4-68
H
High-Performance IR Emitter
and IR PIN Photodiode in
Subminiature SMT Package
Technical Data
Features
• Subminiature Flat Top and
Dome Package
Size – 2x2 mm
• IR Emitter
875 nm TS AlGaAs
Intensity – 17 mW/sr
Speed – 40 ns
• Wide Range of Drive
Currents
500 µA to 500 mA
• IR Detector
PIN Photodiode
High Sensitivity
Speed – 7.5 ns
• Flexible Lead
Configurations
Surface Mount or
Through Hole
Applications
• Short Distance IR Links
• IrDA Compatible
• Small Handheld Devices
Pagers
Industrial Handhelds
• Diffuse LANs
• Wireless Audio
Description
Flat Top Package
The HSDL-4400 Series of flat top
IR emitters use an untinted,
nondiffused, truncated lens to
provide a wide radiation pattern
that is useful for short distance
communication where alignment
of the emitter and detector is not
critical. The HSDL-5400 Series of
flat top IR detectors uses the
same truncated lens design as the
HSDL-4400 Series of IR emitters
with the added feature of a black
tint that acts as an optical filter to
reduce the effects of ambient
light, such as sun, incandescent
and fluorescent light from
interfering with the IR signal.
Dome Package
The HSDL-4420 Series of dome
IR emitters uses an untinted,
nondiffused lens to provide a 24
degree viewing angle with high
on-axis intensity. The HSDL-5420
Series of IR detectors uses the
same lens design as the HSDL-
4420 IR emitter and optical filter
used in the HSDL-5400 IR
detector.
Lead Configuration
All of these devices are made by
encapsulating LED and PIN
photodiode chips on axial lead
frames to form molded epoxy
subminiature packages. A variety
of lead configurations is available
and includes: surface mount gull
wing, yoke lead, or Z-bend and
through hole lead bends at 2.54
mm (0.100 inch) center spacing.
Technology
The subminiature solid state
emitters utilize a highly optimized
LED material, transparent sub-
strate aluminum gallium arsenide,
TS AlGaAs. This material has a
very high radiant efficiency,
capable of producing high light
output over a wide range of drive
currents and temperature.
HSDL-44XX IR Emitter
Series
HSDL-54XX IR Detector
Series
5964-9018E
4-69
Package Configuration Options
Package Outline
Option Code Package Configuration Description Drawing
011 Gull Wing Lead, Tape and Reel[2] E, J, M
021 Yoke Lead, Tape and Reel[2] F, K, M
031 Z-Bend, Tape and Reel[2] G, L, M
1L1 2.54 mm (0.100 in) Long Leads; Thru Hole H
Center Lead Spacing 10.4 mm (0.410 in) Lead
1S1 Short Leads; I
3.7 mm (0.145 in)
No Option Straight Leads[3] Prototyping A, B, C, D
Notes:
1. IR Emitters have untinted, nondiffused lenses and IR Detectors have black tinted, nondiffused lenses.
2. Emitters and detectors are supplied in 12 mm embossed tape on 178 mm (7 inch) diameter reels, with 1500 units
per reel. Minimum order quantity and order increment are in quantity of reels only.
3. Emitters and detectors are supplied in bulk form in bags of 50 units.
IR Detectors
Part Number Device Description[1] Device Outline Drawing
HSDL-5400 PIN Photodiode, Flat Top, 110 deg C
HSDL-5420 PIN Photodiode, Dome, 28 deg D
Device Selection Guide
IR Emitters
Part Number Device Description[1] Device Outline Drawing
HSDL-4400 LED, Flat Top, 110 deg A
HSDL-4420 LED, Dome, 24 deg B
Surface
Mount Lead
4-70
0.46
0.56 (0.018)
(0.022)
1.40
1.65 (0.055)
(0.065)
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF. NOTE 3
ANODE
1.65
1.91 (0.065)
(0.075) DIA.
CATHODE
11.68
10.67 (0.460)
(0.420)
BOTH SIDES
NOTE 2
1.14
1.40 (0.045)
(0.055)
0.58
0.43 (0.023)
(0.017)
1.91
2.16 (0.075)
(0.085)
0.18
0.23 (0.007)
(0.009)
0.76 (0.030) MAX.
1.91
2.41 (0.075)
(0.095)
2.08
2.34 (0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
Package Dimensions
(A) Flat Top Emitters
0.94
1.24 (0.037)
(0.049)
2.08
2.34 (0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
2.92 (0.115)
MAX.
0.76
0.89 (0.030)
(0.035)R.
0.63
0.38 (0.025)
(0.015)
0.18
0.23 (0.007)
(0.009)
1.91
2.16 (0.075)
(0.085)
2.03 (0.080)
1.78 (0.070)
0.79 (0.031)
0.53 (0.021)
(B) Dome Emitters
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF. NOTE 3
ANODE
1.65
1.91 (0.065)
(0.075) DIA.
CATHODE 0.46
0.56 (0.018)
(0.022)
NOTE 2
11.68
10.67 (0.460)
(0.420)
BOTH SIDES
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETRES (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO ANODE LEAD.
3. LEAD POLARITY FOR THESE TS AlGaAs SUBMINIATURE LAMPS IS OPPOSITE TO THE
LEAD POLARITY OF SUBMINIATURE LAMPS USING OTHER LED TECHNOLOGIES.
CATHODE STRIPE MARKING IS BLACK.
4-71
0.94
1.24 (0.037)
(0.049)
2.08
2.34 (0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
2.92 (0.115)
MAX.
0.76
0.89 (0.030)
(0.035)R.
0.63
0.38 (0.025)
(0.015)
0.18
0.23 (0.007)
(0.009)
1.91
2.16 (0.075)
(0.085)
2.03 (0.080)
1.78 (0.070)
0.79 (0.031)
0.53 (0.021)
0.46
0.56 (0.018)
(0.022)
1.40
1.65 (0.055)
(0.065)
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF.
CATHODE
1.65
1.91 (0.065)
(0.075) DIA.
ANODE
11.68
10.67 (0.460)
(0.420)
BOTH SIDES
NOTE 2
1.14
1.40 (0.045)
(0.055)
0.58
0.43 (0.023)
(0.017)
1.91
2.16 (0.075)
(0.085)
0.18
0.23 (0.007)
(0.009)
0.76 (0.030) MAX.
1.91
2.41 (0.075)
(0.095)
2.08
2.34 (0.082)
(0.092)
CATHODE
STRIPE
NOTE 3
(D) Dome Detectors
(C) Flat Top Detectors
0.25 (0.010) MAX.*
0.20 (0.008) MAX.
0.50 (0.020) REF.
CATHODE
1.65
1.91 (0.065)
(0.075) DIA.
ANODE 0.46
0.56 (0.018)
(0.022)
NOTE 2
11.68
10.67 (0.460)
(0.420)
BOTH SIDES
NOTES:
1. ALL DIMENSIONS ARE IN MILLIMETERS (INCHES).
2. PROTRUDING SUPPORT TAB IS CONNECTED TO CATHODE LEAD.
3. CATHODE STRIPE MARKING IS SILVER.
4-72
0.76 (0.030) MAX.
(F) “Yoke” Lead, Options 021
0.76 (0.030) MAX.
Package Dimensions
The following notes affect the
package outline drawings E
through I.
1. The pinout represents the
HSDL-54XX IR detectors
where the protruding support
tab is closest to the anode
lead. While the pinout is
reversed for the HSDL-44XX
IR emitters where the pro-
truding support tab is closest
to the cathode lead.
2. The protruding support tab of
the HSDL-54XX is connected
to the cathode lead. While the
protruding support tab of the
HSDL-44XX is connected to
the anode lead.
ALL DIMENSIONS ARE IN MILLIMETRES (INCHES)
(E) Gull Wing Lead, Option 011
4-73
(G) Z-Bend Lead, Options 031
0.76 (0.030) MAX.
(H) Thru Hole Lead Option 1L1
(I) Thru Hole Lead Option 1S1
4-74
Package Dimensions: Surface Mount Tape and Reel Options
(J) 12 mm Tape and Reel, Gull Wing Lead, Option 011
GULL WING LEAD
SUBMINIATURE PACKAGE
NOTES:
1. EMPTY COMPONENT POCKETS SEALED WITH TOP COVER TAPE.
2. 7 INCH REEL – 1500 PIECES PER REEL.
3. MINIMUM LEADER LENGTH AT EITHER END OF THE TAPE IS 500 mm.
4. THE MAXIMUM NUMBER OF CONSECUTIVE MISSING DEVICES IS TWO.
5. IN ACCORDANCE WITH ANSI/EIA RS-481 SPECIFICATIONS, THE
CATHODE IS ORIENTED TOWARDS THE TAPE SPROCKETS HOLE.
At the time of this publication XX/96, Light Emitting Diodes (LEDs) that are contained in this product are regulated for
eye safety in Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please
refer to Application Brief I-008 for more information.
4-75
(K) 12 mm Tape and Reel, “Yoke” Lead, Option 021
“YOKE” LEAD
SUBMINIATURE PACKAGE
4-76
(L) 12 mm Tape and Reel, Z-Bend Lead, Option 031
Z-BEND LEAD
SUBMINIATURE PACKAGE
4-77
(M) 12 mm Tape and Reel
4-78
HSDL-44XX Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit Ref.
Peak Forward Current (Duty Factor = 20%, IFPK 500 mA Fig. 7, 8
Pulse Width = 100 µs)
DC Forward Current IFDC 100 mA Fig. 6
Power Dissipation PDISS 180 mW
Reverse Voltage (IR = 100 µA) VR5V
Transient Forward Current (10 µs Pulse) IFTR 1.0 A [1]
Operating Temperature TO-40 85 °C
Storage Temperature TS-55 100 °C
Junction Temperature TJ110 °C
Lead Solder Temperature 260/5 s °C
[1.6 mm (0.063 in.) from body]
Reflow Soldering Temperatures
Convection IR 235/90 s °C
Vapor Phase 215/180 s °C
Notes:
1. The transient peak current in the maximum nonrecurring peak current the device can withstand without damaging the LED die and
the wire bonds.
HSDL-44XX Electrical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage VF1.30 1.50 1.70 V IFDC = 50 mA Fig. 2
1.40 1.67 1.85 IFDC = 100 mA
2.15 IFPK = 250 mA
Forward Voltage VF/T -2.1 mV/°CI
FDC = 50 mA Fig. 3
Temperature Coefficient -2.1 IFDC = 100 mA
Series Resistance RS2.8 IFDC = 100 mA
Diode Capacitance CO40 pF 0 V, 1 MHz
Reverse Voltage VR520 VI
R
= 100 µA
Thermal Resistance, Rθjp 170 °C/W
Junction to Pin
4-79
HSDL-44XX Optical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Radiant Optical Power
HSDL-4400 PO16 mW IFDC = 50 mA
30 IFDC = 100 mA
HSDL-4420 PO16 mW IFDC = 50 mA
30 IFDC = 100 mA
Radiant On-Axis Intensity
HSDL-4400 IE1 3 8 mW/sr IFDC = 50 mA Fig. 4, 5
6I
FDC = 100 mA
15 IFPK = 250 mA
HSDL-4420 IE9 17 30 mW/sr IFDC = 50 mA Fig. 4, 5
32 IFDC = 100 mA
85 IFPK = 250 mA
Radiant On-Axis Intensity IE/T -0.35 %/°CI
FDC = 50 mA
Temperature Coefficient -0.35 IFDC = 100 mA
Viewing Angle
HSDL-4400 2θ1/2 110 deg IFDC = 50 mA Fig. 9
HSDL-4420 2θ1/2 24 deg IFDC = 50 mA Fig. 10
Peak Wavelength λPK 860 875 895 nm IFDC = 50 mA Fig. 1
Peak Wavelength ∆λ/T 0.25 nm/°CI
FDC = 50 mA
Temperature Coefficient
Spectral Width at FWHM ∆λ 37 nm IFDC = 50 mA Fig. 1
Optical Rise and Fall tr/tf40 ns IFPK = 50 mA
Times, 10%-90%
Bandwidth fc9 MHz IFDC = 50 mA Fig. 11
± 10 mA
4-80
HSDL-54XX Absolute Maximum Ratings
Parameter Symbol Min. Max. Unit
Power Dissipation PDISS 150 mW
Reverse Voltage (IR = 100 µA) VR40 V
Operating Temperature TO-40 85 °C
Storage Temperature TS-55 100 °C
Junction Temperature TJ110 °C
Lead Solder Temperature [1.6 mm (0.063 in.) from body] 260/5 s °C
Reflow Soldering Temperatures
Convection IR 235/90 s °C
Vapor Phase 215/180 s °C
HSDL-54XX Electrical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Forward Voltage VF1.80 V IFDC = 50 mA
Breakdown Voltage VBR 40 V IR = 100 µA,
Ee = 0 mW/cm2
Reverse Dark Current ID15nAV
R
= 5 V, Fig. 12
Ee = 0 mW/cm2
Series Resistance RS2000 VR = 5 V,
Ee = 0 mW/cm2
Diode Capacitance CO5pFV
R
= 0 V, Fig. 16
Ee = 0 mW/cm2
f = 1 MHz
Open Circuit Voltage VOC 375 mV Ee = 1 mW/cm2
λPK = 875 nm
Temperature Coefficient of VOC VOC/T -2.2 mV/K Ee = 1 mW/cm2
λPK = 875 nm
Short Circuit Current ISC Ee = 1 mW/cm2
HSDL-5400 1.6 µA
HSDL-5420 4.3 µA
Temperature Coefficient of ISC ISC/T 0.16 %/K Ee = 1 mW/cm2
λPK = 875 nm
Thermal Resistance, Rθjp 170 °C/W
Junction to Pin
λPK = 875 nm
4-81
Fig. 14,
15
Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
HSDL-54XX Optical Characteristics at TA = 25°C
Parameter Symbol Min. Typ. Max. Unit Condition Ref.
Photocurrent
HSDL-5400 IPH 0.8 1.6 µA
HSDL-5420 3.0 6.0
Temperature Coefficient IPH/T 0.1 %/K Ee = 1 mW/cm2Fig. 13
of IPH λPK = 875 nm
VR = 5 V
Radiant Sensitive Area A 0.15 mm2
Absolute Spectral Sensitivity S 0.5 A/W Ee = 1 mW/cm2
λPK = 875 nm
VR = 5 V
Viewing Angle
HSDL-5400 2θ1/2 110 deg Fig. 18
HSDL-5420 28 Fig. 19
Wavelength of Peak λPK 875 nm Ee = 1 mW/cm2Fig. 17
Sensitivity VR = 5 V
Spectral Bandwidth ∆λ 770- nm Ee = 1 mW/cm2Fig. 17
1000 VR = 5 V
Quantum Efficiency η70 % Ee = 1 mW/cm2
λPK = 875 nm,
VR = 5 V
Noise Equivalent Power NEP 6.2 x W/Hz1/2 VR = 5 V
10-15 λPK = 875 nm
Detectivity D 6.3 x cm* VR = 5 V
1012 Hz1/2/W λPK = 875 nm
Optical Rise and Fall Times, tr/tf7.5 ns VR = 5 V
10%-90% RL = 1 k
λPK = 875 nm
Bandwidth fc50 MHz VR = 5 V
RL = 1 k
λPK = 875 nm
4-82
RELATIVE RADIANT INTENSITY
850 950
0
λ – WAVELENGTH – nm
900800
0.5
1.0
1.5 T
A
= 25 °C
I
FDC
= 50 mA
IFPK – PEAK FORWARD CURRENT – mA
1.0
1,000
1
VF – FORWARD VOLTAGE – V
1.5 2.0 2.5 3.00.50
10
100 TA = 25 °C
Figure 3. Forward Voltage vs Ambient
Temperature.
V
F
– FORWARD VOLTAGE – V
2.0
1.0
T
A
– AMBIENT TEMPERATURE – °C
-20
1.2
0 20406080
I
FDC
= 1 mA
1.8
1.6
1.4
I
FDC
= 50 mA
I
FDC
= 100 mA
Figure 1. Relative Radiant Intensity
vs. Wavelength. Figure 2. Peak Forward Current vs.
Forward Voltage.
Figure 5. Normalized Radiant
Intensity vs. Peak Forward Current
(0 to 10 mA).
NORMALIZED RADIANT INTENSITY
0 500
5.00
0
I
FPK
– PEAK FORWARD CURRENT – mA
4.00
0.50
400
PULSE WIDTHS < 100 µs
100
2.50
200 300
1.00
1.50
2.00
3.00
3.50
4.50
T
A
= 25°C
NORMALIZED RADIANT INTENSITY
0.1 10
1.00
0.01
I
FPK
– FORWARD CURRENT – mA
0.10
1
T
A
= 25°C
I
FDC
– MAXIMUM DC FORWARD CURRENT – mA
-40 100
120
0
T
A
– AMBIENT TEMPERATURE – °C
60
-20
100
80
40
20
0 20406080
Rθ
ja
= 220 °C/W
Rθ
ja
= 270 °C/W
Rθ
ja
= 370 °C/W
Figure 4. Normalized Radiant
Intensity vs. Peak Forward Current. Figure 6. Maximum DC Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
I
FPK
– PEAK FORWARD CURRENT – mA
0.01 10
0
t
PW
– PULSE WIDTH – ms
300
500
400
200
100
0.1 1
DUTY FACTOR
7 %
10 %
20 %
50 %
I
FPK
– PEAK FORWARD CURRENT – mA
-40 100
600
0
T
A
– AMBIENT TEMPERATURE – °C
300
-20
500
400
200
100
0 20406080
PULSE WIDTHS < 100 µs
DUTY FACTOR
10 %
20 %
50 % 20 %
50 %
10 %
Figure 8. Maximum Peak Forward
Current vs. Ambient Temperature.
Derated Based on TJMAX = 110°C.
Figure 7. Maximum Peak Forward
Current vs. Duty Factor.
4-83
Figure 12. Reverse Dark Current vs.
Ambient Temperature. Figure 13. Relative Reverse Light
Current vs. Ambient Temperature.
Figure 10. Relative Radiant Intensity vs. Angular Displacement
HSDL-4420.
RELATIVE RADIANT INTENSITY
1.0
0
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-100°
0.1
0.3
0.4
-80° -60° -40° -20° 20° 40° 60° 80° 100°
0.9 I
F
= 50 mA
T
A
= 25°C
Figure 9. Relative Radiant Intensity vs. Angular Displacement
HSDL-4400.
RELATIVE RADIANT INTENSITY
1.0
0
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-50°
0.1
0.3
0.4
-40° -30° -20° -10° 10° 20° 30° 40° 50°
0.9 I
F
= 50 mA
T
A
= 25°C
Figure 11. Relative Radiant Intensity
vs. Frequency.
RELATIVE RADIANT INTENSITY
1E+5 1E+8
2
-10
f – FREQUENCY – Hz
-4
1E+6 1E+7
-7
-1
1
0
-2
-3
-5
-6
-8
-9
T
A
= 25°C
9 MHz
I
D
– REVERSE DARK CURRENT – nA
0 100
10.000
0.001
T
A
– AMBIENT TEMPERATURE – °C
0.100
80
V
R
= 5 V
20 40 60
0.010
1.000
NORMALIZED PHOTOCURRENT
-40 100
1.40
0.60
T
A
– AMBIENT TEMPERATURE – °C
1.00
80-20 20 40
0.80
1.20
1.30
1.10
0.90
0.70
060
V
R
= 5 V
4-84
Figure 19. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5420.
NORMALIZED PHOTOCURRENT
1.0
0
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-50°
0.1
0.3
0.4
-40° -30° -20° -10° 10° 20° 30° 40° 50°
0.9
Figure 17. Relative Spectral
Sensitivity vs. Wavelength.
NORMALIZED PHOTOCURRENT
700 1100
1.2
0
λ – WAVELENGTH – nm
0.6
1050750 900 950
0.4
1.0
0.8
0.2
800 1000
850
V
R
= 5 V
T
A
= 25°C
NORMALIZED PHOTOCURRENT
1.0
0
θ – ANGLE FROM OPTICAL CENTERLINE – DEGREES (CONE HALF ANGLE)
0.8
0.6
0.5
0.7
0.2
-100°
0.1
0.3
0.4
-80° -60° -40° -20° 20° 40° 60° 80° 100°
0.9 V
R
= 5 V
T
A
= 25°C
NORMALIZED PHOTOCURRENT
0.01 10
10
0.01
E
e
– IRRADIANCE – mW/cm
2
0.1
0.1
1
1
V
R
= 5 V
T
A
= 25°C
NORMALIZED PHOTOCURRENT
040
1.40
0.60
V
R
– REVERSE VOLTAGE – V
1.00
3552025
0.80
1.20
1.30
1.10
0.90
0.70
10 30
15
T
A
= 25°C
C
O
– DIODE CAPACITANCE – pF
0.1 100
5
0
V
R
– REVERSE VOLTAGE – V
4
3
2
1
101
E
e
= 0 mW/cm
2
f = 1 MHz
T
A
= 25°C
Figure 14. Reverse Light Current vs.
Irradiance Figure 15. Reverse Light Current vs.
Reverse Voltage. Figure 16. Diode Capacitance vs.
Reverse Voltage.
Figure 18. Relative Radiant Intensity vs. Angular Displacement.
HSDL-5400.
Note: At the time of this publication, Light Emitting Diodes (LEDs) that are contained in this product are regulated for eye safety in
Europe by the Commission for European Electrotechnical Standardization (CENELEC) EN60825-1. Please refer to Application Briefs
I-008, I-009, I-015 for more information.