C3M0075120J Silicon Carbide Power MOSFET TM C3M MOSFET Technology VDS 1200 V ID @ 25C 30 A RDS(on) 75 m N-Channel Enhancement Mode Features * * * * * * * Package C3MTM SiC MOSFET technology Low impedance package with driver source pin 7mm of creepage distance between drain and source High blocking voltage with low on-resistance High-speed switching with low capacitances Fast intrinsic diode with low reverse recovery (Qrr) Halogen free, RoHS compliant TAB Drain 1 2 3 4 5 G KS S S S Benefits * * * * * 6 S 7 S Drain (TAB) Reduce switching losses and minimize gate ringing Higher system efficiency Reduce cooling requirements Increase power density Increase system switching frequency Gate (Pin 1) Driver Source (Pin 2) Applications * * * * Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Power Source (Pin 3,4,5,6,7) Part Number Package Marking C3M0075120J TO-263-7 C3M0075120J Maximum Ratings (TC = 25 C unless otherwise specified) Symbol Parameter Unit 1200 V VGS = 0 V, ID = 100 A Test Conditions Note VDSmax Drain - Source Voltage VGSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note: 1 VGSop Gate - Source Voltage (static) -4/+15 V Static Note: 2 VGS = 15 V, TC = 25C Fig. 19 ID ID(pulse) PD TJ , Tstg TL Continuous Drain Current Pulsed Drain Current 30 19.7 A VGS = 15 V, TC = 100C 80 A Pulse width tP limited by Tjmax Fig. 22 Power Dissipation 113.6 W TC=25C, TJ = 150 C Fig. 20 Operating Junction and Storage Temperature -55 to +150 C 260 C Solder Temperature Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V Note (2): MOSFET can also safely operate at 0/+15 V 1 Value C3M0075120J Rev. -, 07-2017 1.6mm (0.063") from case for 10s Electrical Characteristics (TC = 25C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 1200 1.7 2.5 4.0 2.0 Unit Test Conditions V VGS = 0 V, ID = 100 A V VDS = VGS, ID = 5 mA V VDS = VGS, ID = 5 mA, TJ = 150C IDSS Zero Gate Voltage Drain Current 1 100 A VDS = 1200 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 75 90 RDS(on) Drain-Source On-State Resistance 100 9.0 gfs Transconductance Ciss Input Capacitance Coss Output Capacitance 58 Crss Reverse Transfer Capacitance 3 Eoss Coss Stored Energy 33 EON Turn-On Switching Energy (Body Diode FWD) 230 EOFF Turn-Off Switching Energy (Body Diode FWD) 85 td(on) Turn-On Delay Time 17 Rise Time 9 Turn-Off Delay Time 29 Fall Time 10 tr td(off) tf RG(int) VGS = 15 V, ID = 20 A m Fig. 11 Fig. 4, 5, 6 VGS = 15 V, ID = 20A, TJ = 150C VDS= 20 V, IDS= 20 A S 8.3 Note VDS= 20 V, IDS= 20 A, TJ = 150C Fig. 7 1350 Internal Gate Resistance f = 1 MHz Qgs Gate to Source Charge 14 Gate to Drain Charge 21 Qg Total Gate Charge 51 VAC = 25 mV J 10.5 Qgd Fig. 17, 18 VGS = 0 V, VDS = 1000 V pF Fig. 16 J VDS = 800 V, VGS = -4 V/15 V, ID = 20A, RG(ext) = 0 , L= 156 H, TJ = 150C Fig. 26, 29 ns VDD = 800 V, VGS = -4 V/15 V ID = 20 A, RG(ext) = 0 , Timing relative to VDS Inductive load Fig. 27, 28, 29 f = 1 MHz, VAC = 25 mV nC VDS = 800 V, VGS = -4 V/15 V ID = 20 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics (TC = 25C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Unit Test Conditions Note 4.5 V VGS = -4 V, ISD = 10 A 4.0 V VGS = -4 V, ISD = 10 A, TJ = 150 C A VGS = -4 V Note 1 VGS = -4 V, pulse width tP limited by Tjmax Note 1 VGS = -4 V, ISD = 20 A, VR = 800 V dif/dt = 3600 A/s, TJ = 150 C Note 1, Fig. 29 Continuous Diode Forward Current 22.4 Diode pulse Current 80 A trr Reverse Recover time 18 ns Qrr Reverse Recovery Charge 220 nC Irrm Peak Reverse Recovery Current 19 A Fig. 8, 9, 10 Thermal Characteristics Symbol 2 Parameter Max. RJC Thermal Resistance from Junction to Case 1.1 RJA Thermal Resistance From Junction to Ambient 40 C3M0075120J Rev. -, 07-2017 Unit C/W Test Conditions Note Fig. 21 Typical Performance 90 80 VGS = 15V 70 VGS = 13V 60 50 VGS = 11V 40 30 20 VGS = 9V 10 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS = 15V 60 VGS = 11V 50 40 30 VGS = 9V 20 0 10.0 VGS = 7V 0.0 1.0 2.0 3.0 Drain-Source Voltage, VDS (V) 1.6 VGS = 13V 60 VGS = 11V VGS = 15V 50 40 VGS = 9V 30 20 VGS = 7V 10 0 9.0 10.0 1.0 0.8 0.6 0.4 0.2 0.0 160 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 0.0 10.0 -50 -25 0 200 160 On Resistance, RDS On (mOhms) 120 TJ = 150 C TJ = -55 C 80 TJ = 25 C 60 40 20 0 10 20 30 40 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures C3M0075120J Rev. -, 07-2017 50 50 75 100 125 150 Conditions: IDS = 20 A tp < 200 s 180 100 25 Junction Temperature, TJ (C) Figure 4. Normalized On-Resistance vs. Temperature Conditions: VGS = 15 V tp < 200 s 140 On Resistance, RDS On (mOhms) 8.0 1.2 Figure 3. Output Characteristics TJ = 150 C 3 7.0 1.4 Drain-Source Voltage, VDS (V) 0 6.0 Conditions: IDS = 20 A VGS = 15 V tp < 200 s 1.8 On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 2.0 70 5.0 Figure 2. Output Characteristics TJ = 25 C Conditions: TJ = 150 C tp = < 200 s 80 4.0 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 C 90 VGS = 13V 70 10 VGS = 7V 0.0 Conditions: TJ = 25 C tp = < 200 s 80 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) 90 Conditions: TJ = -55 C tp = < 200 s 60 140 VGS = 11 V 120 100 VGS = 13 V 80 VGS = 15 V 60 40 20 0 -50 -25 0 25 50 75 Junction Temperature, TJ (C) 100 Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance 80 -8 -6 -4 -2 0 0 VGS = -4 V Drain-Source Current, IDS (A) 70 Drain-Source Current, IDS (A) -10 Conditions: VDS = 20 V tp < 200 s 60 50 TJ = 25 C 40 TJ = 150 C TJ = -55 C 30 20 -10 VGS = 0 V -20 -30 VGS = -2 V -40 -50 -60 10 0 0 2 4 6 8 10 12 Conditions: TJ = -55C tp < 200 s 14 Figure 7. Transfer Characteristic for Various Junction Temperatures -4 -6 Figure 8. Body Diode Characteristic at -55 C -2 0 0 Drain-Source Current, IDS (A) -10 VGS = -4 V VGS = 0 V -20 -30 VGS = -2 V -40 -50 -10 -8 -6 -4 -2 0 VGS = -4 V Drain-Source Current, IDS (A) -8 Conditions: TJ = 25C tp < 200 s Drain-Source Voltage VDS (V) VGS = 0 V -20 -30 VGS = -2 V -40 -50 -60 Conditions: TJ = 150C tp < 200 s -70 -80 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 C 4.0 16 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 2.5 2.0 1.5 1.0 0.5 -25 0 25 50 75 Junction Temperature TJ (C) 100 125 Figure 11. Threshold Voltage vs. Temperature 4 C3M0075120J Rev. -, 07-2017 -80 Conditions: IDS = 20 A IGS = 50 mA VDS = 800 V TJ = 25 C 12 3.0 -50 -70 Figure 10. Body Diode Characteristic at 150 C Conditons VDS = VGS IDS = 5 mA 3.5 0 -10 -60 0.0 -80 Drain-Source Voltage VDS (V) Gate-Source Voltage, VGS (V) -10 -70 150 8 4 0 -4 0 10 20 30 40 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 50 60 Typical Performance -7 -6 -5 -4 -3 -2 -1 0 -10 VGS = 0 V Drain-Source Current, IDS (A) 0 -20 VGS = 5 V -30 VGS = 10 V -40 VGS = 15 V -50 -8 -7 -6 -5 -4 -3 -2 -1 0 -20 VGS = 5 V -30 VGS = 10 V VGS = 15 V -60 Conditions: TJ = -55 C tp < 200 s Conditions: TJ = 25 C tp < 200 s -80 Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 C -7 -6 -5 -4 -3 -2 -1 0 Drain-Source Current, IDS (A) VGS = 0 V -20 -30 VGS = 10 V -40 VGS = 15 V -50 Drain-Source Voltage VDS (V) 30 25 20 15 10 5 -70 0 -80 0 200 Figure 15. 3rd Quadrant Characteristic at 150 C Ciss 600 800 1000 Conditions: TJ = 25 C VAC = 25 mV f = 1 MHz 10000 Ciss 1000 Capacitance (pF) 1000 Capacitance (pF) 400 Drain to Source Voltage, VDS (V) Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 C VAC = 25 mV f = 1 MHz 10000 -80 35 -60 Conditions: TJ = 150 C tp < 200 s -70 40 0 -10 VGS = 5 V -50 Figure 14. 3rd Quadrant Characteristic at 25 C Stored Energy, EOSS (J) -8 -40 -60 -70 Drain-Source Voltage VDS (V) 0 -10 VGS = 0 V Drain-Source Current, IDS (A) -8 Coss 100 Crss 10 100 Coss 10 Crss 1 0 50 100 Drain-Source Voltage, VDS (V) 150 Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 C3M0075120J Rev. -, 07-2017 200 1 0 200 400 600 Drain-Source Voltage, VDS (V) 800 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V) 1000 Typical Performance 120 Conditions: TJ 150 C 30 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 35 25 20 15 10 5 0 -55 -30 -5 20 45 70 Case Temperature, TC (C) 95 120 Conditions: TJ 150 C 100 80 60 40 20 0 145 -55 Figure 19. Continuous Drain Current Derating vs. Case Temperature -30 -5 20 45 70 95 Case Temperature, TC (C) 120 145 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1 0.5 0.3 0.1 100E-3 0.05 0.02 0.01 10E-3 1E-3 SinglePulse 10.00 10E-6 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 1 ms 1.00 0.10 1 400 300 EOn 200 100 0 10 100 0 10 20 30 Drain to Source Current, IDS (A) C3M0075120J Rev. -, 07-2017 1000 ETotal 400 EOn 200 EOff EOff 40 Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 600V) 6 1 Conditions: TJ = 25 C VDD = 800 V RG(ext) = 0 VGS = -4V/+15 V FWD = C3M0075120J L = 156 H 600 ETotal Switching Loss (uJ) Switching Loss (uJ) 500 0.1 Figure 22. Safe Operating Area 800 Conditions: TJ = 25 C VDD = 600 V RG(ext) = 0 VGS = -4V/+15 V FWD = C3M0075120J L = 156 H Conditions: TC = 25 C D = 0, Parameter: tp Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) 600 100 s 100 ms 0.01 1E-6 10 s Limited by RDS On Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 100.00 50 0 0 10 20 30 Drain to Source Current, IDS (A) 40 Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 800V) 50 Typical Performance 600 Switching Loss (uJ) 500 Conditions: TJ = 25 C VDD = 800 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0075120J L = 156 H 400 EOn 400 200 0 EOff 0 5 10 15 External Gate Resistor RG(ext) (Ohms) Conditions: TJ = 25 C VDD = 800 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0075120J L = 156 H Switching Times (ns) 60 300 ETotal 200 EOn 100 20 25 0 EOff 0 25 50 75 100 125 Junction Temperature, TJ (C) td(off) td(on) 40 tr 20 tf 0 0 5 10 15 External Gate Resistor RG(ext) (Ohms) Figure 27. Switching Times vs. RG(ext) 7 C3M0075120J Rev. -, 07-2017 20 150 Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 80 Conditions: IDS = 20 A VDD = 800 V RG(ext) = 0 VGS = -4V/+15 V FWD = C3M0075120J L = 156 H ETotal Switching Loss (uJ) 800 25 Figure 28. Switching Times Definition 175 Test Circuit Schematic RG L VDC Q1 VGS= - 4 V KS CDC Q2 RG D.U.T KS Figure 29. Clamped Inductive Switching Waveform Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 C3M0075120J Rev. -, 07-2017 Package Dimensions Package 7L D2PAK Dim All Dimensions in Millimeters Min typ Max 4.300 4.435 4.570 A1 0.00 0.125 0.25 b 0.500 0.600 0.700 A b2 0.600 0.800 1.000 c 0.330 0.490 0.650 C2 1.170 1.285 1.400 D 9.025 9.075 9.125 D1 4.700 4.800 4.900 E 10.130 10.180 10.230 E1 6.500 7.550 8.600 E2 6.778 7.223 7.665 H 15.043 16.178 17.313 L 2.324 2.512 2.700 L1 0.968 1.418 1.868 O 0 4 8 O1 4.5 5 5.5 e 9 C3M0075120J Rev. -, 07-2017 1.27 Notes * RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. * REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. * This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links * * * SPICE Models: http://wolfspeed.com/power/tools-and-support SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support Copyright (c) 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0075120J Rev -, 07-2017 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.wolfspeed.com/power