/- register in software mode (see Section 6.3.4).
Figure 17 shows a single example of both an active high and an active low mute drive circuit. In these de-
signs, the pull-up and pull-down resistors have bee n especially chosen to meet the input high/lo w threshold
when used with the MMUN 2111 and MMUN2211 intern a l bias resistances of 10 k.
AOUT+
AOUT-
Full-Scale Output Level= (AOUT+) - (AOUT-)= 6.7 Vpp
3.85 V
2.5 V
1.15 V
3.85 V
2.5 V
1.15 V
Figure 15. Full-Scale Output
Figure 16. Recommended Output Filter
28 DS617F2
CS4362A
Use of the Mute Control function is not mandatory but recommend ed for designs requiring the absolute min-
imum in extraneous clicks and pops. Also, use of the Mute Control function can enable the system designer
to achieve idle channel noise/signal-to-noise ratios which are only limited by the external mute circuit.
4.12 Recommended Power-Up Sequence
4.12.1 Hardware Mode
1. Hold RST low until the power supplies and configuration pins are stable, and the master and left/right
clocks are locked to the appro priate frequencies, as discussed in Section 4.1. In this state, the
registers are reset to the default settings, FILT+ will remain low, and VQ will be connected to VA/2.
If RST ca n not be held low long enough the SDINx pins should remain static low until all other clocks
are stable, and if possible th e RST should be toggled low again once the system is stable.
2. Bring RST high. The device will remain in a low power state with FILT+ low and will initiate the
Hardware power-up sequence after approximately 512 LRCK cycles in Single-Speed Mode (1024
LRCK cycles in Double-Speed Mode, and 2048 LRCK cycles in Quad-Speed Mode).
4.12.2 Software Mode
1. Hold RST low until the power supply is stable, and the master an d left/right clocks are locked to the
appropriate frequencies, as discussed in Section 4.1. In this state, the registers are reset to the default
settings; FILT+ will remain low, and VQ will be connected to VA/2.
2. Bring RST high. The device will remain in a low-power state with FILT+ low for 512 LRCK cycles in
Single-speed Mode (1024 LRCK cycles in Double-speed Mode, and 2048 LRCK cycles in Quad-
speed Mode).
3. In order to reduce the chances of clicks and pops, perform a write to the CP_EN bit prior to the
completion of approximately 512 LRCK cycles in Single-speed Mode (1024 LRCK cycles in Double-
speed Mode, and 2048 LRCK cycles in Quad-speed Mode). The desired register settings can be
loaded while keeping the PDN bit set to 1. Set the RMP_UP and RMP_DN bits to 1; then set the
format and mode control bits to the desired settings.
If more than the stated number of LRCK cycles passes before CPEN bit is written, the chip will enter
Hardware Mod e and begin to operate with the M0-M3 as the mode settings. CPEN bit may be written
at anytime, even after the Hardware sequ ence has begun. It is advised that if the CPEN bit cannot be
set in time, the SDINx pins should remain static low (this way, no audio data can be converted
incorrectly by the Hardware Mode settings).
4. Set the PDN bit to 0. This will initiate the power-up sequence, which lasts approximately 50 µs.
Figure 17. Recommended Mute Circuitry
DS617F2 29
CS4362A
4.13 Recommended Procedure for Switching Operational Modes
For systems where the absolute minimum in clicks and pops is required, it is recommended that the MUTE
bits are set prior to changing significant DAC functions (such as changing sample rates or clock sources).
The mute bits may then be released after clocks have settled and the proper modes have been set.
It is required to have the device held in reset if the minimum high/low time specs of MCLK cannot be met
during clock source changes.
4.14 Control Port Interface
The Control Port is used to load all the internal register settings in order to operate in Software Mode (see
the “Filter Pl ots” on p age 42). The operation of the Control Port may be completely asynchronous with the
audio sample rate. However, to avoid potential interference problems, the Control Port pins should remain
static if no operation is required.
The Control Port operates in one of two modes: I²C or SPI.
4.14.1 MAP Auto Increment
The device has MAP (memory address pointer) auto-increment capability enabled by the INCR bit (also
the MSB) of the MAP. If INCR is set to 0, MAP will stay constant for successive I²C writes or reads and
SPI writes. If INCR is set to 1, MAP will auto increment after each byte is written, allowing block reads or
writes of successive registers.
4.14.2 I²C Mode
In the I²C Mode, data is clocked into and out of the bi-directional serial control data line, SDA, by the serial
Control Port clock, SCL (see Figure 18 for the clock to data relationship). There is no CS pin. Pin AD0
enables the user to alter the chip address (0 01100[AD0][R/W ]) and should be tied to VLC or GND, as re-
quired, before powering up the device . If the d evice eve r detect s a high-t o-low t ransitio n on the AD0/ CS
pin after power-up, SPI Mode will be selected.
4.14.2.1 I²C Writ e
To write to the device, follow the proced ure below while adhering to the Control Port Switching Specifica-
tions in Section 2.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh b it must match the settin g o f th e AD0 pin, and the eighth must be 0. The eighth
bit of the address byte is the R/W bit.
2. Wait for an acknowledge (ACK) from the part; then write to the memory address pointer, MAP. This
byte points to the register to be written.
3. Wait for an acknowledge (ACK) from the part; then write the desired data to the register pointed to by
the MAP.
4. If the INCR bit (see Section 4.14.1) is set to 1, repeat the previous step until all the desired registers
are written, then initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C writes to other registers are desired, it is necessary to initiate
a repeated START condition and follow the procedure detailed from step 1. If no further writes to other
registers are desired, initiate a STOP condition to the bus.
30 DS617F2
CS4362A
4.14.2.2 I²C Read
To read from the device, follow the procedure below while adhering to the Control Port Switching Speci-
fications.
1. Initiate a START condition to the I²C bus followed by the address byte. The upper 6 bits must be
001100. The seventh bit m ust match the setting of the AD0 pin, and the eighth must be 1. The eighth
bit of the address byte is the R/W bit.
2. After transmitting an acknowledge (ACK), the device will then transmit the contents of the register
pointed to by the MAP. The MAP register will contain the address of the last register written to the
MAP, or the default address (see Section 4.14.1) if an I²C read is the firs t operation perform ed on the
device.
3. Once the device has transmitted the contents of the register pointed to by the MAP, issue an ACK.
4. If the INCR bit is set to 1, the device will continue to transmit the contents of successive registers. Con-
tinue providing a clock and issue an ACK after each byte until all the desired registers are read; then
initiate a STOP condition to the bus.
5. If the INCR bit is set to 0 and further I²C reads from other registers are desired, it is necessary to initiate
a repeated START condition and follo w the procedure detailed from steps 1 and 2 from the I²C Write
instructions followed by step 1 of the I²C Read section. If no further reads from other registers are de-
sired, initiate a STOP condition to the bus.
4.14.3 SPI Mode
In SPI Mode, data is clocked into the serial contro l data line, CDIN, by the serial Control Port clock, CCLK
(see Figure 19 for the clock-to-data relationship). There is no AD0 p in. Pin CS is the chip select signal and
is used to control SPI writes to the Control Port. When the device de tects a h igh-to -low tran sition on th e
AD0/CS pin after power-up, SPI Mode will be selected. All signals are inputs and data is clocked in on the
rising edge of CCLK.
4.14.3.1 SPI Write
To write to the device, follow the procedure below while adhering to the Control Port Switching Specifica-
tions in Section 2.
1. Bring CS low.
2. The address byte on the CDIN pin must then be 00110000.
3. Write to the memory address pointer, MAP. This byte points to the register to be written.
4. Write the desired data to the register pointed to by the MAP.
5. If the INCR bit (see Sec tion 4.14 .1) is set to 1, repeat the previous step until all the desired registers
are written, then bring CS high.
SDA
SCL
001100 ADDR
AD0 R/W
Start
ACK DATA
1-8 ACK DATA
1-8 ACK
Stop
Note: If operation is a write, this byte contains the Memory Address Pointer, MAP.
Note 1
Figure 18. Control Port Timing, I²C Mode
DS617F2 31
CS4362A
6. If the INCR bit is set to 0 and further SPI writes to other registers are desired, it is necessary to bring
CS high, and follow the procedure detailed from step 1. If no further writes to other registers are de-
sired, bring CS high.
4.15 Memory Address Pointer (MAP)
4.16 INCR (Auto Map Increment Enable)
Default = ‘0’
0 - Disabled
1 - Enabled
4.16.1 MAP4-0 (Memory Address Pointer)
Default = ‘00000’
76543210
INCR Reserved Reserved MAP4 MAP3 MAP2 MAP1 MAP0
00000000
MAP
MSB LSB
DATA
byte 1 byte n
R/W
MAP = Memory Address Pointer
ADDRESS
CHIP
CDIN
CCLK
CS
0011000
Figure 19. Control Port Timing, SPI Mode
32 DS617F2
CS4362A
5. REGISTER QUICK REFERENCE
Addr Function 7 6 5 4 3 2 1 0
01h Mode Control 1 CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
default 00000001
02h Mode Control 2 Reserved DIF2 DIF1 DIF0 Reserved Reserved Reserved Reserved
default 00000000
03h Mode Control 3 SZC1 SZC0 SNGLVOL RMP_UP MUTEC+/- AMUTE M UTEC1 MUTEC0
default 10000100
04h Filter Contro l Reserved Reserved Reserved FILT _SEL Reserved DEM1 DEM0 RMP_DN
default 00000000
05h Invert Control Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
default 00000000
06h Mixing Control
Pair 1 (AOUTx1) P1_A=B P1ATAPI4 P1ATAPI3 P1ATAPI2 P1ATAPI1 P1ATAPI0 FM1 FM0
default 00100100
07h Vo l. Control A1 A1_MUTE A1_VOL6 A1_VOL5 A1_VOL4 A1_VOL3 A1_VOL2 A1_VOL1 A1_VOL0
default 00000000
08h Vo l. Control B1 B1_MUTE B1_VOL6 B1_VOL5 B1_VOL4 B1_VOL3 B1_VOL2 B1_VOL1 B1_VOL0
default 00000000
09h Mixing Control
Pair 2 (AOUTx2) P2_A=B P2ATAPI4 P2ATAPI3 P2ATAPI2 P2ATAPI1 P2ATAPI0 Reserved Reserved
default 00100100
0Ah Vol. Control A2 A2_MUTE A2_VOL6 A2_VOL5 A2_VOL4 A2_VOL3 A2_VOL2 A2_VOL1 A2_VOL0
default 00000000
0Bh Vol. Control B2 B2_MUTE B2_VOL6 B2_VOL5 B2_VOL4 B2_VOL3 B2_VOL2 B2_VOL1 B2_VOL0
default 00000000
0Ch Mixing Control
Pair 3 (AOUTx3) P3_A=B P3ATAPI4 P3ATAPI3 P3ATAPI2 P3ATAPI1 P3ATAPI0 Reserved Reserved
default 00100100
0Dh Vol. Control A3 A3_MUT E A3_VOL6 A3_VOL5 A3_VOL4 A3_VOL3 A3_VOL2 A3_VOL1 A3_VOL0
default 00000000
0Eh Vol. Control B3 B3_MUTE B3_VOL6 B3_VOL5 B3_VOL4 B3_VOL3 B3_VOL2 B3_VOL1 B3_VOL0
default 00000000
12h Chip Revision PART4 PART3 PART2 PART1 PART0 REV2 REV1 REV0
default 01010xxx
DS617F2 33
CS4362A
6. REGISTER DESCRIPTION
Note: All registers are read/write in I²C Mode and write only in SPI, unless otherwise noted .
6.1 Mode Control 1 (Address 01h)
6.1.1 Control Port Enable (CPEN)
Default = 0
0 - Disabled
1 - Enabled
Function:
This bit defaults to 0, allowing the device to power-up in Stand-Alone Mode. The Control Port Mode can
be accessed by setting this bit to 1. This will allow the operation of the device to be controlled by the reg-
isters and the pin definitions will conform to Control Port Mode. To accomplish a clean power-up, the user
should write this bit within 10 ms following the release of Re set.
6.1.2 Freeze Controls (FREEZE)
Default = 0
0 - Disabled
1 - Enabled
Function:
This function allows modifications to be made to the registers without the changes taking effect until the
FREEZE is disabled. To make multiple changes in the Control Port registers take effect simultaneously,
enable the FREEZE Bit, make all register changes, then Disable the FREEZE bit.
6.1.3 Master Clock Divide Enable (MCLKDIV)
Default = 0
0 - Disabled
1 - Enabled
Function:
The MCLKDIV bit enables a circuit which divides the externally applied MCLK signal by 2 prior to all other
internal circuitry.
6.1.4 DAC Pair Disable (DACx_DIS)
Default = 0
0 - DAC Pair x Enabled
1 - DAC Pair x Disabled
Function:
When the bit is set, the respective DAC channel pair (AOUTAx and AOUTBx) will remain in a reset state.
It is advised that changes to these bits be made while the power-down (PDN) bit is enabled to eliminate
the possibility of audible artifacts.
76543210
CPEN FREEZE MCLKDIV Reserved DAC3_DIS DAC2_DIS DAC1_DIS PDN
00000001
34 DS617F2
CS4362A
6.1.5 Power Down (PDN)
Default = 1
0 - Disabled
1 - Enabled
Function:
The entire device will enter a low-power state when this function is enabled, and the contents of the control
registers are retained in this mode. The power-down bit defaults to ‘enabled’ on power-up and must be
disabled before normal operation in Control Port Mode can occur.
6.2 Mode Control 2 (Address 02h)
6.2.1 Digital Interface Format (DIF)
Default = 000 - Format 0 (Left-Justified, up to 24-bit dat a)
Function:
These bits select the interface format for the serial audio input. The Functional Mode bits determine
whether PCM or DSD Mode is selected.
PCM Mode: The required relationship between the Left/Right clock, serial clock and serial da ta is defined
by the Digita l Interface Format and the options are detailed in Figures 7-12.
Note: While in PCM Mode, the DIF bits shou ld only be chang ed whe n the power-do wn (PDN) b it is set
to ensure proper switching from one mode to another.
76543210
Reserved DIF2 DIF1 DIF0 Reserved Reserved Reserved Reserved
00000000
DIF2 DIF1 DIF0 DESCRIPTION Format FIGURE
0 0 0 Left-Justified, up to 24-bit data 0 7
0 0 1 I²S, up to 24-bit data 1 8
0 1 0 Right-Justified, 16-bit da ta 2 9
0 1 1 Right-Justified, 24-bit da ta 3 10
1 0 0 Right-Justified, 20-bit da ta 4 11
1 0 1 Right-Justified, 18-bit da ta 5 12
1 1 0 Reserved -
1 1 1 Reserved -
Table 5. Digital Interface Formats - PCM Mode
DS617F2 35
CS4362A
DSD Mode: The relationship between the oversampling ratio of the DSD audio data and the required
master clock-to -D SD-data-rate is defined by the Digital Interface F or ma t pin s.
6.3 Mode Control 3 (Address 03h)
6.3.1 Soft Ramp and Zero Cross Control (SZC)
Default = 10
00 - Immediate Change
01 - Zero Cross
10 - Soft Ramp
11 - Soft Ramp on Zero Crossings
Function:
Immediate Chan ge
When Immediate Change is selected, all level changes will take effect immediately in one step.
Zero Cross
Zero Cross Enable dictates that signal level changes, either by attenuation changes or muting, will occur
on a signal zero crossing to minimize audible artifacts. The requ ested level change will occur after a time-
out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 4 8 kHz sample rate) if the signal
does not encounter a zero crossing. The zero cross function is independently monitored and implemented
for each channel.
Soft Ramp
Soft Ramp allows level changes, both muting and attenuation, to be implemented by incrementally ramp-
ing, in 1/8 dB steps, from the current level to th e new level at a rate of 1 dB per 8 left/right clock periods.
Soft Ramp on Ze ro Crossing
Soft Ramp and Zero Cross Enable dictates that signal level changes, either by attenuation changes or
muting, will occur in 1/8 dB steps and be implemented on a signal zero crossing. The 1/8 dB level change
will occur after a time-out period between 512 and 1024 sample periods (10.7 ms to 21.3 ms at 48 kHz
sample rate) if the signal does not encounter a zero crossing. Th e zero cross funct ion is independe ntly
monitored and implemented for each channe l.
DIF2 DIF1 DIFO DESCRIPTION
0 0 0 64x oversampled DSD data with a 4x MCLK to DSD data rate
0 0 1 64x oversampled DSD data with a 6x MCLK to DSD data rate
0 1 0 64x oversampled DSD data with a 8x MCLK to DSD data rate
0 1 1 64x oversampled DSD data with a 12x MCLK to DSD data rate
1 0 0 128x oversampled DSD data with a 2x MCLK to DSD data rate
1 0 1 128x oversampled DSD data with a 3x MCLK to DSD data rate
1 1 0 128x oversampled DSD data with a 4x MCLK to DSD data rate
1 1 1 128x oversampled DSD data with a 6x MCLK to DSD data rate
Table 6. Digital Interface Formats - DSD Mode
76543210
SZC1 SZC0 SNGLVOL RMP_UP MUTEC+/- AMUTE MUTEC1 MUTEC0
10000100
36 DS617F2
CS4362A
6.3.2 Single Volume Control (SNGLVOL)
Default = 0
0 - Disabled
1 - Enabled
Function:
The individual channel volume levels are independently controlled by their respective Volume Control
Bytes when this function is disabled. The volume on all channels is determined by the A1 Channel Volume
Control Byte, and the other Volume Control Bytes are ignored when this function is enabled.
6.3.3 Soft Volume Ramp-Up After Error (RMP_UP)
Default = 0
0 - Disabled
1 - Enabled
Function:
An un-mute will be performed after a LRCK/MCLK ratio change or error, and after changing the Functional
Mode. When this feature is enabled, this un-mute is affected, similar to attenuation changes, by the Soft
and Zero Cross bits in the Mode Control 3 register. When disabled, an immediate un-mute is performed
in these instances.
Notes: For best results, it is recommended that this feature be used in conjunction with the RMP_DN bit.
6.3.4 Mutec Polarity (MUTEC+/-)
Default = 0
0 - Active High
1 - Active Low
Function:
The active polarity of the MUTEC pin(s) is determined by this register. When set to 0 (default), the MUTEC
pins are high when active. When set to 1 the MUTEC pin(s) are low when active.
Note: During reset the MUTEC output pins are high impedance and the external mute circuitry will need
to be self biase d into an activ e stat e, see Se ction 4.11. Once reset has been released, the MUTEC out-
puts’ active polarity will be set by this bit.
6.3.5 Auto-Mute (AMUTE)
Default = 1
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute following the reception of 8192 consecutive audio sam-
ples of static 0 or -1. A single sample of non-static data will release the mute. Detection and muting is
done independently for each channel. The quiescent voltage on the ou tput will be retained, and the Mute
Control pin will go a ctive during the mute period. The mu ting function is affected, similar to volume control
changes, by the Soft and Zero Cross bits in the Mode Control 3 register.
DS617F2 37
CS4362A
6.3.6 Mute Pin Control (MUTEC1, MUTEC0)
Default = 00
00 - Six mute control signals
01, 10 - One mute control signal
11 - Three mute control signals
Function:
Selects how the internal mute control signals are routed to the MUTEC1 through MUTEC6 pins. When
set to ‘00’, there is one mute control signal for each channel: AOUT1A on MUTEC1, AOUT1B on
MUTEC2, etc. Wh en set to ‘01’ or ‘10’, th ere is a single mute contr ol sign al on th e MUTEC1 p in. When
set to ‘11’, there are three mute control signals, one for each stereo pair: AOUT1A and AOUT1B on
MUTEC1, AOUT2A and AOUT2B on MUTEC2, and AOUT3A and AOUT3B on MUTEC3.
6.4 Filter Control (Address 04h)
6.4.1 Interpolation Filter Select (FILT_SEL)
Default = 0
0 - Fast roll-off
1 - Slow roll-off
Function:
This function allows the user to select whether the interpol ation filter has a fast or slow roll off . For filter
characteristics, please see Section 2.
6.4.2 De-Emphasis Control (DEM)
Default = 00
00 - Disabled
01 - 44.1 kHz
10 - 48 kHz
11 - 32 kHz
Function:
Selects the appropriate digital filter to maintain the standard 15 µs/50 µs digital de-emphasis filter re-
sponse at 32, 44.1 or 48 kHz sample rates. (see Figure 13)
De-emphasis is only available in Sing le-Speed Mode.
6.4.3 Soft Ramp-Down Before Filter Mode Change (RMP_DN)
Default = 0
0 - Disabled
1 - Enabled
Function:
If either the FILT_SEL or DEM bits are changed, the DAC will stop conversion for a period of time to
change filter values. This bit selects how the data is effected prior to an d after the change of the filter val-
76543210
Reserved Reserved Reserved FILT_SEL Reserved DEM1 DEM0 RMP_DN
00000000
38 DS617F2
CS4362A
ues. When this bit is enabled, the DAC will ramp down the volume prior to a filter-mode change and ramp
from mute to the origina l volume value after a filter-mode change according to the settings of the Soft a nd
Zero Cross bits in the Mode Control 3 register. When disabled, an immediate mute and unmute is per-
formed.
Loss of clocks or a change in the FM bits will always cause an immediate mute; unmute in these condi-
tions is affected by the RMP_UP bit.
Note: For best results, it is recommended that this feature be used in conjunction with the RMP_UP bit.
6.5 Invert Control (Address 05h)
6.5.1 Invert Signal Polarity (Inv_Xx)
Default = 0
0 - Disabled
1 - Enabled
Function:
When enabled, these bits will invert the signal polarity of their respective channels.
6.6 Mixing Control Pair 1 (Channels A1 & B1)(Address 06h)
Mixing Control Pair 2 (Channels A2 & B2)(Address 09h)
Mixing Control Pair 3 (Channels A3 & B3)(Address 0Ch)
6.6.1 Channel A Volume = Channel B Volume (A=B)
Default = 0
0 - Disabled
1 - Enabled
Function:
The AOUTAx and AOUTBx volume levels a r e in de p end en tly controlled by the A a n d t he B Ch an n el Vo l-
ume Control Bytes when this function is disabled. The volume on both AOUTAx and AOUTBx are deter-
mined by the A Channel Attenuation and Volume Control Bytes (per A-B pair), and the B Channel Bytes
are ignored when this function is enabled.
76543210
Reserved Reserved INV_B3 INV_A3 INV_B2 INV_A2 INV_B1 INV_A1
00000000
76543210
Px_A=B PxATAPI4 PxATAPI3 PxATAPI2 PxATAPI1 PxATAPI0 PxFM1 PxFM0
00100100
DS617F2 39
CS4362A
6.6.2 ATAPI Channel Mixing and Muting (ATAPI)
Default = 01001 - AOUTAx=aL, AOUTBx=bR (Stereo)
Function:
The CS4362A implements the channel mixing functions of the ATAPI CD-ROM specification. The ATAPI
functions are applied per A-B pair. Refer to Table 7 and Figure 14 for additional information.
ATAPI4 ATAPI3 ATAPI2 ATAPI1 ATAPI0 AOUTAx AOUTBx
00000 MUTE MUTE
00001 MUTE bR
00010 MUTE bL
0 0 0 1 1 MUTE b[(L+R)/2]
00100 aR MUTE
00101 aR bR
00110 aR bL
0 0 1 1 1 aR b[(L+R)/2]
01000 aL MUTE
01001 aL bR
01010 aL bL
0 1 0 1 1 aL b[(L+R)/2]
01100 a[(L+R)/2] MUTE
01101 a[(L+R)/2] bR
01110 a[(L+R)/2] bL
0 1 1 1 1 a[(L+R)/2] b[(L+R)/2]
10000 MUTE MUTE
10001 MUTE bR
10010 MUTE bL
1 0 0 1 1 MUTE [(aL+bR)/2]
10100 aR MUTE
10101 aR bR
10110 aR bL
1 0 1 1 1 aR [(bL+aR)/2]
11000 aL MUTE
11001 aL bR
11010 aL bL
1 1 0 1 1 aL [(aL+bR)/2]
11100 [(aL+bR)/2] MUTE
11101 [(aL+bR)/2] bR
11110 [(bL+aR)/2] bL
1 1 1 1 1 [(aL+bR)/2] [(aL+bR)/2]
Table 7. ATAPI Decode
40 DS617F2
CS4362A
6.6.3 Functional Mode (FM)
Default = 00
00 - Single-Speed Mode (4 to 50 kHz sample rates)
01 - Double-Speed Mode (50 to 100 kHz sample rates)
10 - Quad-Speed Mode (100 to 200 kHz sample rates)
11 - Direct Stream Digital Mode
Function:
Selects the required range of input samp le rates or DSD Mode. All DAC pairs are required to be set to the
same functional mode setting be fore a speed-mode change is accepted. When DSD Mo de is selected for
any channel pair, all pairs switch to DSD Mode.
6.7 Volume Control (Addresses 07h, 08h, 0Ah, 0Bh, 0Dh, 0Eh)
Note: These six registers provide individual volume and mute control for each of the six channels.
The values for “xx” in the bit fields above are as follows:
Register address 07h - xx = A1
Register address 08h - xx = B1
Register address 0Ah - xx = A2
Register address 0Bh - xx = B2
Register address 0Dh - xx = A3
Register address 0Eh - xx = B3
6.7.1 Mute (MUTE)
Default = 0
0 - Disabled
1 - Enabled
Function:
The Digital-to-Analog converter output will mute when enabled. The quiescent voltage on the output will
be retained. The m uting function is affecte d, similarly to attenuation ch anges, by th e Soft and Zero Cross
bits. The MUTE pins will go active during the mute period according to the MUTEC bits.
76543210
xx_MUTE xx_VOL6 xx_VOL5 xx_VOL4 xx_VOL3 xx_VOL2 xx_VOL1 xx_VOL0
00000000
DS617F2 41
CS4362A
6.7.2 Volume Control (XX_VOL)
Default = 0 (No attenuation)
Function:
The Digital Volume Control registers allow independent control of the signal levels in 1 dB increments
from 0 to -127 dB. Volume settings are decoded as shown in Table 8. The volume changes are imple-
mented as dictated by the Soft and Zero Cross bits. All volume settings less than -127 dB are equivalent
to enabling the MUTE bit.
6.8 Chip Revision (Address 12h)
6.8.1 Part Number ID (PART) [Read Only]
01010 - CS4362A
6.8.2 Revision ID (REV) [Read Only]
000 - Revision A
001 - Revision B
Function:
This read-only register can be used to identify the model and revision number of the device.
Binary Code Decimal Value Volume Setting
0 0 0 0 0 0 0 0 0 dB
0 0 1 0 1 0 0 20 -20 dB
0 1 0 1 0 0 0 40 -40 dB
0 1 1 1 1 0 0 60 -60 dB
1 0 1 1 0 1 0 90 -90 dB
Ta ble 8. Example Digital Volume Settings
76543210
PART4 PART3 PART2 PART1 PART0 REV2 REV1 REV0
01010- - -
42 DS617F2
CS4362A
7. FILTER PLOTS
0.4 0.5 0.6 0.7 0.8 0.9 1
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 20. Single-Speed (fast) Stopband Rejectio n Figure 21. Single-Speed (fast) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.02
−0.015
−0.01
−0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 22. Single-Speed (fast) Transition Band (detail) Figure 23. Single-Speed (fast) Passband Ripple
0.4 0.5 0.6 0.7 0.8 0.9 1
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
−120
−100
−80
−60
−40
−20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 24. Single-Speed (slow) Stopband Rejection Figure 25. Single-Speed (slow) Transition Band
DS617F2 43
CS4362A
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.02
−0.015
−0.01
−0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
−10
−9
−8
−7
−6
−5
−4
−3
−2
−1
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 26. Single-Speed (slow) Transition Band (detail) Figure 27. Single-Speed (slow) Passband Ripple
0.4 0.5 0.6 0.7 0.8 0.9 1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 28. Double-Spee d (fas t) Stop ba n d Rejec tion Figure 29. Double-Speed (fast) Transiti on Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 30. Double-Speed (fast) Transition Band (detail) Figure 31. Double-Speed (fast) Passband Ripple
44 DS617F2
CS4362A
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2 0.3 0.4 0.5 0.6 0.7 0.8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 32. Double-Speed (slow) Stopband Rejection Figure 33. Double-Speed (slow) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
00.05 0.1 0.15 0.2 0.25 0.3 0.35
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 34. Doub le-Speed (slow) Transition Ba nd (detail) Figure 35. Double-Speed (slow) Passband Ripple
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.2 0.3 0.4 0.5 0.6 0.7 0.8
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 36. Quad-Speed (fast) Stopband Reje ction Figure 37. Quad-Speed (fast) Transition Band
DS617F2 45
CS4362A
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.05 0.1 0.15 0.2 0.25
0.2
0.15
0.1
0.05
0
0.05
0.1
0.15
0.2
Frequency(normalized to Fs)
Amplitude (dB)
Figure 38. Quad-Speed (fast) Transition Band (detail) Figure 39. Quad-Speed (fast) Passban d Ripple
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
120
100
80
60
40
20
0
Frequency(normalized to Fs)
Amplitude (dB)
Figure 40. Quad-Speed (slow) Stopband Rejection Figure 41. Quad-Speed (slow) Transition Band
0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55
10
9
8
7
6
5
4
3
2
1
0
Frequency(normalized to Fs)
Amplitude (dB)
0 0.02 0.04 0.06 0.08 0.1 0.12
0.02
0.015
0.01
0.005
0
0.005
0.01
0.015
0.02
Frequency(normalized to Fs)
Amplitude (dB)
Figure 42. Quad-Speed (slow) Transition Ban d (detail) Figure 43. Quad-Speed (slow) Passband Ripple
46 DS617F2
CS4362A
8. PARAMETER DEFINITIONS
Total Harmonic Distortion + Noise (THD+N)
The ratio of the rms value of the signal to the rms su m of all other spectral components over the specified
bandwidth (typically 10 Hz to 20 kHz), including distortion components. Expressed in decibels.
Dynamic Range
The ratio of the full-scale rms value of the signa l to the rms sum of all other spectral components over the
specified bandwidth. Dynamic range is a signal-to-noise measurement over the specified bandwidth
made with a -60 dBFS signal. 60 dB is then added to the resulting measurement to refer the measure-
ment to full scale. This technique ensures that the distortion components are below the noise level and
do not affect the measuremen t. This measurement technique has be en accepted by the Audi o Engineer-
ing Society, AES17-1991, and the Electronic Industries Association of Japan, EIAJ CP-307.
Interchannel Isolation
A measure of crosstalk between the left and right channels. Measured for each channel at the converter's
output with all zeros to the input under test and a full-scale signal applied to the other channel. Un its in
decibels.
Interchannel Gain Mismatch
The gain difference between left and right channels. Units in decibels.
Gain Error
The deviation from the nominal full-scale analog output for a full-scale digital input.
Gain DriftThe change in gain value with temperature. Units in ppm/°C.
DS617F2 47
CS4362A
9. PACKAGE DIMENSIONS
INCHES MILLIMETERS
DIM MIN NOM MAX MIN NOM MAX
A --- 0.055 0.063 --- 1.40 1.60
A1 0.002 0.004 0.006 0.05 0.10 0.15
B 0.007 0.009 0.011 0.17 0.22 0.27
D 0.343 0.354 0.366 8.70 9.0 BSC 9.30
D1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
E 0.343 0.354 0.366 8.70 9.0 BSC 9.30
E1 0.272 0.28 0.280 6.90 7.0 BSC 7.10
e* 0.016 0.020 0.024 0.40 0.50 BSC 0.60
L 0.018 0.24 0.030 0.45 0.60 0.75
µ 0.000° 7.000° 0.00° 7.00°
* Nominal pin pitch is 0.50 mm
Controlling dimension is mm.
JEDEC Designation: MS022
48L LQFP PACKAGE DRAWING
E1
E
D1
D
1
e
L
B
A1
A
48 DS617F2
CS4362A
10.ORDERING INFORMATION
11.REFERENCES
1. How to Achieve O ptimum Per formance fr om Delta-Sigma A/D & D/A Converters, by St even Harr is. Paper
presented at the 93rd Convention of the Audio Enginee ring Society, Oct ob e r 19 92.
2. CDB4362A data sheet, available at http://www.cirrus.com.
3. Design Notes for a 2-Pole Filter with Differential Input, by Steven Green. Cirrus Logic Application Note
AN48.
4. The I²C Bus Specification: Version 2.0, Philips Semiconductors, December 1998
http://www.semiconductors.philips.com.
Product Description Package Pb-Free Grade Temp Range Container Order #
CS4362A 114 dB, 192 kHz 6-
channel D/A Converter 48-pin
LQFP YES Commercial -40°C to +85°C Tray CS4362A-CQZ
Tape & Reel CS4362A-CQZR
Automotive -40°C to +105°C Tray CS4362A-DQZ
Tape & Reel CS4362A-DQZR
CDB4362A CS4362A Evaluation Board - - - - CDB4362A
DS617F2 49
CS4362A
12.REVISION HISTORY
Release Changes
PP1 Updated output impedance spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.
Improved interchannel isola tion spec in “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.
PP2 Corrected package type.
F1
Corrected reg i ste r de scri p ti o n in “DAC Pair Disable (DACx_DIS)” on page 33.
Added note to “Digital Interface Format (DIF)” on page 34.
Added PCM mode format changeable in reset only to “Mode Sele ct” on page 21.
Updated ambient operating temperature range for Commercial and Automotive grade.
Updated “DAC Analog Characteristics - Commercial (-CQZ)” on page 9.
Updated “DAC Analog Characteristics - Automotive (-DQZ)” on page 10.
Updated “Power and Thermal Characteristics” on page 11.
Updated “Digital Characteristics” on page 14.
Updated Legal Information under “IMPORTANT NOTICE” on page 50
F2 Updated MUTEC pin description in “Pin Description” on page 6.
Updated “Mute Control” on page 27.
Updated “Mutec Polarity (MUTEC+/-)” on page 36.
50 DS617F2
CS4362A
Contacting Cirrus Logic Support
For all product questions and inqu iries, contact a Cirrus Logic Sales Representative.
To find the one nearest you, go to www.cirrus.com.
IMPORTANT NOTICE
Cirrus Logic, Inc. and its subsidiaries ("Cirrus") beli eve that t he information contained in this document is accu rate and rel iable. However, the information is subje ct
to change without no tice an d is provid ed "AS IS" withou t warra nty of any k ind (expre ss or impl ied). Customers are advise d to obtain the latest version of relevant
information to ve rify, befo re pl acing orde rs, th at infor mation be ing relie d on is cu rren t and com plete. A ll prod ucts a re so ld subject to the terms and conditions of sale
supplied at the time of order acknowledgment, including those pertaining to warranty, indemnification, and limitation of liability. No responsibility is assumed by C irrus
for the use of this information, including use of this information as the basis for manufacture or sale of any items, or for infringement of patents or other rights of third
parties. This document is the property of Cirrus and by furnishing this information, Cirrus grants no license, express or implied under any patents, mask work rights,
copyrights, tradem arks, trade secre ts or other intellectual property rights. Cirru s owns the copyrights associated with the information contained herein and gives con-
sent for copies to be ma de o f the in forma tion on ly for use within your organization with respect to Cirrus integrated circuits or other prod ucts o f Cirrus. Th is consent
does not extend to othe r copying such as copyi ng for general distribution , advertising or pro m o tion al p ur poses, or for creating a ny wo rk for resa le.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROP-
ERTY OR ENVIRONMENTAL D AMAGE (“CRITICAL APPLICATIONS”). CIRRUS PRODUCTS ARE NOT DESIGNED, AUTHORIZED OR WARRANTED FOR USE
IN PRODUCTS SURGICALLY IMPLANTED INTO THE BODY, AUTOMOTIVE SAFETY OR SECURITY DEVICES, LIFE SUPPORT PRODUCTS OR OTHER CRIT-
ICAL APPLICATIONS. INCLUSION OF CIRRUS PRODUCTS IN SUCH APPLIC ATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK AND CIR-
RUS DISCLAIMS AND MAKES NO WARRANTY, EXPRESS, STATUTORY OR IMPLIED, INCLUDING THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR PARTICULAR PURPOSE, WITH REGARD TO ANY CIRRUS PRODUCT T HAT IS USED IN SUCH A MANNER. IF THE CUSTOMER OR CUST OM-
ER’S CUSTOMER USES OR PERMITS THE USE OF CIRRUS PRODUCTS IN CRITICAL APPLICATIONS, CUSTOMER AGREES, BY SUCH USE, TO FULLY
INDEMNIFY CIRRUS, ITS OFFICERS, DIRECTORS, EMPLOYEES, DISTRIBUTORS AND OTHER AGENTS FROM ANY AND ALL LIABILITY, INCLUDING AT-
TORNEYS’ FEES AND COSTS, THAT MAY RESULT FROM OR ARISE IN CONNECTION WITH THESE USES.
Cirrus Logic, Cirrus, and the Cirrus Logic logo designs are trademarks of Cirrus Logic, Inc. All other brand and product names in this document may be trademarks
or service marks of their respective owners.
I²C is a regis t er ed trademar k of Philips Sem ic onducto r.
SPI is a trademark of Mo toro la , Inc.
Direct Stream Digital is a registered trademark of Sony Kabushiki Kaisha TA Sony Corporation.
DSD is a trademark of Sony Kabushiki Kaisha TA Sony Corporation