FN9352 Rev.1.00 Page 1 of 64
May 31, 2019
FN9352
Rev.1.00
May 31, 2019
RAA210925
Pin-Configurable Dual 25A DC/DC Power Module with PMBus Interface
DATASHEET
The RAA210925 is a pin-strap configurable dual 25A
step-down PMBus-compliant DC/DC power supply
module that integrates a digital PWM controller,
synchronous MOSFETs, power inductor, and passive
components. Only input and output capacitors are needed
to finish the design. Because of its thermally-enhanced
HDA packaging technology, the module can deliver up to
25A of continuous output current without the need for
airflow or additional heat sinking. The RAA210925
simplifies configuration and control of Renesas digital
power technology while offering an upgrade to full
PMBus configuration through the pin-compatible
ISL8274M.
Operating across an input voltage range of 4.5V to 14V, the
RAA210925 offers adjustable output voltages down to 0.6V
and achieves up to 95.5% conversion efficiencies. A unique
ChargeMode™ control architecture provides a single clock
cycle response to an output load step and can support
switching frequencies up to 1067kHz. The power module
integrates all power and most passive components and
requires only a few external components to operate. The
RAA210925 comes with a preprogrammed configuration
for operating in Pin-strap mode. Output voltage, switching
frequency, input UVLO, soft-start/stop delay and ramp
times, tracking function, and the device SMBus address can
be programmed with external pin-strap resistors. A standard
PMBus interface addresses fault management, as well as
real-time full telemetry and point-of-load monitoring. The
RAA210925 is supported by PowerNavigator software,
a Graphical User Interface (GUI), that can configure
modules for desired solutions.
The RAA210925 is available in a low profile, compact
18mmx23mmx7.5mm fully encapsulated, thermally
enhanced HDA package.
Related Literature
For a full list of related documents, visit our website:
RAA210925 device page
Features
25A/25A dual-channel output current
4.5V to 14V single rail input voltage
Up to 95.5% efficiency
Programmable output voltage
0.6V to 5V output voltage settings
±1.2% accuracy over line/load/temperature
ChargeMode control loop architecture
296kHz to 1067kHz fixed switching frequency
operations
No compensation required
Fast single clock cycle transient response
PMBus interface and/or pin-strap mode
Programmable through PMBus
Pin-strap mode for standard settings
Real-time telemetry for VIN, VOUT, IOUT,
temperature, duty cycle, and fSW
Complete over/undervoltage, current, and
temperature protections with fault logging
PowerNavigator supported
Thermally enhanced 18mmx23mmx7.5mm HDA
package
Applications
Server, telecom, storage, and datacom
Industrial/ATE and networking equipment
General purpose power for ASIC, FPGA, DSP, and
memory
FN9352 Rev.1.00 Page 2 of 64
May 31, 2019
RAA210925
Figure 1. Application Circuit Figure 2. Small Package for High Power Density
VIN
VDD
VR55
VR5
VR
VOUT1
SGND PGND
VR6
VDRV
SCL
SDA
VCC
VDRV1
VSENP1
VSENN1
VIN
CIN
RAA210925
VOUT1
PMBus
Interface
COUT1
2x10µF
10µF 10µF
EN1
ENABLE1
VOUT2
VSENP2
VSENN2
VOUT2
COUT2
SA
EN2
ENABLE2
Note: This figure represents a typical implementation of the RAA210925. For
PMBus operation, it is recommended to tie the enable pin (EN) to SGND.
23mm
18mm
7.5mm
FN9352 Rev.1.00 Page 3 of 64
May 31, 2019
RAA210925
Contents
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Typical Application Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 RAA210925 Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.5 Pin Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2. Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Thermal Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Recommended Operation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Electrical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3. Typical Performance Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 Efficiency Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Startup and Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Derating Curves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Transient Response Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4. Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.1 SMBus Communications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2 Output Voltage Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.3 Soft-Start, Stop Delay, and Ramp Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Voltage Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.5 Power-Good. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.6 Switching Frequency and PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Output Overcurrent Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.8 Loop Compensation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 SMBus Module Address Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.10 Output Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.11 Output Prebias Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.12 Thermal Overload Protection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.13 Phase Spreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.14 Monitoring Using SMBus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.15 Snapshot Parameter Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5. Layout Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.1 Thermal Considerations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Package Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 PCB Layout Pattern Design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.4 Thermal Vias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.5 Stencil Pattern Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.6 Reflow Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
FN9352 Rev.1.00 Page 4 of 64
May 31, 2019
RAA210925
6. PMBus Command Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.1 PMBus Data Formats. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.2 PMBus Use Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7. PMBus Commands Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8. Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.1 Firmware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
8.2 Datasheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
9. Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
FN9352 Rev.1.00 Page 5 of 64
May 31, 2019
RAA210925 1. Overview
1. Overview
1.1 Typical Application Circuit
Figure 3. RAA210925 Digital PMBus Module Dual 25A/25A Application with Pin-Strap Settings
9,1
9''
95
95
95
9287
6*1'
3*1'
95
9'59
6&/
6'$
9&&
9'59
96(13
96(11
9,1
9&&
5$$
9287
9$
)
) )
6$89/2
96(7B&56
(1
96(7B&56
6675$&.
$6&5
9$8;RU9&&9WR9
6KRXOGEHDFWLYHEHIRUHHQDEOH
6<1&2&3
6:'
6:
9WR9
)
[)
%XON
[)[)
&HUDPLF
[)
&HUDPLF
[)
326&$3
6&/
3LQ6WUDS5HVLVWRUV
(1
6'$
&&&
&&
&&
)
&&
55
555555
3* 3*
N N
(1 (1
3* 3*
6:'
6:
9287
9287
9$
[)
&HUDPLF
[)
326&$3
&&
96(11
96(13
975.1 975.1
975.3 975.3
5
$6&5
5
96(7B),1(
5
96(7B),1(
&)*
5
5

5

Notes:
1. R1 and R2 are not required if the PMBus host already has I2C pull-up resistors.
2. R3 through R11 can be selected according to the tables for the pin-strap resistor setting in this document.
3. V25, VR, and VR55 do not need external capacitors. V25 can be no connection.
(Note 1)
(Note 2)
(Note 3)
FN9352 Rev.1.00 Page 6 of 64
May 31, 2019
RAA210925 1. Overview
Table 1. RAA210925 Design Guide Matrix and Output Voltage Response
VIN (V) VOUT (V) fSW (kHz) IOUT (A) Avg OCP (A) CIN (µF)
Cout_Bulk
(µF) (Note 4)
Cout_Ceramic
(µF) (Note 4)
ASCR
Gain
(Note 6)
ASCR
Residual
(Note 6)
Peak-to-Peak
(mV) (Note 5)
12 5 1067 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 6*100 275 100 170
12 5 615 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 6*100 175 80 150
12 3.3 800 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 8*100 300 90 150
12 3.3 571 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 8*100 175 80 140
12 2.5 1067 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 600 100 110
12 2.5 615 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 275 100 145
12 2.5 471 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 175 90 100
12 1.8 889 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 600 100 90
12 1.8 421 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 225 90 140
12 1.8 364 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 175 90 140
12 1.5 889 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 525 90 90
12 1.5 421 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 225 90 135
12 1.5 320 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 140 90 100
12 1.2 727 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 600 110 70
12 1.2 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 4*470 12*100 225 80 90
12 1 615 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 450 110 80
12 1 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 5*470 12*100 250 80 50
12 0.6 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 7*470 12*100 300 90 50
5 2.5 1067 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 600 100 90
5 2.5 615 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 275 100 130
5 2.5 471 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 9*100 175 90 140
5 1.8 889 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 600 100 85
5 1.8 421 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 250 100 120
5 1.8 364 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 200 100 135
5 1.5 889 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 52590 90
5 1.5 421 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 250 100 125
5 1.5 320 20 25 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 140 90 150
5 1.2 727 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 600 110 90
FN9352 Rev.1.00 Page 7 of 64
May 31, 2019
RAA210925 1. Overview
5 1.2 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 4*470 12*100 25080 80
5 1 615 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 1*470 12*100 450 110 100
5 1 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 5*470 12*100 250 8075
5 0.6 296 25 30 2*470µF POS + (8*22µF + 4*47µF) ceramic 7*470 12*100 30090 50
Notes:
4. 100µF (GRM31CD80J107ME39L) ceramic and 470µF (6TPF470MAH) are selected for output capacitor in the evaluation board.
5. Peak-to-peak VOUT deviation is measured under 0%-60% load transient with 15A/µs load step slew rate.
6. ASCR gain and residual was designed to achieve 50° phase margin at room temperature.
7. Frequency is selected to achieve the highest efficiency at full load as well as avoid saturation of the inductor. For instance, select 615kHz instead of 296kHz if 1V, 26A is required to
avoid inductor saturation. Although better efficiency is obtained at 296kHz supporting 1V, 25A, higher frequency can be selected because less output capacitance is required to
meet the transient response specification.
Table 1. RAA210925 Design Guide Matrix and Output Voltage Response (Continued)
VIN (V) VOUT (V) fSW (kHz) IOUT (A) Avg OCP (A) CIN (µF)
Cout_Bulk
(µF) (Note 4)
Cout_Ceramic
(µF) (Note 4)
ASCR
Gain
(Note 6)
ASCR
Residual
(Note 6)
Peak-to-Peak
(mV) (Note 5)
FN9352 Rev.1.00 Page 8 of 64
May 31, 2019
RAA210925 1. Overview
1.2 RAA210925 Internal Block Diagram
Figure 4. Internal Block Diagram
'LJLWDO&RQWUROOHU
3*1'
6*1'
96(7B&56
6&/
6$89/2
(1
3*
6<1&
2&3
6*1'
3:0
30%XV,&
,QWHUIDFH
6'$
$'&
&6$
96$
6XSHUYLVRU
,QWHUQDO7HPS
6HQVRU
3URWHFWLRQ
2&8&
'3:0
3//
6<1&
287
3RZHU0DQDJHPHQW
66 2989 ,QWHUOHDYH
9''
6QDSVKRW
2787
9287
+
/RJLF
9,1
3*1'
9,1
9'59
95
96(13
$'&
95
9
/'2V
95
9''
)LOWHU
9287
+
/RJLF
9,1
3*1'
&6$
&KDUJH0RGH
&RQWURO
$'&
3:0
95
9'59
9'59
9'59
9'59
9&&
6675$&.
$6&5
9'59
6:'
6:
6:'
6:
96(11
 
/'2
$'&
9287
96$
975.3
975.1
: :
96(7B),1(
190
FN9352 Rev.1.00 Page 9 of 64
May 31, 2019
RAA210925 1. Overview
1.3 Ordering Information
Part Number
(Notes 9, 10) Part Marking Temp Range (°C)
Tape and Reel
(Units) (Note 8)
Package
(RoHS Compliant)
Pkg.
Dwg. #
RAA2109252GLG#AG0 RAA2109252 -40 to +85 - 58 Ld 18x23 HDA Module Y58.18x23
RAA2109252GLG#HG0 RAA2109252 -40 to +85 100 58 Ld 18x23 HDA Module Y58.18x23
RTKA2109252H00000BU Evaluation Board
Notes:
8. Refer to TB347 for details about reel specifications.
9. These Pb-free plastic packaged products are RoHS compliant by EU exemption 7C-I and 7A. They employ special Pb-free material
sets; molding compounds/die attach materials and NiPdAu plate-e4 termination finish, which is compatible with both SnPb and
Pb-free soldering operations. Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the
Pb-free requirements of IPC/JEDEC J STD-020.
10. For Moisture Sensitivity Level (MSL), see the RAA210925 device page. For more information about MSL, see TB363.
Table 2. Key Differences Between Family of Parts
Part Number Description VIN Range (V) VOUT Range (V) IOUT (A)
RAA210925 25A/25A DC/DC dual channel Power Module 4.5 - 14 0.6 - 5 25/25
RAA210825 25A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 25
RAA210833 33A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 33
RAA210850 50A DC/DC single channel Power Module 4.5 - 14 0.6 - 5 50
RAA210870 70A DC/DC single channel Power Module 4.5 - 14 0.6 - 2.5 70
Table 3. Comparison of Simple Digital and Full Digital Parts
ISL8274M RAA210925
VIN (V) 4.5 - 14 4.5 - 14
VOUT (V) 0.6 - 5 0.6 - 5
IOUT (Max) (A) 30/30 25/25
fSW (kHz) 296 - 1067 296 - 1067
Digital PMBus Programmability for
Configuration of Modules
All PMBus commands. NVM access to
store module configuration
Configuration of modules supported by
pin-strap resistors. Digital programmability
supports configuration changes during
run-time operation with a subset of PMBus
commands. No NVM access to store module
configuration
Power Navigator Support Yes Yes
SYNC Capability Yes Yes
Current Sharing Multi-Modules No No
DDC Pin (Inter-Device Communication) Yes N o
Note: For a full comparison of all the RAA210XXX and ISL827XM product offerings please visit the simple-digital module family page.
FN9352 Rev.1.00 Page 10 of 64
May 31, 2019
RAA210925 1. Overview
1.4 Pin Configuration
58 Ld HDA
Top View
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
1 2 3 4 5 6 7 8 9 101112131415161718
PAD1 PAD2
PAD8
PAD9 PAD10 PAD11 PAD12
PAD6
PAD13
PAD14
PAD15
PAD16
PAD3
PAD4
PAD5
PAD7
VOUT1 VOUT2
PGND PGND
PGND
PGND
PGND PGND
SGND
PGND PGND
SW1 SW2
VIN VIN
VIN VDRV1
VDRV1
SWD2
VDRV
PGND
PGND
SWD1
VR
VCC
VSEN1P
VSEN1N
VTRKP
VTRKN
VSET_FINE2
SS/TRACK
PG1
VSET_CRS1
ASCR2
ASCR1 SA/UVLO
CFG SDA
SCL
SYNC/OCP
EN2
EN1
VSEN2P
VSEN2N
V25
PG2
SGND
VDD
VR5
SGND
VR6
VDRV
PGND
VR55
VSET_CRS2
VSET_
FINE1
FN9352 Rev.1.00 Page 11 of 64
May 31, 2019
RAA210925 1. Overview
1.5 Pin Descriptions
Pin
Number
Pin
Name Type Description
PAD1 VOUT1 PWR Power supply output voltage. Channel 1 provides an output voltage from 0.6V to 5V. Refer to
the Functional Description” on page 22 to set the maximum output current from these pads.
PAD2 VOUT2 PWR Power supply output voltage. Channel 2 provides an output voltage from 0.6V to 5V. Refer to
the Functional Description” on page 22 to set the maximum output current from these pads.
PAD3, PAD4,
PAD5, PAD7,
PAD10, PAD12,
PAD13, PAD15
PGND PWR Power ground. Refer to the Layout Guide” on page 35 for the PGND pad connections and I/O
capacitor placement.
PAD6 SGND PWR Signal ground. Refer to Layout Guide” on page 35 for the SGND pad connections.
PAD8, PAD9,
PAD11
VIN PWR Input power supply voltage to power the module. Input voltage ranges from 4.5V to 14V.
PAD14 SW1 PWR Switching node pads for Channel 1. The SW1 pad dissipates the heat and provides good
thermal performance. Refer to Layout Guide” on page 35 for the SW1 pad connections.
PAD16 SW2 PWR Switching node pads for Channel 2. The SW2 pad dissipates the heat and provides good
thermal performance. Refer to Layout Guide” on page 35 for the SW2 pad connections.
C5 VSET_CRS2 I Output voltage selection pin for Channel 2. Sets the VOUT2 set point and VOUT2 max. Use
VSET_FINE2 for fine-tuning.
C6 VSET_CRS1 I Output voltage selection pin for Channel 1. Sets the VOUT1 set point and VOUT1 max. Use
VSET_FINE1 for fine-tuning.
C7 ASCR2 I ChargeMode control ASCR parameters selection pin for Channel 2. Sets ASCR gain and
residual values.
C8 ASCR1 I ChargeMode control ASCR parameters selection pin for Channel 1. Sets ASCR gain and
residual values.
C9 VSET_FINE1 I Output voltage fine-tuning. Provides increased VOUT1 resolution based on programmed
VSET_CRS1 value.
C10 SA/UVLO I Serial address selection pin. Assigns unique address for each individual device or enables
certain management features. This pin also sets the UVLO level.
C11 CFG O Clock source configuration. If the clock source is internal, set the internal
FREQUENCY_SWITCH according to the SYNC pin resistor setting. If the clock source is
external, the internal FREQUENCY_SWITCH is set according to the CFG pin resistor.
C12 SDA I/O Serial data. Connect to external host and/or to other Digital-DC™ devices. A pull-up resistor is
required.
C13 SCL I/O Serial clock. Connect to external host and/or to other Digital-DC devices. A pull-up resistor is
required.
D4 SS/ TRACK I Soft-start/stop selection pin. Sets the turn on/off delay and ramp time as well as tracking
configuration.
D5 PG1 O Power-good output for Channel 1. Power-good is configured as an open-drain output.
D13 SYNC/ OCP I/O Clock synchronization input and OCP setting pin. Sets the frequency of the internal switch
clock, synchronizes to an external clock, or an output internal clock. If using external
synchronization, the external clock must be active before enable. Different OCP levels can be
set with this pin.
D14 EN2 I Enable pin for Channel 2. Logic high to enable the module output.
E14 EN1 I Enable pin for Channel 1. Logic high to enable the module output.
E4 VSET_FINE2 I/O Output voltage fine-tuning. Provides increased VOUT2 resolution based on programmed
VSET_CRS2 value.
E15 VSEN2P I Differential output voltage sense feedback for Channel 2. Connect to positive output regulation
point.
FN9352 Rev.1.00 Page 12 of 64
May 31, 2019
RAA210925 1. Overview
F4 VTRKP I Tracking sense positive input. Tracks an external voltage source.
F15 VSEN2N I Differential output voltage sense feedback for Channel 2. Connect to negative output
regulation point.
G4 VTRKN I Tracking sense negative input (return).
G14 PG2 O Power-good output for Channel 2. Power-good is configured as an open-drain output.
G15 V25 PWR Internal 2.5V reference that powers internal circuitry. No external capacitor required for this
pin. Not recommended to power external circuits.
H3 VSEN1N I Differential output voltage sense feedback for Channel 1. Connect to a negative output
regulation point.
H4 VSEN1P I Differential output voltage sense feedback for Channel 1. Connect to a positive output
regulation point.
H16, J16, K16,
M14
SGND PWR Signal grounds. Use multiple vias to connect the SGND pins to the internal SGND layer.
K14 VDD PWR Input supply voltage for controller. Connect VDD pad to VIN supply.
L2 VR PWR Internal LDO bias pin. Tie VR to VR55 directly with a short loop trace. Not recommended to
power external circuits.
L3 SWD1 PWR Switching node driving pins for Channel 1. Directly connect to the SW1 pad with short loop
wires.
P11 SWD2 PWR Switching node driving pins for Channel 2. Directly connect to the SW2 pad with short loop
wires.
L14 VR5 PWR Internal 5V reference that powers internal circuitry. Place a 10µF decoupling capacitor for this
pin. Maximum external loading current is 5mA.
M1 VCC PWR Internal LDO output. Connect VCC to VDRV for internal LDO driving.
M5, M17, N5 PGND PWR Power grounds. Using multiple vias to connect the PGND pins to the internal PGND layer.
M10 VR55 PWR Internal 5.5V bias voltage for internal LDO use only. Tie VR55 pin directly to the VR pin. Not
recommended to power external circuits.
M13 VR6 PWR Internal 6V reference that powers internal circuitry. Place a 10µF decoupling capacitor for this
pin. Not recommended to power external circuits.
N6, N16 VDRV PWR Power supply for internal FET drivers. Connect a 10μF bypass capacitor to each of these pins.
These pins can be driven by the internal LDO through the VCC pin or by the external power
supply directly. Keep the driving voltage between 4.5V and 5.5V. For 5V input application, use
external supply or connect this pin to VIN.
R8, R17 VDRV1 I Bias pin of the internal FET drivers. Always tie to VDRV.
Pin
Number
Pin
Name Type Description
FN9352 Rev.1.00 Page 13 of 64
May 31, 2019
RAA210925 2. Specifications
2. Specifications
2.1 Absolute Maximum Ratings
2.2 Thermal Information
Parameter Minimum Maximum Unit
Input Supply Voltage, VIN Pin -0.3 17 V
Input Supply Voltage for Controller, VDD Pin -0.3 17 V
MOSFET Switch Node Voltage, SW1/2, SWD1/2 (Note 11)-0.325V
MOSFET Driver Supply Voltage, VDRV, VDRV1 Pin -0.3 6.0 V
Output Voltage, VOUT1/2 Pin -0.3 6.0 V
Internal Reference Supply Voltage
VR6 Pin -0.3 6.6 V
VR, VR5, VR55 Pin -0.3 6.5 V
V25 Pin -0.3 3 V
Logic I/O Voltage for EN1/2, PG1/2, ASCR1/2, SA/UVLO, SCL, SDA,
SYNC/OCP, SS/TRACK, VSET_CRS1/2, VSET_FINE1/2
-0.3 6.0 V
Analog Input Voltages
VSEN1P, VSEN2P, VTRKP -0.3 6.0 V
VSEN1N, VSEN2N, VTRKN -0.3 0.3 V
ESD Rating Value Unit
Human Body Model (Tested per JS-001-2017) 2 kV
Machine Model (Tested per JESD22-A115C) 200 V
Charged Device Model (Tested per JS-002-2014) 750 V
Latch-Up (Tested per JESD78E; Class 2, Level A) 100 mA
Note:
11. Do not apply DC voltage higher than 17V to the pins.
CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may
adversely impact product reliability and result in failures not covered by warranty.
Thermal Resistance (Typical) JA (°C/W) JC (°C/W)
58 Ld HDA Package (Notes 12, 13)5.3 1.1
Notes:
12. JA is defined by simulation in free air with the module mounted on an 8-layer evaluation board 4.7x4.8inch in size with 2oz Cu on
all layers.
13. For JC, the “case temp” location is the center of the package underside.
Parameter Minimum Maximum Unit
Maximum Junction Temperature (Plastic Package) +125 °C
Storage Temperature Range -55 +150 °C
Pb-Free Reflow Profile see Figure 33
FN9352 Rev.1.00 Page 14 of 64
May 31, 2019
RAA210925 2. Specifications
2.3 Recommended Operation Conditions
2.4 Electrical Specifications
Parameter Minimum Maximum Unit
Input Supply Voltage Range, VIN 4.5 14 V
Input Supply Voltage Range for Controller, VDD 4.5 14 V
Output Voltage Range, VOUT 0.6 5 V
Output Current Range, IOUT(DC) Per Channel (Note 16) 025A
Operating Junction Temperature Range, TJ-40 +125 °C
VIN = VDD = 12V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply across the
operating temperature range, -40°C to +85°C.
Parameter Symbol Test Conditions
Min
(Note 14) Typ
Max
(Note 14) Unit
Input and Supply Characteristics
Input Supply Current for
Controller
IDD VIN = VDD = 12V, VOUT = 0V, module
not enabled
40 50 mA
6V Internal Reference
Supply Voltage
VR6 5.5 6.1 6.6 V
5V Internal Reference
Supply
VR5 IVR5 < 5mA 4.5 5.2 5.5 V
2.5V Internal Reference
Supply
V25 2.25 2.5 2.75 V
Internal LDO Output Voltage VCC 5.3 V
Internal LDO Output Current IVCC VIN = VDD = 12V, VCC connected to
VDRV, module enabled
50 mA
Input Supply Voltage for
Controller Read Back
Resolution
VDD_READ_RES ±20 mV
Input Supply Voltage for
Controller Read Back Total
Error (Note 17)
VDD_READ_ERR PMBus read ±2 % FS
Output Characteristics
Output Voltage Adjustment
Range
VOUT_RANGE 0.54 5.5 V
Output Voltage Set-Point
Resolution
VOUT_RES Configured using PMBus ±0.025 %VOUT
Output Voltage Set-Point
Accuracy (Notes 15, 17)
VOUT_ACCY Includes line, load, and temperature
(-20°C ≤ TA ≤ +85°C)
-1.2 1.2 %
Output Voltage Read Back
Resolution
VOUT_READ_RES ±0.15 % FS
Output Voltage Read Back
Tota l E rr or (Note 17)
VOUT_READ_ERR PMBus read -2 2 % FS
Output Current Range
(Note 16)
IOUT_RANGE Per channel 25 A
Output Current Read Back
Tota l E rr or
IOUT_READ_ERR PMBus read at max load
VOUT = 1.5V
±3 A
Soft-Start and Sequencing
Delay Time from Enable to
VOUT Rise
tON_DELAY Configured using pin-strap resistor or
PMBus
2300ms
tON_DELAY Accuracy tON_DELAY_ACCY ±2 ms
FN9352 Rev.1.00 Page 15 of 64
May 31, 2019
RAA210925 2. Specifications
Output Voltage Ramp-Up
Time
tON_RISE Configured using pin-strap resistor or
PMBus
0.5 120 ms
Output Voltage Ramp-Up
Time Accuracy
tON_RISE_ACCY ±250 µs
Delay Time from Disable to
VOUT Fall
tOFF_DELAY Configured using pin-strap resistor or
PMBus
2300ms
tOFF_DELAY Accuracy tOFF_DELAY_ACCY ±2 ms
Output Voltage Fall Time tOFF_FALL Configured using pin-strap resistor or
PMBus
0.5 120 ms
Output Voltage Fall Time
Accuracy
tON_FALL_ACCY ±250 µs
Power-Good
Power-Good Delay VPG_DELAY 3ms
Temperature Sense
Temperature Sense Range TSENSE_RANGE -50 150 C
Internal Temperature Sensor
Accuracy
INT_TEMPACCY Tested at +100°C -5 5 C
Fault Protection
VDD Undervoltage Threshold
Range
VDD_UVLO_RANGE Measured internally 4.18 16 V
VDD Undervoltage Threshold
Accuracy (Note 17)
VDD_UVLO_ACCY ±2 %FS
VDD Undervoltage
Response Time
VDD_UVLO_DELAY 10 µs
VOUT Overvoltage Threshold
Range
VOUT_OV_RANGE Factory default 1.15VOUT V
Configured using pin-strap resistor or
PMBus
1.05VOUT VOUT_MAX V
VOUT Undervoltage
Threshold Range
VOUT_UV_RANGE Factory default 0.85VOUT V
Configured using pin-strap resistor or
PMBus
0 0.95VOUT V
VOUT OV/UV Threshold
Accuracy (Note 15)
VOUT_OV/UV_ACCY -2 2 %
VOUT OV/UV Response
Time
VOUT_OV/UV_DELAY 10 µs
Output Current Limit
Set-Point Accuracy
(Note 17)
ILIMIT_ACCY Tested at
IOUT_AVG_OC_FAULT_LIMIT = 35A
±10 % FS
Over-temperature Protection
Threshold (Controller
Junction Temperature)
TJUNCTION Factory default 115 C
Configured using PMBus -40 115 C
Thermal Protection
Hysteresis
TJUNCTION_HYS 15 C
Oscillator and Switching Characteristics
Switching Frequency Range fSW_RANGE 296 1067 kHz
Switching Frequency
Set-Point Accuracy
fSW_ACCY -5 5 %
VIN = VDD = 12V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply across the
operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 14) Typ
Max
(Note 14) Unit
FN9352 Rev.1.00 Page 16 of 64
May 31, 2019
RAA210925 2. Specifications
Minimum Pulse Width
Required from External
SYNC Clock
EXT_SYNCPW Measured at 50% amplitude 150 ns
Drift Tolerance for External
SYNC Clock
EXT_SYNCDRIFT External SYNC clock equal to 500kHz
is not supported
-10 10 %
Logic Input/Output Characteristics
Bias Current at the Logic
Input Pins
ILOGIC_BIAS EN1/2, PG1/2, SA/UVLO, SCL, SDA,
ASCR1/2, SS/TRACK, SYNC/OCP,
VSET_CRS1/2, VSET_FINE1/2
-100 +100 nA
Logic Input Low Threshold
Voltage
VLOGIC_IN_LOW 0.8 V
Logic Input High Threshold
Voltage
VLOGIC_IN_HIGH 2.0 V
Logic Output Low Threshold
Voltage
VLOGIC_OUT_LOW 2mA sinking 0.5 V
Logic Output High Threshold
Voltage
VLOGIC_OUT_HIGH 2mA sourcing 2.25 V
PMBus Interface Timing Characteristic
PMBus Operating
Frequency
fSMB 100 400 kHz
Notes:
14. Compliance to datasheet limits is assured by one or more methods: Production test, characterization, and/or design. Controller is
independently tested before module assembly.
15. VOUT measured at the termination of the VSEN1/2P and VSEN1/2N sense points.
16. The MAX load current is determined by the thermal Derating Curves” on page 19.
17. “FS” stands for full scale of recommended maximum operation range.
VIN = VDD = 12V, TA = -40°C to +85°C, unless otherwise noted. Typical values are at TA= +25°C. Boldface limits apply across the
operating temperature range, -40°C to +85°C. (Continued)
Parameter Symbol Test Conditions
Min
(Note 14) Typ
Max
(Note 14) Unit
FN9352 Rev.1.00 Page 17 of 64
May 31, 2019
RAA210925 3. Typical Performance Curves
3. Typical Performance Curves
3.1 Efficiency Performance
Operating condition: TA = +25°C, no air flow. COUT = 1 x 470µF POSCAP + 12 x 100µF Ceramic. Typical values are used unless otherwise
noted. The efficiency curves were measured on the evaluation board. For test conditions, refer to Table 1 on page 6.
Figure 5. Single Channel Efficiency vs Output Current Figure 6. Single Channel Efficiency vs Output Current
Figure 7. Single Channel Efficiency vs Output Current Figure 8. Single Channel Efficiency vs Output Current
Figure 9. Single Channel Efficiency vs Output Current Figure 10. Single Channel Efficiency vs Output Current
65
70
75
80
85
90
95
0 5 10 15 20 25
Efficiency (%)
Load Current (A)
1V_296kHz 1.2V_296kHz
1.5V_421kHz 1.8V_421kHz
2.5V_615kHz 3.3V_800kHz
5V_1067kHz
12V
IN
65
70
75
80
85
90
95
0 5 10 15 20 25
Efficiency (%)
Load Current (A)
0.6V_296kHz 1V_615kHz
1.2V_727kHz 1.5V_889kHz
1.8V_889kHz 2.5V_1067kHz
5VIN
5VIN
65
70
75
80
85
90
95
100
0 5 10 15 20
Efficiency (%)
Load Current (A)
1.5V_320kHz 1.8V_364kHz
2.5V_471kHz 3.3V_571kHz
5V
IN
FN9352 Rev.1.00 Page 18 of 64
May 31, 2019
RAA210925 3. Typical Performance Curves
3.2 Startup and Shutdown
Operating condition: TA = +25°C, no air flow. COUT = 1 x 470µF POSCAP + 12 x 100µF Ceramic. Typical values are used unless otherwise
noted.
Figure 11. Single Channel Startup 12VIN, 1.5VOUT
, 25A Figure 12. Single Channel Startup 12VIN, 1.5VOUT
, 0A
Figure 13. Single Channel Shutdown 12VIN, 1.5VOUT
, 25A Figure 14. Single Channel Shutdown 12VIN, 1.5VOUT
, 0A
2ms/Div
SW (10V/Div)
IOUT (16A/Div)
VOUT (750mV/Div)
PG (5V/Div)
1s/Div
SW (10V/Div)
IOUT (16A/Div)
VOUT (750mV/Div)
PG (5V/Div)
FN9352 Rev.1.00 Page 19 of 64
May 31, 2019
RAA210925 3. Typical Performance Curves
3.3 Derating Curves
All of the following curves were plotted at TJ = +125°C. The derating curves were measured on the evaluation board. For test conditions,
refer to Table 1 on page 6. Load current is applied per channel, two channels are operating at the same time.
Figure 15. 12VIN to 1VOUT Figure 16. 5VIN to 1VOUT
Figure 17. 12VIN to 1VOUT Figure 18. 5VIN to 1VOUT
Figure 19. 12VIN to 1.5VOUT Figure 20. 5VIN to 1.5VOUT
0
5
10
15
20
25
30
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
fSW = 615kHz
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
fSW = 296kHz
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
fSW = 889kHz
FN9352 Rev.1.00 Page 20 of 64
May 31, 2019
RAA210925 3. Typical Performance Curves
Figure 21. 12VIN to 2.5VOUT Figure 22. 5VIN to 2.5VOUT
Figure 23. 12VIN to 5VOUT
All of the following curves were plotted at TJ = +125°C. The derating curves were measured on the evaluation board. For test conditions,
refer to Table 1 on page 6. Load current is applied per channel, two channels are operating at the same time. (Continued)
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
0
5
10
15
20
25
30
25 45 65 85 105 125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
fSW = 615kHz
0
5
10
15
20
25
30
25 45 65 85 105
125
Load Current (A)
Ambient Temperature (°C)
0LFM
200LFM
400LFM
fSW = 1067kHz
FN9352 Rev.1.00 Page 21 of 64
May 31, 2019
RAA210925 3. Typical Performance Curves
3.4 Transient Response Performance
Operating condition: TA = +25°C, no air flow. Refer to Table 1 on page 6 for output capacitor and ASCR settings. Typical values are used
unless otherwise noted.
Figure 24. 0A-15A, 15A/µs, 12VIN,1VOUT
, 615kHz Figure 25. 0A-15A, 15A/µs, 12VIN,1.5VOUT
, 889kHz
Figure 26. 0A-15A, 15A/µs, 12VIN,1.8VOUT
, 889kHz Figure 27. 0A-15A, 15A/µs, 12VIN, 2.5VOUT
, 1067kHz
Figure 28. 0A-12.5A, 15A/µs, 12VIN, 3.3VOUT
, 800kHz Figure 29. 0A-12.5A, 15A/µs, 12VIN, 5VOUT
, 1067kHz
IOUT (5A/Div)
VOUT (50mV/Div)
50µs/Div
IOUT (5A/Div)
VOUT (50mV/Div)
50µs/Div
IOUT (5A/Div)
VOUT (50mV/Div)
50µs/Div
FN9352 Rev.1.00 Page 22 of 64
May 31, 2019
RAA210925 4. Functional Description
4. Functional Description
4.1 SMBus Communications
The RAA210925 provides a SMBus digital interface that enables the user to configure the module operation as well
as monitor the input and output parameters. The RAA210925 can be used with any SMBus host device. In addition,
the module is compatible with PMBus Power System Management Protocol Specification Parts I and II version
1.2. The RAA210925 accepts most standard PMBus commands. When configuring the device using PMBus
commands, it is recommended that the enable pin is tied to SGND.
The SMBus device address is the only parameter that must be set by the external pins.
The RAA210925 can operate without the PMBus in pin-strap mode with configurations programmed by pin-strap
resistors, such as output voltage, ASCR setting, switching frequency, OCP limit, device SMBus address, input
UVLO, soft-start/stop, and tracking.
4.2 Output Voltage Selection
The output voltages of both channels may be set to a voltage between 0.6V and 5V if the input voltage is higher
than the desired output voltage by an amount sufficient to maintain regulation.
The VSET_CRS1/2 (VOUT Coarse) and VSET_FINE1/2 (VOUT Fine) pins set the output voltage. A standard 1%
resistor is required. Placing a resistor between VCRS1/2 and SGND based on Table 4 determines the VCRS value.
If higher resolution is desired, the VSET_FINE pin can be used to fine-tune the output voltage settings according to
the following command set:
Use the resistors values from Table 5 on page 23 to set the appropriate value of N for calculating the final output
voltage.
Table 4. Output Voltage Resistor Settings
VOUT_CRS1/2 (V) RSET1/2 (kΩ)
1LOW
1.5 OPEN
3.3 HIGH
0.6 10
0.675 11
0.7 12.1
0.72 13.3
0.75 14.7
0.8 16.2
0.85 17.8
0.9 19.6
0.93 21.5
0.95 23.7
0.98 26.1
1.03 28.7
VOUT_COMMAND =
VOUT_CRS + 5mV • N, if 0.6V ≤ VOUT_CRS < 1.4V
VOUT_CRS + 10mV • N, if 1.4V ≤ VOUT_CRS < 2V
VOUT_CRS, if VOUT_CRS = 5V
VOUT_CRS + 50mV • N, if 2V ≤ VOUT_CRS < 3.6V
VOUT_CRS + 100mV • N, if 3.6V ≤ VOUT_CRS < 5V
FN9352 Rev.1.00 Page 23 of 64
May 31, 2019
RAA210925 4. Functional Description
1.05 31.6
1.1 34.8
1.12 38.3
1.15 42.2
1.2 46.4
1.25 51.1
1.3 56.2
1.35 61.9
1.4 68.1
1.65 75
1.8 82.5
1.85 90.9
2 100
2.4 110
2.5 121
2.8 133
3 147
3.6 162
5 178
Table 5. VSET_FINE Settings
N RSET1/2 (kΩ)
0 10, or OPEN
111
2 12.1
3 13.3
4 14.7
5 16.2
6 17.8
7 19.6
8 21.5
9 23.7, or connect to SGND
10 26.1
11 28.7
12 31.6
13 34.8
14 38.3
15 42.2
16 46.4
17 51.1
18 56.2
Table 4. Output Voltage Resistor Settings (Continued)
VOUT_CRS1/2 (V) RSET1/2 (kΩ)
FN9352 Rev.1.00 Page 24 of 64
May 31, 2019
RAA210925 4. Functional Description
The output voltage may also be set to any value between 0.6V and 5V using the PMBus command
VOUT_COMMAND.
By default, VOUT_MAX is set to 110% of VOUT set by the pin-strap resistor, which can be changed to any value up
to 5.5V by the PMBus Command VOUT_MAX.
4.3 Soft-Start, Stop Delay, and Ramp Times
The RAA210925 follows an internal start-up procedure after power is applied to the VDD pin. The module
requires approximately 60ms to 70ms to check for specific values stored in its internal memory and programmed
by pin-strap resistors. When this process is completed, the device is ready to accept commands through the PMBus
interface and the module is ready to be enabled. If the module is to be synchronized to an external clock source, the
clock frequency must be stable before asserting the EN pin.
It may be necessary to set a delay from when an enable signal is received until the output voltage starts to ramp to
its target value. In addition, the designer may wish to precisely set the time required for VOUT to ramp to its target
value after the delay period has expired. These features can be used as part of an overall inrush current management
strategy or to precisely control how fast a load IC is turned on. The RAA210925 gives the system designer several
options for precisely and independently controlling both the delay and ramp time periods. The soft-start delay
period begins when the EN pin is asserted and ends when the delay time expires.
The soft-start delay (TON_DELAY) and ramp-up time (TON_RISE) can be set to custom values with pin-strap
resistors or PMBus. When the delay time is set to 0ms, the device begins its ramp-up after the internal circuitry has
initialized (approximately 2ms). When the soft-start ramp period is set to 0ms, the output ramps up as quickly as
the output load capacitance and loop settings allow. It is generally recommended to set the soft-start ramp to a value
greater than 2ms to prevent inadvertent fault conditions due to excessive inrush current.
Similar to the soft-start delay and ramp-up time, the delay (TOFF_DELAY) and ramp-down time (TOFF_FALL)
for soft-stop/off can be set to custom values with pin-strap resistors or PMBus. In addition, the module can be
configured as “immediate off” using the command ON_OFF_CONFIG, so that the internal MOSFETs are turned
off immediately after the delay time expires.
The SS/TRACK pin can be used to program the soft-start/stop delay time and ramp time to some typical values as
well as enable/disable the tracking function shown in Table 6 on page 24.
19 61.9
20 68.1, or connect to V25
Table 6. Soft-Start/Stop and Tracking Resistor Settings
TON_DELAY
TOFF_DELAY (ms)
TON_RISE
TOFF_FALL (ms) Tracking
R (kΩ)Ch1 Ch2 Ch1 Ch2 Ch1 Ch2
5 5 2 2 No No LOW
5525No No OPEN
5 5 5 2 No No HIGH
5555No No 10
5102 2No No 11
5 10 2 5 No No 12.1
5 10 5 2 No No 13.3
5 10 5 5 No No 14.7
10 5 2 2 No No 16.2
Table 5. VSET_FINE Settings (Continued)
N RSET1/2 (kΩ)
FN9352 Rev.1.00 Page 25 of 64
May 31, 2019
RAA210925 4. Functional Description
10 5 2 5 No No 17.8
10 5 5 2 No No 19.6
10 5 5 5 No No 21.5
20 5 2 2 No No 23.7
20 5 5 5 No No 26.1
5 20 2 2 No No 28.7
5 20 2 5 No No 31.6
5 20 5 2 No No 34.8
5 20 5 5 No No 38.3
5N/A2N/ANo Track 100%42.2
5 N/A 2 N/A No Track 50% 46.4
5N/A5N/ANo Track 100%51.1
5 N/A 5 N/A No Track 50% 56.2
10 N/A 2 N/A No Track 100% 61.9
10 N/A 2 N/A No Track 50% 68.1
10 N/A 5 N/A No Track 100% 75
10 N/A 5 N/A No Track 50% 82.5
N/A 5 N/A 2 Track 100% No 90.9
N/A 5 N/A 2 Track 50% No 100
N/A 5 N/A 5 Track 100% No 110
N/A 5 N/A 5 Track 50% No 121
N/A 10 N/A 2 Track 100% No 133
N/A 10 N/A 2 Track 50% No 147
N/A 10 N/A 5 Track 100% No 162
N/A 10 N/A 5 Track 50% No 178
Table 6. Soft-Start/Stop and Tracking Resistor Settings (Continued)
TON_DELAY
TOFF_DELAY (ms)
TON_RISE
TOFF_FALL (ms) Tracking
R (kΩ)Ch1 Ch2 Ch1 Ch2 Ch1 Ch2
FN9352 Rev.1.00 Page 26 of 64
May 31, 2019
RAA210925 4. Functional Description
4.4 Voltage Tracking
Numerous high performance systems place stringent demands on the order in which the power supply voltages are
turned on. This is particularly true when powering FPGAs, ASICs, and other advanced processor devices that
require multiple supply voltages to power a single die. In most cases, the I/O interface operates at a higher voltage
than the core and therefore, the core supply voltage must not exceed the I/O supply voltage according to the
manufacturers' specifications.
The RAA210925 integrates a tracking scheme that allows one of its outputs (Channel 1 or Channel 2) to track a
voltage that is applied to the VTRKP and VTRKN pins with no external components required. The VTRKP and
VTRKN pins are analog inputs that, when the tracking mode is enabled, configure the voltage applied to the
VTRKP and VTRKN pins to act as a reference for the device's output regulation.
Figure 30 illustrates the typical connection and the two tracking modes:
Coincident - This mode configures the RAA210925 to ramp its output voltage at the same rate as the voltage
applied to the VTRK pin until it reaches its desired output voltage. The device that is tracking another output
voltage (slave) must be set to its desired steady-state output voltage.
Ratiometric - This mode configures the RAA210925 to ramp its output voltage at a rate that is a percentage of the
voltage applied to the VTRKP and VTRKN pins. The device that is tracking another output voltage (slave) must
be set to its desired steady-state output voltage.
The master RAA210925 device in a tracking group is defined as the device that has the highest target output
voltage within the group. This master device controls the ramp rate of all tracking devices and is not configured for
tracking mode. The maximum tracking rise time is 1V/ms. The slave device must be enabled before the master.
Figure 30. Tracking Modes
Vo2
VOUT
Time
Coincident
Ratiometric
Vo1
Vo2
Q1
Q2
L1
C1
RAA210 925
VTRKP
Vo1
Vo2
Time
Vo1
VIN
VOUT
VTRKN
FN9352 Rev.1.00 Page 27 of 64
May 31, 2019
RAA210925 4. Functional Description
Any device that is configured for tracking mode ignores its TON_DELAY and TON_RISE settings and its output
takes on the turn-on/turn-off characteristics of the reference voltage present at the VTRKP and VTRKN pins.
The VOUT_COMMAND needs to be set the same as the target tracking voltage when tracking is enabled. For
example, the VOUT_COMMAND of the Page1 (VOUT2 which enables the tracking) needs to set to 1V if tracking
100% is selected and a ramp of 1V is applied to VTRKP and VTRKN. The VOUT_COMMAND of Page 1
(VOUT2 which enables the tracking) needs to set to 1V if tracking 50% is selected and a ramp of 2V is applied to
VTRKP and VTRKN. In Tracking mode, the minimum voltage that can be tracked is ~200mV.
4.5 Power-Good
The RAA210925 provides a Power-Good (PG) signal that indicates the output voltage is within a specified
tolerance of its target level and no fault condition exists. By default, the PG pin asserts if the output is within 10%
of the target voltage. This limit may be changed using the PMBus command POWER_GOOD_ON.
A PG delay period is defined as the time from when all conditions within the RAA210925 for asserting PG are met
to when the PG pin is actually asserted. This feature is commonly used instead of using an external reset controller
to control external digital logic. A fixed PG delay of 3ms is programmed for the RAA210925.
4.6 Switching Frequency and PLL
The device’s switching frequency is set from 296kHz to 1067kHz using the pin-strap method (combined with the
average OCP limit setting) as shown in Table 7, or by using the PMBus command FREQUENCY_SWITCH.
Table 7. Switching Frequency and OCP Limit Resistor Setting
Switching Frequency OCP Avg
R (kΩ) fSW (kHz) Ch1 (A) Ch2 (A)
LOW 296 35 35
OPEN 889 35 35
HIGH 1067 35 35
10 296 30 35
11 296 30 30
12.1 296 25 35
13.3 296 25 30
14.7 296 25 25
16.2 320 25 35
17.8 320 25 30
19.6 320 25 25
21.5 320 20 30
23.7 320 20 25
26.1 364 25 35
28.7 364 25 30
31.6 364 20 30
34.8 421 30 35
38.3 421 30 30
42.2 471 25 35
46.4 471 25 30
51.1 471 20 35
56.2 571 25 35
FN9352 Rev.1.00 Page 28 of 64
May 31, 2019
RAA210925 4. Functional Description
The RAA210925 incorporates an internal Phase-Locked Loop (PLL) to clock the internal circuitry. The PLL can be
driven by an external clock source connected to the SYNC pin. This configuration can be achieved by connecting a
resistor to the CFG pin. If the clock source is set to internal, the internal frequency is set according to the SYNC pin
resistor settings. If the clock source is programmed to external, the internal frequency is set according to the resistor
connected to the CFG pin as shown in Table 8. The external clock signal must not vary more than 10% from its
initial value and should have a minimum pulse width of 150ns. For the external clock source, OCP AVG is 25A for
CH1 and CH2, which is not adjustable.
61.9 571 25 30
68.1 571 20 35
75 571 20 30
82.5 615 35 35
90.9 615 35 30
100 615 30 30
110 615 25 35
121 615 25 30
133 615 25 25
147 727 35 35
162 800 30 35
178 800 30 30
Table 8. External Frequency SYNC Settings
Clock Source Internal FREQUENCY_SWITCH (kHz) RSET (kΩ)
Internal Determined by SYNC resistor 10, or OPEN
External 296 11
External 340 12.1
External 390 13.3
External 444 14.7
External 516 16.2, or connect to SGND
External 593 17.8
External 696 19.6
External 800 21.5
External 941 23.7
External 1067 26.1, or connect to V25
Table 7. Switching Frequency and OCP Limit Resistor Setting (Continued)
Switching Frequency OCP Avg
R (kΩ) fSW (kHz) Ch1 (A) Ch2 (A)
FN9352 Rev.1.00 Page 29 of 64
May 31, 2019
RAA210925 4. Functional Description
4.7 Output Overcurrent Protection
The RAA210925 is protected from damage if the output is shorted to ground or if an overload condition is imposed
on the output. Average output overcurrent fault threshold can be programmed by the PMBus command
IOUT_AVG_OC_FAULT_LIMIT while the peak output overcurrent fault threshold can be programmed by the
PMBus command IOUT_OC_FAULT_LIMIT. The default response from an average overcurrent fault is an
immediate shutdown with a continuous retry of 70ms delay. A hard bound of 50A is applied to the peak overcurrent
limit.
The average OCP limit can be set by the SYNC/OCP pin strap. Refer to Table 7 on page 27 for more information.
4.8 Loop Compensation
The module loop response can be set by using the pin-strap method (ASCR1/2 pins) according to Table 9 or
through the PMBus command ASCR_CONFIG. The RAA210925 uses the ChargeMode control algorithm that
responds to the output current changes within a single PWM switching cycle, achieving a smaller total output
voltage variation with less output capacitance than traditional PWM controllers.
Table 9. ASCR Resistor Setting
ASCR Gain ASCR Residual R (kΩ)
350 110 LOW
525 90 OPEN
475 80 HIGH
100 90 10
100 100 11
120 90 12.1
120 100 13.3
140 90 14.7
140 100 16.2
140 110 17.8
150 90 19.6
150 100 21.5
160 70 23.7
160 90 26.1
175 80 28.7
175 90 31.6
200 90 34.8
200 100 38.3
200 110 42.2
225 80 46.4
225 90 51.1
250 80 56.2
250 100 61.9
275 90 68.1
275 100 75
300 70 82.5
300 90 90.9
350 100 100
FN9352 Rev.1.00 Page 30 of 64
May 31, 2019
RAA210925 4. Functional Description
4.9 SMBus Module Address Selection
Each module must have its own unique serial address to distinguish between other devices on the bus. The module
address is set by connecting a resistor between pins SA/UVLO and SGND. The SA/UVLO pin also defines the
input undervoltage lockout limit. The input Undervoltge Lockout (UVLO) prevents the RAA210925 from
operating when the input falls below a preset threshold, indicating the input supply is out of its specified range. The
UVLO threshold (VUVLO) can be set between 4.18V and 16V by using the PMBus command
VIN_UV_FAULT_LIMIT.
Table 10 lists the available module addresses. A standard 1% resistor is required. When the UVLO threshold is hit,
the module shuts down immediately. The fault needs to be cleared for the module to restart.
450 100 110
450 110 121
500 70 133
500 90 147
600 100 162
600 110 178
Table 10. SMBus Address and UVLO Resistor Setting
PMBus Address UVLO (V) R (kΩ)
26h 4.2 LOW
28h 4.5 OPEN
19h 10.8 10
1Ah 10.8 11
1Bh 10.8 12.1
1Ch 10.8 13.3
1Dh 10.8 14.7
1Eh 10.8 16.2
1Fh 10.8 17.8
20h 4.2 19.6
21h 4.2 21.5
22h 4.2 23.7
23h 4.2 26.1
24h 4.2 28.7
25h 4.2 31.6
26h 4.2 34.8
27h 4.2 38.3
28h 4.5 42.2
29h 4.5 46.4
2Ah 4.5 51.1
2Bh 4.5 56.2
2Ch 4.5 61.9
2Dh 4.5 68.1
2Eh 4.5 75
Table 9. ASCR Resistor Setting (Continued)
ASCR Gain ASCR Residual R (kΩ)
FN9352 Rev.1.00 Page 31 of 64
May 31, 2019
RAA210925 4. Functional Description
4.10 Output Overvoltage Protection
The RAA210925 offers an internal output overvoltage protection circuit that can be used to protect sensitive load
circuitry from being subjected to a voltage higher than its prescribed limits. A hardware comparator compares the
actual output voltage (seen at pins VSEN1/2P, VSEN1/2N) to a threshold set to 15% higher than the target output
voltage (default setting). The fault threshold can be set to a desired level by the PMBus command
VOUT_OV_FAULT_LIMIT. If the VSEN1/2P, VSEN1/2N voltage exceeds this threshold, the module initiates an
immediate shutdown without retry.
Internal to the module, two 100Ω resistors are populated from VOUT to VSEN1/2P and SGND to VSEN1/2N to
protect the module from overvoltage conditions in case of open at the voltage sensing pins and differential remote
sense traces due to assembly error. As long as differential remote sense traces have low resistance, VOUT regulation
accuracy is not compromised.
4.11 Output Prebias Protection
An output prebias condition exists when an externally applied voltage is present on a power supply’s output before
the power supply’s control IC is enabled. Certain applications require that the converter not be allowed to sink
current during start-up if a prebias condition exists at the output. The RAA210925 provides prebias protection by
sampling the output voltage before initiating an output ramp.
If a prebias voltage lower than the target voltage exists after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage and both drivers are enabled. The output voltage is then ramped
to the final regulation value at the preconfigured ramp rate.
The actual time the output takes to ramp from the prebias voltage to the target voltage varies, depending on the
prebias voltage. However, the total time elapsed from when the delay period expires to when the output reaches its
target value matches the preconfigured ramp time (see Figure 31 on page 32).
2Fh 4.5 82.5
30h 10.8 90.9
31h 10.8 100
32h 10.8 110
33h 10.8 121
34h 10.8 133
35h 10.8 147
36h 10.8 162
37h 10.8 178
Table 10. SMBus Address and UVLO Resistor Setting (Continued)
PMBus Address UVLO (V) R (kΩ)
FN9352 Rev.1.00 Page 32 of 64
May 31, 2019
RAA210925 4. Functional Description
If a prebias voltage is higher than the target voltage after the preconfigured delay period has expired, the target
voltage is set to match the existing prebias voltage. Thus, both drivers are enabled with a PWM duty cycle that
would ideally create the prebias voltage.
When the preconfigured soft-start ramp period has expired, the PG pin is asserted (assuming the prebias voltage is
not higher than the overvoltage limit). The PWM then adjusts its duty cycle to match the original target voltage and
the output ramps down to the preconfigured output voltage.
If a prebias voltage is higher than the overvoltage limit, the device does not initiate a turn-on sequence and declares
an overvoltage fault condition.
4.12 Thermal Overload Protection
The RAA210925 includes a thermal sensor that continuously measures the internal temperature of the module and
shuts down the controller when the temperature exceeds the preset limit. The factory default temperature limit is set
to +115°C, and can be changed using the PMBus command OT_FAULT_LIMIT. Note that the temperature reading
from the PMBus command is the temperature of the internal controller, which is lower than the junction
temperature of the module.
The default response from an over-temperature fault is an immediate shutdown without retry.
Figure 31. Output Responses to Prebias Voltages
Desired Output Voltage
Prebias voltage
VOUT
Time
TON-DELAY TON-RISE
Desired Output Voltage
Prebias Voltage
VOUT
Time
VPREBIAS < VTARGET
VPREBIAS > VTARGET
TON-RISE
TON-DELAY
Desired Output Voltage
PrebiasVoltage
VOUT
Time
TON-DELAY TON-RISE
Desired Output Voltage
Prebias Voltage
VOUT
Time
VPREBIAS < VTARGET
VPREBIAS > VTARGET
TON-RISE
TON-DELAY
FN9352 Rev.1.00 Page 33 of 64
May 31, 2019
RAA210925 4. Functional Description
4.13 Phase Spreading
When multiple point-of-load converters share a common DC input supply, adjust the clock phase offset of each
device so that not all devices start to switch simultaneously. Setting each converter to start its switching cycle at a
different point in time can dramatically reduce input capacitance requirements and efficiency losses. Because the
peak current drawn from the input supply is effectively spread out over a period of time, the peak current drawn at
any given moment is reduced, and the power losses proportional to the IRMS2 are reduced dramatically.
To enable phase spreading, all converters must be synchronized to the same switching clock. The phase offset of
each device can also be set to any value between 0° and 360° in 22.5° increments by setting the device address
appropriately as shown in Table 11. This functionality can also be accessed using the PMBus command
INTERLEAVE. The internal two phases of the module always maintain a phase difference of 180°. The phase
offset between devices is determined from the lower four bits of the SMBus address of each interleaved device.
Table 11. INTERLEAVE
SA UVLO R (kΩ) SA in Binary Low 4-Bits INTERLEAVE-Ch1 Phase Shift (°) Rail ID
19h 10.8 10 00011001 1001 9 202.5 25
1Ah 10.8 11 00011010 1010 10 225 26
1Bh 10.8 12.1 00011011 1011 11 247.5 27
1Ch 10.8 13.3 00011100 1100 12 270 28
1Dh 10.8 14.7 00011101 1101 13 292.5 29
1Eh 10.8 16.2 00011110 1110 14 315 30
1Fh 10.8 17.8 00011111 1111 15 337.5 31
20h 4.2 19.6 00100000 0000 0 0 0
21h 4.2 21.5 00100001 0001 1 22.5 1
22h 4.2 23.7 00100010 0010 2 45 2
23h 4.2 26.1 00100011 0011 3 67.5 3
24h 4.2 28.7 00100100 0100 4 90 4
25h 4.2 31.6 00100101 0101 5 112.5 5
26h 4.2 34.8, low 00100110 0110 6 135 6
27h 4.2 38.3 00100111 0111 7 157.5 7
28h 4.5 42.2, open 00101000 1000 8 180 8
29h 4.5 46.4 00101001 1001 9 202.5 9
2Ah 4.5 51.1 00101010 1010 10 225 10
2Bh 4.5 56.2 00101011 1011 11 247.5 11
2Ch 4.5 61.9 00101100 1100 12 270 12
2Dh 4.5 68.1 00101101 1101 13 292.5 13
2Eh 4.5 75 00101110 1110 14 315 14
2Fh 4.5 82.5 00101111 1111 15 337.5 15
30h 10.8 90.9 00110000 0000 0 0 16
31h 10.8 100 00110001 0001 1 22.5 17
32h 10.8 110 00110010 0010 2 45 18
33h 10.8 121 00110011 0011 3 67.5 19
34h 10.8 133 00110100 0100 4 90 20
35h 10.8 147 00110101 0101 5 112.5 21
36h 10.8 162 00110110 0110 6 135 22
37h 10.8 178 00110111 0111 7 157.5 23
FN9352 Rev.1.00 Page 34 of 64
May 31, 2019
RAA210925 4. Functional Description
4.14 Monitoring Using SMBus
The RAA210925 can monitor a wide variety of different system parameters using the PMBus commands:
READ_VIN
READ_VOUT
READ_IOUT
READ_INTERNAL_TEMP
READ_DUTY_CYCLE
READ_FREQUENCY
4.15 Snapshot Parameter Capture
The RAA210925 offers a special feature to capture parametric data and fault status following a fault. A detailed
description is provided in the PMBus Commands Description” on page 41 under PMBus the commands
SNAPSHOT and SNAPSHOT_CONTROL.
FN9352 Rev.1.00 Page 35 of 64
May 31, 2019
RAA210925 5. Layout Guide
5. Layout Guide
To achieve stable operation, low losses, and good thermal performance, some layout considerations are necessary
(Figure 32). Refer to the RTKA2109252H00000BU layout design.
Establish separate SGND plane and PGND planes, then connect SGND to PGND plane on a middle layer and
underneath PAD6 with a single point connection. For SGND and PGND pin connections, such as small pins H16,
J16, M5 and M17..., use multiple vias for each pin to connect to inner SGND or PGND layers.
Place enough ceramic capacitors between VIN and PGND, VOUT and PGND and bypass capacitors between VDD,
VDRV and the ground plane, as close to the module as possible to minimize high frequency noise. It is very critical to
place the output ceramic capacitors close to the VOUT pads and in the direction of the load current path in order to
create a low impedance path for the high frequency inductor ripple current.
Use large copper areas for power paths (VIN, PGND, VOUT) to minimize conduction loss and thermal stress. Also,
use multiple vias to connect the power planes in different layers. It is recommended to enlarge PAD11 and PAD9 to
place more vias on them. The ceramic capacitors CIN can be placed on the bottom layer under these two pads.
Connect remote sensing traces to the regulation point to achieve a tight output voltage regulation and place the two
traces in parallel. Route a trace from VSEN1/2N and VSEN1/2P to the point of load where the tight output voltage is
desired. Avoid routing any sensitive signal traces, such as the VSENN, VSENP sensing lines near the SW pins.
PAD14 and 16 (SW1 and SW2) are noisy pads, but they are beneficial for thermal dissipation. If the noise issue is
critical for the applications, it is recommended to use only the top layer for the SW pads. For better thermal
performance, use multiple vias on these pads to connect into the SW inner and bottom layers. However, use caution
when placing a limited area of SW planes in any layer. The SW planes should avoid the sensing signals and should be
surrounded by the PGND layer to avoid noise coupling.
For pins SWD1 (L3) and SWD2 (P10), it is recommended to connect to the related SW1 and SW2 pads with short
loop traces. The trace width should be more than 20 mils.
Figure 32. Recommended Layout
PGND
VIN VIN
PGND PGND
SGND
VSEN1PVSEN1N
Kelvin Connections for
Both Ch1 and Ch2
CIN CIN
PGND
COUT1 COUT2
VOUT1 VOUT2
FN9352 Rev.1.00 Page 36 of 64
May 31, 2019
RAA210925 5. Layout Guide
5.1 Thermal Considerations
Experimental power loss curves along with θJA from thermal modeling analysis can be used to evaluate the thermal
consideration for the module. The derating curves are derived from the maximum power allowed while
maintaining the temperature below the maximum junction temperature of +125°C. The derating curves are derived
based on tests of the RTKA2109252H00000BU evaluation board, which is an 8-layer board 4.5x4inch in size with
2oz Cu on the top and bottom layers, 1oz Cu on the inner layers, and multiple via interconnects. In the actual
application, other heat sources and design margins should be considered.
5.2 Package Description
The structure of the RAA210925 belongs to the High Density Array (HDA) no-lead package. This kind of package
has advantages, such as good thermal and electrical conductivity, low weight, and small size. The HDA package is
applicable for surface mounting technology and is being more readily used in the industry. The RAA210925
contains several types of devices, including resistors, capacitors, inductors, and control ICs. The RAA210925 is a
copper leadframe based package with exposed copper thermal pads, which have good electrical and thermal
conductivity. The copper leadframe and multicomponent assembly is overmolded with a polymer mold compound
to protect these devices.
The package outline and typical PCB layout pattern design and typical stencil pattern design are shown on pages 57
through page 63. The module has a small size of 18mmx 23mmx7.5mm.
5.3 PCB Layout Pattern Design
The bottom of RAA210925 is a leadframe footprint, which is attached to the PCB by the surface mounting process.
The PCB layout pattern is shown on pages 61 through 63. The PCB layout pattern is an array of solder mask
defined PCB lands which align with the perimeters of the HDA exposed pads and I/O termination dimensions. The
thermal lands on the PCB layout also feature an array of solder mask defined lands and should match 1:1 with the
package exposed die pads.
5.4 Thermal Vias
A grid of 1.0mm to 1.2mm pitch thermal vias, which drops down and connects to buried copper plane(s), should be
placed under the thermal land. The vias should be about 0.3mm to 0.33mm in diameter with the barrel plated to
about 1.0 oz. of copper. Although adding more vias (by decreasing via pitch) improves the thermal performance,
diminishing returns are seen as the number of vias is increased. Simply use as many vias as practical for the thermal
land size and your board design rules allow. All vias should be capped and filled to avoid scavenging solder from
the I/O solder joints and creating voids.
5.5 Stencil Pattern Design
Reflowed solder joints on the perimeter I/O lands should have about a 50µm to 75µm (2 mil to 3 mil) standoff
height. The solder paste stencil design is the first step in developing optimized, reliable solder joins. Stencil
aperture size to solder mask defined PCB land size ratio should typically be 1:1. The aperture width may be
reduced slightly to help prevent solder bridging between adjacent I/O lands. To reduce solder paste volume on the
larger thermal lands, it is recommended that an array of smaller apertures be used instead of one large aperture. It is
recommended that the stencil printing area cover 50% to 80% of the PCB layout pattern. A typical solder stencil
pattern is shown on pages 59 through 61. The gap width between pads is 0.6mm. The user should consider the
symmetry of the whole stencil pattern when designing its pads. A laser cut, stainless steel stencil with
electropolished trapezoidal walls is recommended. Electropolishing “smooths” the aperture walls resulting in
reduced surface friction and better paste release, which reduces voids. Using a Trapezoidal Section Aperture (TSA)
also promotes paste release and forms a “brick like” paste deposit that assists in firm component placement. A
0.1mm to 0.15mm stencil thickness is recommended for this large pitch (1.3mm) HDA.
FN9352 Rev.1.00 Page 37 of 64
May 31, 2019
RAA210925 5. Layout Guide
5.6 Reflow Parameters
Due to the low mount height of the HDA, “No-Clean” Type 3 solder paste per ANSI/J-STD-005 is recommended.
A nitrogen purge is also recommended during reflow. A system board reflow profile depends on the thermal mass
of the entire populated board, so it is not practical to define a specific soldering profile just for the HDA. The
profile given in Figure 33 is provided as a guideline, which can be customized for varying manufacturing practices
and applications.
Figure 33. Typical Reflow Profile
0 300100 150 200 250 350
0
50
100
150
200
250
300
Temperature (°C)
Duration (s)
Slow Ramp (3°C/s Max)
and Soak From +150°C
to +200°C for 60s~180s
Ramp Rate 1.5°C from +70°C to +90°C
Peak Temperature ~+245°C;
Typically 60s-150s Above +217°C
Keep Less than 30s within 5°C of Peak Temp.
FN9352 Rev.1.00 Page 38 of 64
May 31, 2019
RAA210925 6. PMBus Command Summary
6. PMBus Command Summary
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Page
00h PAGE Selects Controller 0,
1, or both.
R/W
Byte
BIT 00h Channel 1 41
01h OPERATION Sets Enable and
Disable modes.
R/W
Byte
BIT 41
02h ON_OFF_CONFIG Configures the EN
pin and PMBus
commands to turn the
unit ON/OFF.
R/W
Byte
BIT 16h Hardware Pin
Enable, soft-off
41
03h CLEAR_FAULTS Clears fault
indications.
SEND
Byte
42
21h VOUT_COMMAND Sets the nominal
value of the output
voltage.
R/W
Word
L16u Pin-strap 42
24h VOUT_MAX Sets the maximum
possible value of
VOUT
. 110% of
pin-strap VOUT
.
R/W
Word
L16u 1.1 x VOUT
Pin-strap
42
33h FREQUENCY_SWITCH Sets the switching
frequency.
R/W
Word
L11 Pin-strap 42
37h INTERLEAVE Configures a phase
offset between
devices sharing a
SYNC clock.
R/W
Word
BIT 1000h(Ch1)/
0000h(Ch2)
180° phase shift
between Ch1/Ch2
43
40h VOUT_OV_FAULT_LIMIT Sets the VOUT
overvoltage fault
threshold.
R/W
Word
L16u 1.15 x VOUT
Pin-strap
43
44h VOUT_UV_FAULT_LIMIT Sets the VOUT
undervoltage fault
threshold.
R/W
Word
L16u 0.85 x VOUT
Pin-strap
43
46h IOUT_OC_FAULT_LIMIT Sets the IOUT peak
overcurrent fault
threshold.
R/W
Word
L11 E320h 50A 44
4Bh IOUT_UC_FAULT_LIMIT Sets the IOUT valley
undercurrent
fault threshold.
R/W
Word
L11 E4E0h -50A 44
4Fh OT_FAULT_LIMIT Sets the
over-temperature
fault threshold.
R/W
Word
L11 EB98h +115°C 44
53h UT_FAULT_LIMIT Sets the
under-temperature
fault threshold.
R/W
Word
L11 E530h -45°C 45
55h VIN_OV_FAULT_LIMIT Sets the VIN
overvoltage fault
threshold.
R/W
Word
L11 D3A0 14.5V 45
59h VIN_UV_FAULT_LIMIT Sets the VIN
undervoltage fault
threshold.
R/W
Word
L11 Pin-strap 45
5Eh POWER_GOOD_ON Sets the voltage
threshold for
power-good
indication.
R/W
Word
L16u 0.9 x VOUT
Pin-strap
45
60h TON_DELAY Sets the delay time
from ENABLE to start
of VOUT rise.
R/W
Word
L11 Pin-strap 46
FN9352 Rev.1.00 Page 39 of 64
May 31, 2019
RAA210925 6. PMBus Command Summary
61h TON_RISE Sets the rise time of
VOUT after ENABLE
and TON_DELAY.
R/W
Word
L11 Pin-strap 46
64h TOFF_DELAY Sets the delay time
from DISABLE to
start of VOUT fall.
R/W
Word
L11 Pin-strap 46
65h TOFF_FALL Sets the fall time for
VOUT after DISABLE
and TOFF_DELAY.
R/W
Word
L11 Pin-strap 46
78h STATUS_BYTE Returns an
abbreviated status for
fast reads.
Read
Byte
BIT 00h No Faults 47
79h STATUS_WORD Returns information
with a summary of
the units's fault
condition.
Read
Word
BIT 0000h No Faults 48
7Ah STATUS_VOUT Returns the VOUT
specific status.
Read
Byte
BIT 00h No Faults 48
7Bh STATUS_IOUT Returns the IOUT
specific status.
Read
Byte
BIT 00h No Faults 49
7Ch STATUS_INPUT Returns status
specific to the input.
Read
Byte
BIT 00h No Faults 49
7Dh STATUS_TEMP Returns the
temperature specific
status.
Read
Byte
BIT 00h No Faults 49
7Eh STATUS_CML Returns the
communication, logic
and memory specific
status.
Read
Byte
BIT 00h No Faults 50
80h STATUS_MFR_SPECIFIC Returns the external
sync clock specific
status.
Read
Byte
BIT 00h No Faults 50
88h READ_VIN Returns the input
voltage reading.
Read
Word
L11 50
8Bh READ_VOUT Returns the output
voltage reading.
Read
Word
L16u 51
8Ch READ_IOUT Returns the output
current reading.
Read
Word
L11 51
8Dh READ_INTERNAL_TEMP Returns the
temperature reading
internal to the device.
Read
Word
L11 51
94h READ_DUTY_CYCLE Returns the duty
cycle reading during
the ENABLE state.
Read
Word
L11 51
95h READ_FREQUENCY Returns the
measured operating
switch frequency.
Read
Word
L11 51
DFh ASCR_CONFIG Configures ASCR
control loop.
R/W
Block
CUS Pin-strap 52
E4h DEVICE_ID Returns the 16-byte
(character) device
identifier string.
Read
Block
ASC Reads Device
Version
52
E5h MFR_IOUT_OC_FAULT_
RESPONSE
Configures the IOUT
overcurrent fault
response.
R/W
Byte
BIT B9h Disable and Retry
with 70ms delay
52
E6h MFR_IOUT_UC_FAULT_
RESPONSE
Configures the IOUT
undercurrent fault
response.
R/W
Byte
BIT B9h Disable and Retry
with 70ms delay
53
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Page
FN9352 Rev.1.00 Page 40 of 64
May 31, 2019
RAA210925 6. PMBus Command Summary
6.1 PMBus Data Formats
Linear-11 (L11) - The L11 data format uses 5-bit two’s complement exponent (N) and 11-bit two’s complement
mantissa (Y) to represent the real world decimal value (X). The relation between the real world decimal
value (X), N, and Y is: X = Yꞏ2N
Linear-16 Unsigned (L16u) - The L16u data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
unsigned integer mantissa (Y) to represent real world decimal value (X). The relation between the real world
decimal value (X), N and Y is: X = Yꞏ2-13
Linear-16 Signed (L16s) - The L16s data format uses a fixed exponent (hard-coded to N = -13h) and a 16-bit
two’s complement mantissa (Y) to represent real world decimal value (X). The relation between the real world
decimal value (X), N and Y is: X = Yꞏ2-13
Bit Field (BIT) - An explanation of the Bit Field for each command is provided in “PMBus Commands
Description” on page 41.
Custom (CUS) - An explanation of the Custom data format for each command is provided in “PMBus
Commands Description” on page 41. A combination of Bit Field and integer are common type of Custom data
format.
ASCII (ASC) - A variable length string of text characters uses ASCII data format.
6.2 PMBus Use Guidelines
The PMBus is a powerful tool that allows the user to optimize circuit performance by configuring devices for their
application. When configuring a device in a circuit, the device should be disabled whenever most settings are
changed with PMBus commands. Some exceptions to this recommendation are OPERATION, ON_OFF_CONFIG,
CLEAR_FAULTS, VOUT_COMMAND, and ASCR_CONFIG. While the device is enabled any command can be
read. Many commands do not take effect until after the device has been re-enabled, hence the recommendation that
commands that change device settings are written while the device is disabled.
In addition, there should be a 2ms delay between repeated READ commands sent to the same device. When
sending any other command, a 5ms delay is recommended between repeated commands sent to the same device.
E7h IOUT_AVG_OC_FAULT_LIMIT Sets the IOUT
average overcurrent
fault threshold.
R/W L11 Set by SYNC/OCP
pin-strap
53
E8h IOUT_AVG_UC_FAULT_LIMIT Sets the IOUT
average undercurrent
fault threshold.
R/W L11 DC40h -30A 54
EAh SNAPSHOT Returns 32-byte
read-back of
parametric and status
values.
Read
Block
BIT 55
F3h SNAPSHOT_CONTROL Snapshot feature
control command.
R/W
Byte
BIT 55
Command
Code
Command
Name Description Type
Data
Format
Default
Value
Default
Setting Page
Data Byte High Data Byte Low
Exponent (N) Mantissa (Y)
76543210 76543210
FN9352 Rev.1.00 Page 41 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
7. PMBus Commands Description
PAGE(00h)
Definition: Select Channel 1, Channel 2 or both channels to receive commands. All commands following this
command are received and acted on by the selected channel or channels.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 00h (Page 0)
Units: N/A
OPERATION (01h)
Definition: Sets Enable and Disable settings.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value:
Units: N/A
ON_OFF_CONFIG (02h)
Definition: Configures the interpretation and coordination of the OPERATION command and the ENABLE pin (EN).
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: 16h (Device starts from ENABLE pin with soft-off)
Units: N/A
Bits 7:4 Bits 3:0 Page
0000 0000 0
0000 0001 1
1111 1111 Both
Settings Actions
00h Immediate off
40h Soft off
80h On
Settings Actions
16h Device starts from the ENABLE pin with soft off.
17h Device starts from the ENABLE pin with immediate off.
1Ah Device starts from the OPERATION command with soft off.
1Bh Device starts from the OPERATION command with immediate off.
FN9352 Rev.1.00 Page 42 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
CLEAR_FAULTS (03h)
Definition: Clears all fault bits in all registers. If a fault condition still exists, the bit reasserts immediately. This
command does not restart a device if it has shut down, it only clears the faults.
Data Length in Bytes: 0 Byte
Data Format: N/A
Type: Send byte
Default Value: N/A
Units: N/A
Reference: N/A
VOUT_COMMAND (21h)
Definition: Sets or reports the target output voltage. This command cannot set a value higher than VOUT_MAX.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: Pin-strap setting
Units: Volts
Range: 0V to VOUT_MAX
VOUT_MAX (24h)
Definition: Sets an upper limit on the output voltage the unit can command regardless of any other commands or
combinations. The intent of this command is to provide a safeguard against a user accidentally setting the output
voltage to a possibly destructive level rather than to be the primary output overprotection. Default value can be
changed using PMBus.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.10 x VOUT pin-strap setting
Units: Volts
Range: 0V to 5.5V
FREQUENCY_SWITCH (33h)
Definition: Sets the switching frequency of the device. Initial default value is defined by a pin-strap and this value can
be overridden by writing this command through the PMBus. If using an external SYNC, set this value as close as
possible to the external clock value. The output must be disabled when writing this command.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: kHz
Range: 296kHz to 1067kHz
FN9352 Rev.1.00 Page 43 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
INTERLEAVE (37h)
Definition: Configures the phase offset of a device that is sharing a common SYNC clock with other devices. The
phase offset of each device can be set to any value between and 360° in 22.5° increments. The internal two phases of
the module always maintain a phase difference of 180°.
Data Length in Bytes: 2
Data Format: BIT
Type: R/W
Default Value: 1000h (Page0), 0000h (Page1)
Units: N/A
VOUT_OV_FAULT_LIMIT (40h)
Definition: Sets the VOUT overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 1.15 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
VOUT_UV_FAULT_LIMIT (44h)
Definition: Sets the VOUT undervoltage fault threshold. This fault is masked during ramp or when disabled.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.85 x VOUT pin-strap setting
Units: V
Range: 0V to VOUT_MAX
Bits Purpose Value Description
15:8 Reserved 0 Reserved
7:4 Group Number 0 to 15 Sets the group number. A value of 0 is interpreted as 16.
3:0 Position in Group 0 to 15 Sets position of the device's rail within the group.
FN9352 Rev.1.00 Page 44 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
IOUT_OC_FAULT_LIMIT (46h)
Definition: Sets the IOUT peak overcurrent fault threshold. This limit is applied to current measurement samples taken
after the Current Sense Blanking Time has expired. A fault occurs after this limit is exceeded. The recommended peak
OCP limit is determined by Equation 1.
A hard bound of 50A is applied to the command value. This feature shares the OC fault bit operation (in
STATUS_IOUT) and OC fault response with the IOUT_AVG_OC_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E320h (50A)
Units: A
Range: -100A to 100A
IOUT_UC_FAULT_LIMIT (4Bh)
Definition: Sets the IOUT valley undercurrent fault threshold. This limit is applied to current measurement samples
taken after the Current Sense Blanking Time has expired. A fault occurs after this limit is exceeded. The recommended
valley UCP limit is determined by Equation 2:
A hard bound of -50A is applied to the command value. This feature shares the UC fault bit operation (in
STATUS_IOUT) and UC fault response with IOUT_AVG_UC_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E4E0 (-50A)
Units: A
Range: -100A to 100A
OT_FAULT_LIMIT (4Fh)
Definition: Sets the temperature at which the device should indicate an over-temperature fault. Note that the
temperature must drop below the fault threshold to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: EB98 (+115°C)
Units: °C
Range: 0°C to +175°C
IOUT_OC_FAULT_LIMIT IOUT_AVG_OC_FAULT_LIMIT 0.5 IRIPPLEPP
+130%=
(EQ. 1)
IOUT_UC_FAULT_LIMIT IOUT_AVG_UC_FAULT_LIMIT 0.5 IRIPPLEPP
130%=
(EQ. 2)
FN9352 Rev.1.00 Page 45 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
UT_FAULT_LIMIT (53h)
Definition: Sets the temperature, in degrees Celsius, of the unit where it should indicate an under-temperature fault.
Note that the temperature must rise above the fault threshold to clear this fault.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: E530h (-45°C)
Units: °C
Range: -55°C to +25°C
VIN_OV_FAULT_LIMIT (55h)
Definition: Sets the VIN overvoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: D3A0 (14.5V)
Units: V
Range: 0V to 16V
VIN_UV_FAULT_LIMIT (59h)
Definition: Sets the VIN undervoltage fault threshold.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: V
Range: 0V to 12V
POWER_GOOD_ON (5Eh)
Definition: Sets the voltage threshold for power-good indication. Power-good asserts after the output voltage exceeds
POWER_GOOD_ON and deasserts when the output voltage is less than VOUT_UV_FAULT_LIMIT. It is
recommended to set POWER_GOOD_ON higher than VOUT_UV_FAULT_LIMIT.
Data Length in Bytes: 2
Data Format: L16u
Type: R/W
Default Value: 0.9 x VOUT pin-strap setting
Units: V
FN9352 Rev.1.00 Page 46 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
TON_DELAY (60h)
Definition: Sets the delay time from when the device is enabled to the start of VOUT rise.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TON_RISE (61h)
Definition: Sets the rise time of VOUT after ENABLE and TON_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 1ms to 120ms
TOFF_DELAY (64h)
Definition: Sets the delay time from DISABLE to start of VOUT fall.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 2ms to 300ms
TOFF_FALL (65h)
Definition: Sets the soft-off fall time for VOUT after DISABLE and TOFF_DELAY.
Data Length in Bytes: 2
Data Format: L11
Type: R/W
Default Value: Pin-strap setting
Units: ms
Range: 0ms to 120ms
FN9352 Rev.1.00 Page 47 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
STATUS_BYTE (78h)
Definition: Returns one byte of information with a summary of the most critical faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 BUSY A fault was declared because the device was busy and unable to
respond.
6 OFF This bit is asserted if the unit is not providing power to the output,
regardless of the reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory, or logic fault has occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 has occurred.
FN9352 Rev.1.00 Page 48 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
STATUS_WORD (79h)
Definition: Returns two bytes of information with a summary of the unit's fault condition. Based on the information in
these bytes, the host can get more information by reading the appropriate status registers. The low byte of the
STATUS_WORD is the same register as the STATUS_BYTE (78h) command.
Data Length in Bytes: 2
Data Format: BIT
Type: Read Only
Default Value: 0000h
Units: N/A
STATUS_VOUT (7Ah)
Definition: Returns one data byte with the status of the output voltage.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
15 VOUT An output voltage fault has occurred.
14 IOUT/POUT An output current or output power fault has occurred.
13 INPUT An input voltage, input current, or input power fault has occurred.
12 MFG_SPECIFIC A manufacturer specific fault has occurred.
11 POWER_GOOD# The POWER_GOOD signal, if present, is negated.
10 Reserved Reserved
9 OTHER A bit in STATUS_OTHER is set.
8 UNKNOWN A fault type not given in Bits 15:1 of the STATUS_WORD has been
detected.
7 BUSY A fault was declared because the device was busy and unable to
respond.
6 OFF This bit is asserted if the unit is not providing power to the output,
regardless of the reason, including simply not being enabled.
5 VOUT_OV_FAULT An output overvoltage fault has occurred.
4 IOUT_OC_FAULT An output overcurrent fault has occurred.
3 VIN_UV_FAULT An input undervoltage fault has occurred.
2 TEMPERATURE A temperature fault has occurred.
1 CML A communications, memory, or logic fault has occurred.
0 NONE OF THE ABOVE A fault not listed in Bits 7:1 has occurred.
Bit Number Status Bit Name Meaning
7 VOUT_OV_FAULT Indicates an output overvoltage fault.
6:5 Reserved Reserved
4 VOUT_UV_FAULT Indicates an output undervoltage fault.
3:0 N/A These bits are not used.
FN9352 Rev.1.00 Page 49 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
STATUS_IOUT (7Bh)
Definition: Returns one data byte with the status of the output current.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
STATUS_INPUT (7Ch)
Definition: Returns the input voltage and input current status information.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
STATUS_TEMP (7Dh)
Definition: Returns one byte of information with a summary of any temperature related faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
Bit Number Status Bit Name Meaning
7 IOUT_OC_FAULT An output overcurrent fault has occurred.
6:5 Reserved Reserved
4 IOUT_UC_FAULT An output undercurrent fault has occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 VIN_OV_FAULT An input overvoltage fault has occurred.
6:5 Reserved Reserved
4 VIN_UV_FAULT An input undervoltage fault has occurred.
3:0 N/A These bits are not used.
Bit Number Status Bit Name Meaning
7 OT_FAULT An over-temperature fault has occurred.
6:5 Reserved Reserved
4 UT_FAULT An under-temperature fault has occurred.
3:0 N/A These bits are not used.
FN9352 Rev.1.00 Page 50 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
STATUS_CML (7Eh)
Definition: Returns one byte of information with a summary of any communications, logic, and/or memory errors.
Data Length in Bytes: 1
Data Format: BIT
Type: Read Only
Default Value: 00h
Units: N/A
STATUS_MFR_SPECIFIC (80h)
Definition: Returns one byte of information providing the status of the clock synchronization faults.
Data Length in Bytes: 1
Data Format: BIT
Type: Read only
Default value: 00h
Units: N/A
READ_VIN (88h)
Definition: Returns the input voltage reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read Only
Units: V
Bit Number Meaning
7 Invalid or unsupported PMBus command was received.
6 The PMBus command was sent with invalid or unsupported data.
5 Packet error was detected in the PMBus command.
4 Memory/logic fault has occurred.
3:2 Reserved
1 A PMBus command tried to write to a read-only or protected command, or a communication fault other than the
ones listed in this table has occurred.
0 Not used
Bit Number Field Name Meaning
7:4 Reserved Reserved
3 External Switching Period Fault Loss of external clock synchronization has occurred.
2:0 Reserved Reserved
FN9352 Rev.1.00 Page 51 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
READ_VOUT (8Bh)
Definition: Returns the output voltage reading.
Data Length in Bytes: 2
Data Format: L16u
Type: Read Only
Units: V
READ_IOUT (8Ch)
Definition: Returns the output current reading.
Data Length in Bytes: 2
Data Format: L11
Type: Read Only
Default Value: N/A
Units: A
READ_INTERNAL_TEMP (8Dh)
Definition: Returns the controller junction temperature reading from the internal temperature sensor.
Data Length in Bytes: 2
Data Format: L11
Type: Read Only
Units: °C
READ_DUTY_CYCLE (94h)
Definition: Reports the actual duty cycle of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: %
READ_FREQUENCY (95h)
Definition: Reports the actual switching frequency of the converter during the enable state.
Data Length in Bytes: 2
Data Format: L11
Type: Read only
Units: kHz
FN9352 Rev.1.00 Page 52 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
ASCR_CONFIG (DFh)
Definition: Allows user configuration of ASCR settings. ASCR gain is analogous to bandwidth, ASCR residual is
analogous to damping. To improve load transient response performance, increase ASCR gain. To lower transient
response overshoot, increase ASCR residual. Increasing ASCR gain can result in increased PWM jitter and should be
evaluated in the application circuit. Excessive ASCR gain can lead to excessive output voltage ripple. Increasing
ASCR residual to improve transient response damping can result in slower recovery times, but does not affect the peak
output voltage deviation. Typical ASCR gain settings range from 50 to 1000, and ASCR residual settings range from
10 to 100.
Data Length in Bytes: 4
Data Format: CUS
Type: R/W
Default Value: Pin-strap setting
DEVICE_ID (E4h)
Definition: Returns the 16-byte (character) device identifier string.
Data Length in Bytes: 16
Data Format: ASC
Type: Block Read
Default Value: Part number/Die revision/Firmware revision
MFR_IOUT_OC_FAULT_RESPONSE (E5h)
Definition: Configures the IOUT overcurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the overcurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and continuous retry with 70ms delay)
Units: N/A
Bit Purpose Data Format Value Description
31:25 Unused 0000000h Unused
24 Reserved Reserved
23:16 ASCR Residual Setting Integer ASCR residual
15:0 ASCR Gain Setting Integer ASCR gain
Field Name Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay
FN9352 Rev.1.00 Page 53 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
MFR_IOUT_UC_FAULT_RESPONSE (E6h)
Definition: Configures the IOUT undercurrent fault response as defined by the following table. The command format is
the same as the PMBus standard fault responses except that it sets the undercurrent status bit in STATUS_IOUT.
Data Length in Bytes: 1
Data Format: BIT
Type: R/W
Default Value: B9h (Disable and continuous retry with 70ms delay)
Units: N/A
IOUT_AVG_OC_FAULT_LIMIT (E7h)
Definition: Sets the IOUT average overcurrent fault threshold. For down-slope sensing, this corresponds to the average
of all the current samples taken during the (1-D) time interval, excluding the current sense blanking time (which occurs
at the beginning of the 1-D interval). For up-slope sensing, this corresponds to the average of all the current samples
taken during the D time interval, excluding the current sense blanking time (which occurs at the beginning of the
D interval). This feature shares the OC fault bit operation (in STATUS_IOUT) and OC fault response with
IOUT_OC_FAULT_LIMIT.
Paged or Global: Paged
Data Length in Bytes: 2
Data Format: Linear-11
Type: R/W
Protectable: Yes
Default Value: SYNC/OCP pin-strap setting
Units: A
Range: -100A to 100A
Field Name Actions
80h Disable with no retry.
B9h Disable and continuous retry with 70ms delay
FN9352 Rev.1.00 Page 54 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
IOUT_AVG_UC_FAULT_LIMIT (E8h)
Definition: Sets the IOUT average undercurrent fault threshold. For down-slope sensing, this corresponds to the
average of all the current samples taken during the (1-D) time interval, excluding the current sense blanking time
(which occurs at the beginning of the 1-D interval). For up-slope sensing, this corresponds to the average of all the
current samples taken during the D time interval, excluding the current sense blanking time (which occurs at the
beginning of the D interval). This feature shares the UC fault bit operation (in STATUS_IOUT) and UC fault response
with IOUT_ UC_FAULT_LIMIT.
Paged or Global: Paged
Data Length in Bytes: 2
Data Format: Linear-11
Type: R/W
Protectable: Yes
Default Value: DC40h (-30A)
Units: A
Range: -100A to 100A
FN9352 Rev.1.00 Page 55 of 64
May 31, 2019
RAA210925 7. PMBus Commands Description
SNAPSHOT (EAh)
Definition: A 32-byte read-back of parametric and status values. It allows monitoring and status data to be stored to
flash following a fault condition. In case of a fault, last updated values are stored to the flash memory. When the
SNAPSHOT STATUS bit is set stored, the device no longer automatically captures parametric and status values
following fault until stored data are erased. Use the SNAPSHOT_CONTROL command to erase store data and clear
the status bit before next ramp up. Data erased is not allowed when module is enabled.
Data Length in Bytes: 32
Data Format: Bit field
Type: Block Read
SNAPSHOT_CONTROL (F3h)
Definition: Writing a 01h causes the device to copy the current Snapshot values from NVRAM to the 32-byte
Snapshot command parameter. Writing a 02h causes the device to write the current Snapshot values to NVRAM.
Writing a 03h erases all Snapshot values from NVRAM. Write (02h) and Erase (03h) can only be used when the device
is disabled. All other values are ignored.
Data Length in Bytes: 1
Data Format: Bit field
Type: R/W byte
Byte Number Value PMBus Command Format
31:23 Reserved Reserved 00h
22 Flash Memory Status Byte
FF - Not Stored
00 - Stored
NVM Status Byte BIT
21 Manufacturer Specific Status Byte STATUS_MFR_SPECIFIC (80h) Byte
20 CML Status Byte STATUS_CML (7Eh) Byte
19 Temperature Status Byte STATUS_TEMPERATURE (7Dh) Byte
18 Input Status Byte STATUS_INPUT (7Ch) Byte
17 IOUT Status Byte STATUS_IOUT (7Bh) Byte
16 VOUT Status Byte STATUS_VOUT (7Ah) Byte
15:14 Switching Frequency READ_FREQUENCY (95h) L11
13:12 Reserved Reserved 00h
11:10 Internal Temperature READ_INTERNAL_TEMP (8Dh) L11
9:8 Duty Cycle READ_DUTY_CYCLE (94h) L11
7:6 Reserved Reserved L11
5:4 Output Current READ_IOUT (8Ch) L11
3:2 Output Voltage READ_VOUT (8Bh) L16u
1:0 Input Voltage READ_VIN (88h) L11
Value Description
01h Read Snapshot values from NV RAM
02h Write Snapshot values to NV RAM
03h Erase Snapshot values stored in NV RAM.
FN9352 Rev.1.00 Page 56 of 64
May 31, 2019
RAA210925 8. Revision History
8. Revision History
8.1 Firmware
8.2 Datasheet
Table 12. RAA210925 Nomenclature Guide
Firmware Revision Code Change Description Note
RAA210925-0-G0100 Initial Release Recommended for new designs
Rev. Date Description
1.00 May 31, 2019 Pin Description table on page 11 and 12 - updated Description for D5 and G14.
Page 22, SMBus Communications 1st sentence: Changed PMBus to SMBus
page 41 OPERATION (01h) table, 80h removed Nominal from Actions column.
0.00 Sep 12, 2018 Initial release
FN9352 Rev.1.00 Page 57 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
9. Package Outline Drawing
Y58.18x23
58 I/O 18mmx23mmx7.5mm Custom HDA Module
Rev 4, 4/18
1518 1617 1314 1112
AB
AC
U
V
W
Y
AA
N
P
R
T
6910 784523
H
J
K
L
M
D
E
F
G
A
B
C
1
Terminal Tip
7.50 Max
Max 0.025
Seating Plane
Side View
C
42x0.60 ±0.05
Top View
18.00
Detail A
0.20 Ref
0.20 Ref
0.10 C
(9x11.5)
Index Area
Terminal #A1
0.10 C2X
2X
23.00
AB
0.10 C A B
3
30.05 C
42x0.60 ±0.05
2
2
1.00
1.00
0.10 C
0.08 C
Represents the basic land grid pitch.
3.
2.
All dimensions are in millimeters.1.
Notes:
Dimensioning and tolerancing per ASME Y14.5-2009.
Tolerance for exposed PAD edge location dimension on
4.
5.
These 42 I/Os are centered in a fixed row and column matrix
at 1.0mm pitch BSC.
page 3 is ±0.1mm.
Datum A Pin A1 Indicator
C = 0.35
See Detail A
Datum B
16.00
17.20
22.60 ±0.15
0.10 C A B
M
0.40 Ref
0.10 C A B
M
12.00
Bottom View
0.100 R Ref
M
M
7.30 Min
For the most recent package outline drawing, see Y58.18x23.
FN9352 Rev.1.00 Page 58 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
9.70
2.90
3.60
2.00
5.40
7.00
4.00
6.50
8.60
0.20
0.80
6.60
7.20
2.60
8.50
6.40
2.90
5.10
2.40
1.80
4.40
4.60
6.00
0.40
8.60
6.00
8.10
9.30 9.70
11.30
3.80
3.00
1.20
8.10
9.30
11.30
5.20
6.30
6.00
4.00
3.30
0.00
9.10
6.20
7.20
2.00
5.70
5.50
6.30
6.50
8.80
7.80
2.70 2.30
1.70 1.30
0.70
0.70
1.30
1.70
2.30
5.80
5.20
4.80
4.20
3.80
3.20
9.30
8.70
5.30
4.70
3.30
4.30
3.70
2.70
0.30
0.30
7.30 6.70
9.70
11.30
7.70
2.30
1.00
8.20
6.80
2.00
5.50
6.50
9.10
7.20
9.30
4.30
4.70
5.30
5.70
3.70
0.00
0.70
1.30
7.30
6.70
7.80
8.80
9.70
7.70
6.30
11.30
6.20
4.80
4.20
3.80 3.20
1.80
2.20
2.80
5.20
5.80
0.50
0.50
2.80
2.20
1.20 0.80
0.80 1.20
0.20
0.20
1.80
1.60 (2X)
2.10 (2X)
1.10 (2X)
5.30 (2X)
5.60
7.40
6.40
1.40 (2X)
4.40
6.20
0.60
5.60
4.00 (2X)
4.20
2.00 (2X)
0.80 (2X)
2.20
1.10
5.00 (2X)
2.20
2.60
4.80 (2X)
1.60 (2X)
1.00 (2X)
3.60
8.30 (2X)
3.40
1.00 (2X)
1.30
2.30
4.60
4.40
1.60 (2X)
Size Details for the 16 Exposed Pads
Bottom View
1.00 (2X)
Terminal and Pad Edge Details
3.50 (2X)
Pad Details
FN9352 Rev.1.00 Page 59 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
0.000 0.000
11.270
2.030
3.590
3.910
5.470
7.810
8.130
9.410
11.270
11.500
11.500
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
0.530
1.390
1.710
2.500
5.610
6.400
6.720
7.510
7.830
8.770
9.000
11.500
11.270
9.730
9.410
8.130
7.810
6.530
5.470
3.910
3.590
2.030
7.510
7.830
8.640
8.960
9.770
10.090
11.270
11.500
9.730
9.000
8.570
7.660
7.340
5.240
4.920
4.190
3.870
3.140
2.090
0.230
0.770
1.230
1.910
2.230
2.910
3.230
3.910
4.230
4.910
5.230
5.910
6.230
6.910
9.000 9.000
Stencil Opening Edge Position - 1
3.895
5.290
2.820
3.895
4.215
5.290
6.530
6.330
7.790
8.110
9.490
9.810
2.820
5.970
6.430
9.730
9.730
6.330
2.820
4.215
0.000
0.000
0.000 0.000
Stencil Opening Edge Position - 2
0.785
3.215
0.215
0.785
4.215
5.215
5.785
6.215
6.785
7.785
9.285
8.715
8.285
7.715
7.285
6.715
6.285
5.715
5.285
4.715
3.715
3.285
2.715
1.715
1.285
0.715
0.285
0.285
0.715
2.715
2.285
8.715
7.285
6.285
5.285
4.285
1.285
0.715
0.285
0.285
0.715
1.285
2.715
1.785
1.785
7.215
7.785
4.785
4.215
9.000
9.000
11.500
11.500 11.500
11.500
9.000
9.000
2.285
4.785
3.785
3.215
2.785
2.215
1.785
1.215
5.785
5.215
0.215
1.215
1.785
2.215
2.785
3.785
4.215
4.785
6.215
6.785
4.285
1.285
3.285
6.215
6.785
1.215
1.215
3.215
3.785
3.715
4.715
5.715
6.715
7.715
9.285
3.285
1.715
8.285
0.0000.000
8.450
7.215
8.785
8.215
Stencil Position 1 and 2
FN9352 Rev.1.00 Page 60 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
0.000 0.000
6.330
7.960
11.500
6.570
5.890
5.570
4.890
3.890
3.570
2.890
2.570
1.990
1.670
1.160
2.090
2.820
3.140
3.870
4.190
4.430
4.920
5.240
5.970
6.030
6.890
7.210
8.070
11.500
11.500
9.000
9.000
11.500
9.000
9.000
Stencil Opening Edge Position - 3
2.770
1.875
1.555
0.660
0.340
0.555
0.875
1.770
2.330
3.495
4.340
4.660
5.505
5.825
6.670
3.175
4.570
8.530
7.640
9.270
0.0000.000
0.000 0.000
Stencil Opening Edge Position - 4
9.070
7.960
7.640
6.530
9.070
7.960
7.640
6.530
2.930
3.840
4.160
5.070
7.170
6.230
3.840
4.160
2.430
3.110
3.430
4.110
5.110
5.430
6.110
8.530
9.270
0.230
1.840
2.160
3.770
4.090
4.570
9.000
9.000
11.500
11.500
9.000
9.000
11.500
11.500
7.170
6.230
6.030
6.7057.025
7.7008.020
9.280
10.275
8.570
7.230
5.230
6.740
7.060
8.570
5.070
4.030
5.430
4.430
2.930
9.600
10.595
11.270
6.970
0.000
0.000
Stencil Position 3 and 4
FN9352 Rev.1.00 Page 61 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
0.000 0.000
Stencil Opening Edge Position - 5
6.890
8.070
1.030
2.270
4.030
2.030
3.570
4.430
4.910
8.770
7.810
7.490
6.530
0.430
1.770
6.030
6.705
7.025
7.700
3.030
4.080
4.810
5.130
5.860
6.180
6.910
9.000
9.000
9.280
9.600
10.275
10.595
11.270
11.500
11.500
9.000
9.000
11.500
11.500
5.070
6.030
7.210
3.760
8.020
0.000
PCB Land Pattern - 1 (for Reference)
0.000
9.000
8.800
7.800
7.540
6.690
6.430
5.580
5.320
4.185
3.925
2.790
2.530
1.680
1.420
0.500
1.420
1.680
2.530
2.790
3.925
4.185
5.320
5.580
6.430
6.690
7.540
7.800
8.450
9.000
0.000
11.500
10.950
9.700
9.440
8.100
7.840
6.500
5.500
3.880
3.620
2.000
6.300
7.540
7.800
8.670
8.930
9.800
10.060
11.300
11.500
9.700
0.000
9.000
8.600
7.630
7.370
6.400
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
0.200
0.800
1.200
1.940
2.200
2.940
3.200
3.940
4.200
4.940
5.200
5.940
6.200
6.940
9.000
0.000
9.780
9.700
9.520
8.080
7.820
6.300
11.300
11.500
2.000
3.620
3.880
5.500
6.500
7.840
8.100
9.440
9.700
11.300
11.500
0.500
0.000
8.800
Stencil Position5 land pattern 1
FN9352 Rev.1.00 Page 62 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
PCB Land Pattern - 2 (for Reference)
0.000
9.000
5.800
5.200
4.800
4.200
6.800
6.200
3.800
3.200
2.800
2.200
1.800
1.200
0.800
0.200
0.200
0.800
1.200
1.800
2.200
2.800
3.200
3.800
4.200
4.800
9.000
5.200
5.800
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
0.000
9.000
4.800
4.200
3.800
3.200
1.800
1.200
0.200
0.800
1.200
1.800
3.200
3.800
4.200
4.800
6.200
6.800
7.200
7.800
9.000
0.000
11.500
9.300
8.700
8.300
7.700
7.300
6.700
6.300
5.700
5.300
4.700
4.300
3.700
3.300
2.700
2.300
1.700
1.300
0.700
0.300
0.300
0.700
1.300
2.700
3.300
11.500
6.200
6.800
7.200
7.800 8.200
8.800
1.700
2.300
PCB Land Pattern - 3 (for Reference)
0.000
1.800
0.845
0.585
0.370
0.630
1.585
1.845
2.800
9.000
9.000
0.000
6.700
5.795
5.535
4.630
4.370
3.465
3.205
2.300
6.000
6.920
7.180
8.100
11.500
11.500
0.000
11.500
9.300
8.500
7.930
7.670
6.300
11.500
0.000
9.000
6.000
5.210
4.950
4.160
3.900
3.110
2.850
2.060
9.000
1.060
1.700
1.960
2.600
2.860
3.600
3.860
4.600
4.860
5.600
5.860
6.600
Land Pattern - 2 and 3
FN9352 Rev.1.00 Page 63 of 64
May 31, 2019
RAA210925 9. Package Outline Drawing
PCB Land Pattern - 4 (for Reference)
9.100
7.930
7.670
6.500
9.000
7.200
6.200
9.000
0.000
11.500
2.900
3.870
4.130
5.100
8.500
9.300
11.500
0.000
9.000
6.140
5.400
5.140
4.400
4.140
3.400
3.140
2.400
7.030
6.770
5.200
8.600
9.000
0.000
11.500
11.300
10.565
10.305
9.570
9.310
7.990
7.730
6.995
6.735
6.000
5.100
4.000
4.130
3.870
2.900
11.500
6.500
7.670
7.930
9.100
0.200
1.870
2.130
3.800
4.060
4.600
5.400
7.000
7.200
8.600
0.000
7.200
6.200
0.000
4.000
5.100
6.000
6.735
6.995
7.730
7.990
9.310
9.570
10.305
10.565
11.300
11.500
11.500
9.000
1.800
0.400
3.000
3.790
4.050
4.840
5.100
5.890
6.150
6.940
9.000
0.000
11.500
8.100
7.180
6.920
6.000
11.500
0.000
9.000
1.000
2.300
PCB Land Pattern - 5 (for Reference)
0.000
8.800
7.780
7.520
6.500
4.940
4.400
3.600
2.000
Land Pattern - 4 and 5
5HQHVDV(OHFWURQLFV&RUSRUDWLRQ$OOULJKWVUHVHUYHG
1RWLFH
 'HVFULSWLRQVRIFLUFXLWVVRIWZDUHDQGRWKHUUHODWHGLQIRUPDWLRQLQWKLVGRFXPHQWDUHSURYLGHGRQO\WRLOOXVWUDWHWKHRSHUDWLRQRIVHPLFRQGXFWRUSURGXFWV
DQGDSSOLFDWLRQH[DPSOHV<RXDUHIXOO\UHVSRQVLEOHIRUWKHLQFRUSRUDWLRQRUDQ\RWKHUXVHRIWKHFLUFXLWVVRIWZDUHDQGLQIRUPDWLRQLQWKHGHVLJQRI\RXU
SURGXFWRUV\VWHP5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\ORVVHVDQGGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPWKHXVHRI
WKHVHFLUFXLWVVRIWZDUHRULQIRUPDWLRQ
 5HQHVDV(OHFWURQLFVKHUHE\H[SUHVVO\GLVFODLPVDQ\ZDUUDQWLHVDJDLQVWDQGOLDELOLW\IRULQIULQJHPHQWRUDQ\RWKHUFODLPVLQYROYLQJSDWHQWVFRS\ULJKWVRU
RWKHULQWHOOHFWXDOSURSHUW\ULJKWVRIWKLUGSDUWLHVE\RUDULVLQJIURPWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRUWHFKQLFDOLQIRUPDWLRQGHVFULEHGLQWKLV
GRFXPHQWLQFOXGLQJEXWQRWOLPLWHGWRWKHSURGXFWGDWDGUDZLQJVFKDUWVSURJUDPVDOJRULWKPVDQGDSSOLFDWLRQH[DPSOHV
 1ROLFHQVHH[SUHVVLPSOLHGRURWKHUZLVHLVJUDQWHGKHUHE\XQGHUDQ\SDWHQWVFRS\ULJKWVRURWKHULQWHOOHFWXDOSURSHUW\ULJKWVRI5HQHVDV(OHFWURQLFVRU
RWKHUV
 <RXVKDOOQRWDOWHUPRGLI\FRS\RUUHYHUVHHQJLQHHUDQ\5HQHVDV(OHFWURQLFVSURGXFWZKHWKHULQZKROHRULQSDUW5HQHVDV(OHFWURQLFVGLVFODLPVDQ\
DQGDOOOLDELOLW\IRUDQ\ORVVHVRUGDPDJHVLQFXUUHGE\\RXRUWKLUGSDUWLHVDULVLQJIURPVXFKDOWHUDWLRQPRGLILFDWLRQFRS\LQJRUUHYHUVHHQJLQHHULQJ
 5HQHVDV(OHFWURQLFVSURGXFWVDUHFODVVLILHGDFFRUGLQJWRWKHIROORZLQJWZRTXDOLW\JUDGHV6WDQGDUGDQG+LJK4XDOLW\7KHLQWHQGHGDSSOLFDWLRQVIRU
HDFK5HQHVDV(OHFWURQLFVSURGXFWGHSHQGVRQWKHSURGXFWVTXDOLW\JUDGHDVLQGLFDWHGEHORZ
6WDQGDUG &RPSXWHUVRIILFHHTXLSPHQWFRPPXQLFDWLRQVHTXLSPHQWWHVWDQGPHDVXUHPHQWHTXLSPHQWDXGLRDQGYLVXDOHTXLSPHQWKRPH
HOHFWURQLFDSSOLDQFHVPDFKLQHWRROVSHUVRQDOHOHFWURQLFHTXLSPHQWLQGXVWULDOURERWVHWF
+LJK4XDOLW\ 7UDQVSRUWDWLRQHTXLSPHQWDXWRPRELOHVWUDLQVVKLSVHWFWUDIILFFRQWUROWUDIILFOLJKWVODUJHVFDOHFRPPXQLFDWLRQHTXLSPHQWNH\
ILQDQFLDOWHUPLQDOV\VWHPVVDIHW\FRQWUROHTXLSPHQWHWF
8QOHVVH[SUHVVO\GHVLJQDWHGDVDKLJKUHOLDELOLW\SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV
(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWVDUHQRWLQWHQGHGRUDXWKRUL]HGIRUXVHLQSURGXFWVRUV\VWHPVWKDWPD\SRVHDGLUHFWWKUHDWWR
KXPDQOLIHRUERGLO\LQMXU\DUWLILFLDOOLIHVXSSRUWGHYLFHVRUV\VWHPVVXUJLFDOLPSODQWDWLRQVHWFRUPD\FDXVHVHULRXVSURSHUW\GDPDJHVSDFHV\VWHP
XQGHUVHDUHSHDWHUVQXFOHDUSRZHUFRQWUROV\VWHPVDLUFUDIWFRQWUROV\VWHPVNH\SODQWV\VWHPVPLOLWDU\HTXLSPHQWHWF5HQHVDV(OHFWURQLFVGLVFODLPV
DQ\DQGDOOOLDELOLW\IRUDQ\GDPDJHVRUORVVHVLQFXUUHGE\\RXRUDQ\WKLUGSDUWLHVDULVLQJIURPWKHXVHRIDQ\5HQHVDV(OHFWURQLFVSURGXFWWKDWLV
LQFRQVLVWHQWZLWKDQ\5HQHVDV(OHFWURQLFVGDWDVKHHWXVHUVPDQXDORURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW
 :KHQXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVUHIHUWRWKHODWHVWSURGXFWLQIRUPDWLRQGDWDVKHHWVXVHUVPDQXDOVDSSOLFDWLRQQRWHV*HQHUDO1RWHVIRU
+DQGOLQJDQG8VLQJ6HPLFRQGXFWRU'HYLFHVLQWKHUHOLDELOLW\KDQGERRNHWFDQGHQVXUHWKDWXVDJHFRQGLWLRQVDUHZLWKLQWKHUDQJHVVSHFLILHGE\
5HQHVDV(OHFWURQLFVZLWKUHVSHFWWRPD[LPXPUDWLQJVRSHUDWLQJSRZHUVXSSO\YROWDJHUDQJHKHDWGLVVLSDWLRQFKDUDFWHULVWLFVLQVWDOODWLRQHWF5HQHVDV
(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUDQ\PDOIXQFWLRQVIDLOXUHRUDFFLGHQWDULVLQJRXWRIWKHXVHRI5HQHVDV(OHFWURQLFVSURGXFWVRXWVLGHRIVXFK
VSHFLILHGUDQJHV
 $OWKRXJK5HQHVDV(OHFWURQLFVHQGHDYRUVWRLPSURYHWKHTXDOLW\DQGUHOLDELOLW\RI5HQHVDV(OHFWURQLFVSURGXFWVVHPLFRQGXFWRUSURGXFWVKDYHVSHFLILF
FKDUDFWHULVWLFVVXFKDVWKHRFFXUUHQFHRIIDLOXUHDWDFHUWDLQUDWHDQGPDOIXQFWLRQVXQGHUFHUWDLQXVHFRQGLWLRQV8QOHVVGHVLJQDWHGDVDKLJKUHOLDELOLW\
SURGXFWRUDSURGXFWIRUKDUVKHQYLURQPHQWVLQD5HQHVDV(OHFWURQLFVGDWDVKHHWRURWKHU5HQHVDV(OHFWURQLFVGRFXPHQW5HQHVDV(OHFWURQLFVSURGXFWV
DUHQRWVXEMHFWWRUDGLDWLRQUHVLVWDQFHGHVLJQ<RXDUHUHVSRQVLEOHIRULPSOHPHQWLQJVDIHW\PHDVXUHVWRJXDUGDJDLQVWWKHSRVVLELOLW\RIERGLO\LQMXU\
LQMXU\RUGDPDJHFDXVHGE\ILUHDQGRUGDQJHUWRWKHSXEOLFLQWKHHYHQWRIDIDLOXUHRUPDOIXQFWLRQRI5HQHVDV(OHFWURQLFVSURGXFWVVXFKDVVDIHW\
GHVLJQIRUKDUGZDUHDQGVRIWZDUHLQFOXGLQJEXWQRWOLPLWHGWRUHGXQGDQF\ILUHFRQWURODQGPDOIXQFWLRQSUHYHQWLRQDSSURSULDWHWUHDWPHQWIRUDJLQJ
GHJUDGDWLRQRUDQ\RWKHUDSSURSULDWHPHDVXUHV%HFDXVHWKHHYDOXDWLRQRIPLFURFRPSXWHUVRIWZDUHDORQHLVYHU\GLIILFXOWDQGLPSUDFWLFDO\RXDUH
UHVSRQVLEOHIRUHYDOXDWLQJWKHVDIHW\RIWKHILQDOSURGXFWVRUV\VWHPVPDQXIDFWXUHGE\\RX
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHIRUGHWDLOVDVWRHQYLURQPHQWDOPDWWHUVVXFKDVWKHHQYLURQPHQWDOFRPSDWLELOLW\RIHDFK5HQHVDV
(OHFWURQLFVSURGXFW<RXDUHUHVSRQVLEOHIRUFDUHIXOO\DQGVXIILFLHQWO\LQYHVWLJDWLQJDSSOLFDEOHODZVDQGUHJXODWLRQVWKDWUHJXODWHWKHLQFOXVLRQRUXVHRI
FRQWUROOHGVXEVWDQFHVLQFOXGLQJZLWKRXWOLPLWDWLRQWKH(85R+6'LUHFWLYHDQGXVLQJ5HQHVDV(OHFWURQLFVSURGXFWVLQFRPSOLDQFHZLWKDOOWKHVH
DSSOLFDEOHODZVDQGUHJXODWLRQV5HQHVDV(OHFWURQLFVGLVFODLPVDQ\DQGDOOOLDELOLW\IRUGDPDJHVRUORVVHVRFFXUULQJDVDUHVXOWRI\RXUQRQFRPSOLDQFH
ZLWKDSSOLFDEOHODZVDQGUHJXODWLRQV
 5HQHVDV(OHFWURQLFVSURGXFWVDQGWHFKQRORJLHVVKDOOQRWEHXVHGIRURULQFRUSRUDWHGLQWRDQ\SURGXFWVRUV\VWHPVZKRVHPDQXIDFWXUHXVHRUVDOHLV
SURKLELWHGXQGHUDQ\DSSOLFDEOHGRPHVWLFRUIRUHLJQODZVRUUHJXODWLRQV<RXVKDOOFRPSO\ZLWKDQ\DSSOLFDEOHH[SRUWFRQWUROODZVDQGUHJXODWLRQV
SURPXOJDWHGDQGDGPLQLVWHUHGE\WKHJRYHUQPHQWVRIDQ\FRXQWULHVDVVHUWLQJMXULVGLFWLRQRYHUWKHSDUWLHVRUWUDQVDFWLRQV
 ,WLVWKHUHVSRQVLELOLW\RIWKHEX\HURUGLVWULEXWRURI5HQHVDV(OHFWURQLFVSURGXFWVRUDQ\RWKHUSDUW\ZKRGLVWULEXWHVGLVSRVHVRIRURWKHUZLVHVHOOVRU
WUDQVIHUVWKHSURGXFWWRDWKLUGSDUW\WRQRWLI\VXFKWKLUGSDUW\LQDGYDQFHRIWKHFRQWHQWVDQGFRQGLWLRQVVHWIRUWKLQWKLVGRFXPHQW
 7KLVGRFXPHQWVKDOOQRWEHUHSULQWHGUHSURGXFHGRUGXSOLFDWHGLQDQ\IRUPLQZKROHRULQSDUWZLWKRXWSULRUZULWWHQFRQVHQWRI5HQHVDV(OHFWURQLFV
 3OHDVHFRQWDFWD5HQHVDV(OHFWURQLFVVDOHVRIILFHLI\RXKDYHDQ\TXHVWLRQVUHJDUGLQJWKHLQIRUPDWLRQFRQWDLQHGLQWKLVGRFXPHQWRU5HQHVDV
(OHFWURQLFVSURGXFWV
1RWH 5HQHVDV(OHFWURQLFVDVXVHGLQWKLVGRFXPHQWPHDQV5HQHVDV(OHFWURQLFV&RUSRUDWLRQDQGDOVRLQFOXGHVLWVGLUHFWO\RULQGLUHFWO\FRQWUROOHG
VXEVLGLDULHV
1RWH 5HQHVDV(OHFWURQLFVSURGXFWVPHDQVDQ\SURGXFWGHYHORSHGRUPDQXIDFWXUHGE\RUIRU5HQHVDV(OHFWURQLFV
5HY1RYHPEHU
&RUSRUDWH+HDGTXDUWHUV &RQWDFW,QIRUPDWLRQ
72<268)25(6,$7R\RVX
.RWRNX7RN\R-DSDQ
ZZZUHQHVDVFRP
)RUIXUWKHULQIRUPDWLRQRQDSURGXFWWHFKQRORJ\WKHPRVWXSWRGDWH
YHUVLRQRIDGRFXPHQWRU\RXUQHDUHVWVDOHVRIILFHSOHDVHYLVLW
ZZZUHQHVDVFRPFRQWDFW
7UDGHPDUNV
5HQHVDVDQGWKH5HQHVDVORJRDUHWUDGHPDUNVRI5HQHVDV(OHFWURQLFV
&RUSRUDWLRQ$OOWUDGHPDUNVDQGUHJLVWHUHGWUDGHPDUNVDUHWKHSURSHUW\
RIWKHLUUHVSHFWLYHRZQHUV
Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com
Contact Information
For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/
Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.