Features
Single 2.7V - 3.6V Supply
Fast Read Access Time – 200 ns
Automatic Page Write Operation
Internal Address and Data Latches for 64 Bytes
Internal Control Timer
Fast Write Cycle Times
Page Write Cycle Time: 10 ms Maximum
1- to 64-byte Page Write Operation
Low Power Dissipation
15 mA Active Current
–20 µA CMOS Standby Current
Hardware and Software Data Protection
Data Polling for End of Write Detection
High Reliability CMOS Technology
Endurance: 10,000 Cycles
Data Retention: 10 Years
JEDEC Approved Byte-wide Pinout
Industrial Temperature Ranges
Green (Pb/Halide-free) Packaging Option Only
1. Description
The AT28BV256 is a high-performance electrically erasable and programmable read-
only memory. Its 256K of memory is organized as 32,768 words by 8 bits. Manufac-
tured with Atmel’s advanced nonvolatile CMOS technology, the device offers access
times to 200 ns with power dissipation of just 54 mW. When the device is deselected,
the CMOS standby current is less than 200 µA.
The AT28BV256 is accessed like a Static RAM for the read or write cycle without the
need for external components. The device contains a 64-byte page register to allow
writing of up to 64 bytes simultaneously. During a write cycle, the addresses and 1 to
64 bytes of data are internally latched, freeing the address and data bus for other
operations. Following the initiation of a write cycle, the device will automatically write
the latched data using an internal control timer. The end of a write cycle can be
detected by Data polling of I/O7. Once the end of a write cycle has been detected a
new access for a read or write can begin.
Atmel’s AT28BV256 has additional features to ensure high quality and manufactura-
bility. The device utilizes internal error correction for extended endurance and
improved data retention characteristics. An optional software data protection mecha-
nism is available to guard against inadvertent writes. The device also includes an
extra 64 bytes of EEPROM for device identification or tracking.
256K (32K x 8)
Battery-Voltage
Parallel
EEPROMs
AT28BV256
0273K–PEEPR–2/09
2
0273K–PEEPR–2/09
AT28BV256
2. Pin Configurations
2.1 32-lead PLCC – Top View
Note: 1. PLCC package pins 1 and 17 are Don’t Connect.
Pin Name Function
A0 - A14 Addresses
CE Chip Enable
OE Output Enable
WE Write Enable
I/O0 - I/O7 Data Inputs/Outputs
NC No Connect
DC Don’t Connect
5
6
7
8
9
10
11
12
13
29
28
27
26
25
24
23
22
21
A6
A5
A4
A3
A2
A1
A0
NC
I/O0
A8
A9
A11
NC
OE
A10
CE
I/O7
I/O6
4
3
2
1
32
31
30
14
15
16
17
18
19
20
I/O1
I/O2
GND
DC
I/O3
I/O4
I/O5
A7
A12
A14
DC
VCC
WE
A13
2.2 28-lead SOIC – Top View
2.3 28-lead TSOP – Top View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
A14
A12
A7
A6
A5
A4
A3
A2
A1
A0
I/O0
I/O1
I/O2
GND
VCC
WE
A13
A8
A9
A11
OE
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
28
27
26
25
24
23
22
21
20
19
18
17
16
15
OE
A11
A9
A8
A13
WE
VCC
A14
A12
A7
A6
A5
A4
A3
A10
CE
I/O7
I/O6
I/O5
I/O4
I/O3
GND
I/O2
I/O1
I/O0
A0
A1
A2
3
0273K–PEEPR–2/09
AT28BV256
3. Block Diagram
4. Absolute Maximum Ratings*
Temperature under Bias ................................ -55°C to +125°C *NOTICE: Stresses beyond those listed under “Absolute
Maximum Ratings” may cause permanent dam-
age to the device. This is a stress rating only and
functional operation of the device at these or any
other conditions beyond those indicated in the
operational sections of this specification is not
implied. Exposure to absolute maximum rating
conditions for extended periods may affect
device reliability
Storage Temperature ..................................... -65°C to +150°C
All Input Voltages (including NC Pins)
with Respect to Ground ...................................-0.6V to +6.25V
All Output Voltages
with Respect to Ground .............................-0.6V to VCC + 0.6V
Voltage on OE and A9
with Respect to Ground ...................................-0.6V to +13.5V
4
0273K–PEEPR–2/09
AT28BV256
5. Device Operation
5.1 Read
The AT28BV256 is accessed like a Static RAM. When CE and OE are low and WE is high, the
data stored at the memory location determined by the address pins is asserted on the outputs.
The outputs are put in the high impedance state when either CE or OE is high. This dual-line
control gives designers flexibility in preventing bus contention in their system.
5.2 Byte Write
A low pulse on the WE or CE input with CE or WE low (respectively) and OE high initiates a write
cycle. The address is latched on the falling edge of CE or WE, whichever occurs last. The data is
latched by the first rising edge of CE or WE. Once a byte write has been started, it will automati-
cally time itself to completion. Once a programming operation has been initiated and for the
duration of tWC, a read operation will effectively be a polling operation.
5.3 Page Write
The page write operation of the AT28BV256 allows 1 to 64 bytes of data to be written into the
device during a single internal programming period. A page write operation is initiated in the
same manner as a byte write; the first byte written can then be followed by 1 to 63 additional
bytes. Each successive byte must be written within 150 µs (tBLC) of the previous byte. If the tBLC
limit is exceeded the AT28BV256 will cease accepting data and commence the internal pro-
gramming operation. All bytes during a page write operation must reside on the same page as
defined by the state of the A6 - A14 inputs. For each WE high to low transition during the page
write operation, A6 - A14 must be the same.
The A0 to A5 inputs are used to specify which bytes within the page are to be written. The bytes
may be loaded in any order and may be altered within the same load period. Only bytes which
are specified for writing will be written; unnecessary cycling of other bytes within the page does
not occur.
5.4 Data Polling
The AT28BV256 features Data Polling to indicate the end of a write cycle. During a byte or page
write cycle, an attempted read of the last byte written will result in the complement of the written
data to be presented on I/O7. Once the write cycle has been completed, true data is valid on all
outputs, and the next write cycle may begin. Data Polling may begin at anytime during the write
cycle.
5.5 Toggle Bit
In addition to Data Polling, the AT28BV256 provides another method for determining the end of
a write cycle. During the write operation, successive attempts to read data from the device will
result in I/O6 toggling between one and zero. Once the write has completed, I/O6 will stop tog-
gling and valid data will be read. Reading the toggle bit may begin at any time during the write
cycle.
5.6 Data Protection
If precautions are not taken, inadvertent writes may occur during transitions of the host system
power supply. Atmel® has incorporated both hardware and software features that will protect the
memory against inadvertent writes.
5
0273K–PEEPR–2/09
AT28BV256
5.6.1 Hardware Protection
Hardware features protect against inadvertent writes to the AT28BV256 in the following ways:
(a) VCC power-on delay – once VCC has reached 1.8V (typical) the device will automatically time
out 10 ms (typical) before allowing a write; (b) write inhibit – holding any one of OE low, CE high
or WE high inhibits write cycles; and (c) noise filter – pulses of less than 15 ns (typical) on the
WE or CE inputs will not initiate a write cycle.
5.6.2 Software Data Protection
A software-controlled data protection feature has been implemented on the AT28BV256. Soft-
ware data protection (SDP) helps prevent inadvertent writes from corrupting the data in the
device. SDP can prevent inadvertent writes during power-up and power-down as well as any
other potential periods of system instability.
The AT28BV256 can only be written using the software data protection feature. A series of three
write commands to specific addresses with specific data must be presented to the device before
writing in the byte or page mode. The same three write commands must begin each write opera-
tion. All software write commands must obey the page mode write timing specifications. The
data in the 3-byte command sequence is not written to the device; the address in the command
sequence can be utilized just like any other location in the device.
Any attempt to write to the device without the 3-byte sequence will start the internal write timers.
No data will be written to the device; however, for the duration of tWC, read operations will effec-
tively be polling operations.
5.7 Device Identification
An extra 64 bytes of EEPROM memory are available to the user for device identification. By rais-
ing A9 to 12V ± 0.5V and using address locations 7FC0H to 7FFFH the additional bytes may be
written to or read from in the same manner as the regular memory array.
6
0273K–PEEPR–2/09
AT28BV256
Notes: 1. X can be VIL or VIH.
2. Refer to AC programming waveforms.
3. VH = 12.0V ± 0.5V.
6. DC and AC Operating Range
AT28BV256-20
Operating Temperature (Case) -40°C - 85°C
VCC Power Supply 2.7V - 3.6V
7. Operating Modes
Mode CE OE WE I/O
Read VIL VIL VIH DOUT
Write(2) VIL VIH VIL DIN
Standby/Write Inhibit VIH X(1) X High Z
Write Inhibit X X VIH
Write Inhibit X VIL X
Output Disable X VIH X High Z
Chip Erase VIL VH(3) VIL High Z
8. DC Characteristics
Symbol Parameter Condition Min Max Units
ILI Input Load Current VIN = 0V to VCC + 1V 10 µA
ILO Output Leakage Current VI/O = 0V to VCC 10 µA
ISB VCC Standby Current CMOS CE = VCC - 0.3V to VCC + 1V 50 µA
ICC VCC Active Current f = 5 MHz; IOUT = 0 mA 15 mA
VIL Input Low Voltage 0.6 V
VIH Input High Voltage 2.0 V
VOL Output Low Voltage IOL = 1.6 mA 0.3 V
VOH Output High Voltage IOH = -100 µA 2.0 V
7
0273K–PEEPR–2/09
AT28BV256
10. AC Read Waveforms(1)(2)(3)(4)
Notes: 1. CE may be delayed up to tACC - tCE after the address transition without impact on tACC.
2. OE may be delayed up to tCE - tOE after the falling edge of CE without impact on tCE or by tACC - tOE after an address change
without impact on tACC.
3. tDF is specified from OE or CE whichever occurs first (CL = 5 pF).
4. This parameter is characterized and is not 100% tested.
9. AC Read Characteristics
Symbol Parameter
AT28BV256-20
UnitsMin Max
tACC Address to Output Delay 200 ns
tCE(1) CE to Output Delay 200 ns
tOE(2) OE to Output Delay 0 80 ns
tDF(3)(4) CE or OE to Output Float 0 55 ns
tOH Output Hold from OE, CE or Address, whichever occurred first 0 ns
tCE
tOE
tDF
tOH
tACC
8
0273K–PEEPR–2/09
AT28BV256
11. Input Test Waveforms and Measurement Level
12. Output Test Load
Note: 1. This parameter is characterized and is not 100% tested.
tR, tF < 20 ns
13. Pin Capacitance
f = 1 MHz, T = 25°C(1)
Symbol Typ Max Units Conditions
CIN 46pFV
IN = 0V
COUT 812pFV
OUT = 0V
9
0273K–PEEPR–2/09
AT28BV256
Note: 1. NR = No Restriction.
15. AC Write Waveforms
15.1 WE Controlled
15.2 CE Controlled
14. AC Write Characteristics
Symbol Parameter Min Max Units
tAS, tOES Address, OE Set-up Time 0 ns
tAH Address Hold Time 50 ns
tCS Chip Select Set-up Time 0 ns
tCH Chip Select Hold Time 0 ns
tWP Write Pulse Width (WE or CE)200ns
tDS Data Set-up Time 50 ns
tDH, tOEH Data, OE Hold Time 0 ns
tDV Time to Data Valid NR(1)
tOEH
tAS tAH tCH
tCS
tWPH
tWP
tDV tDS tDH
tOES
tOES tOEH
tAH tCH
tWPH
tDH
tAS
tCS
tWP
tDV tDS
10
0273K–PEEPR–2/09
AT28BV256
17. Programming Algorithm(1)(2)(3)
Notes: 1. Data Format: I/O7 - I/O0 (Hex); Address Format: A14 - A0 (Hex).
2. Data protect state will be re-activated at the end of program cycle.
3. 1 to 64 bytes of data are loaded.
18. Software Protected Program Cycle Waveforms(1)(2)(3)
Notes: 1. A0 - A14 must conform to the addressing sequence for the first three bytes as shown above.
2. A6 through A14 must specify the same page address during each high to low transition of WE (or CE) after the software
code has been entered.
3. OE must be high only when WE and CE are both low.
16. Page Mode Characteristics
Symbol Parameter Min Max Units
tWC Write Cycle Time 10 ms
tAS Address Set-up Time 0 ns
tAH Address Hold Time 50 ns
tDS Data Set-up Time 50 ns
tDH Data Hold Time 0 ns
tWP Write Pulse Width 200 ns
tBLC Byte Load Cycle Time 150 µs
tWPH Write Pulse Width High 100 ns
LOAD DATA AA
TO
ADDRESS 5555
LOAD DATA 55
TO
ADDRESS 2AAA
LOAD DATA A0
TO
ADDRESS 5555
LOAD DATA XX
TO
ANY ADDRESS
(3)
LOAD LAST BYTE
TO
LAST ADDRESS
(3)
ENTER DATA
PROTECT STATE
WRITES ENABLED
(2)
t
AS
t
AH
t
WP
t
WPH
t
BLC
t
DH
t
WC
t
DS
11
0273K–PEEPR–2/09
AT28BV256
Notes: 1. These parameters are characterized and not 100% tested.
2. See “AC Read Characteristics” on page 7.
20. Data Polling Waveforms
Notes: 1. These parameters are characterized and not 100% tested.
2. See “AC Read Characteristics” on page 7.
22. Toggle Bit Waveforms
Notes: 1. Toggling either OE or CE or both OE and CE will operate toggle bit.
2. Beginning and ending state of I/O6 will vary.
3. Any address location may be used but the address should not vary.
19. Data Polling Characteristics(1)
Symbol Parameter Min Typ Max Units
tDH Data Hold Time 0 ns
tOEH OE Hold Time 0 ns
tOE OE to Output Delay(2) ns
tWR Write Recovery Time 0 ns
21. Toggle Bit Characteristics(1)
Symbol Parameter Min Typ Max Units
tDH Data Hold Time 10 ns
tOEH OE Hold Time 10 ns
tOE OE to Output Delay(2) ns
tOEHP OE High Pulse 150 ns
tWR Write Recovery Time 0 ns
tDH tOE
tWR
tOEH
12
0273K–PEEPR–2/09
AT28BV256
23. Normalized ICC Graphs
13
0273K–PEEPR–2/09
AT28BV256
24. Ordering Information
24.1 Green Package Option (Pb/Halide-free)
tACC
(ns)
ICC (mA)
Ordering Code Package Operation RangeActive Standby
200 15 0.02
AT28BV256-20JU 32J
Industrial
(-40° to 85°C)
AT28BV256-20SU 28S
AT28BV256-20TU 28T
Package Type
32J 32-lead, Plastic J-leaded Chip Carrier (PLCC)
28S 28-lead, 0.300" Wide, Plastic Gull Wing Small Outline (SOIC)
28T 28-lead, Plastic Thin Small Outline Package (TSOP)
24.2 Die Products
Contact Atmel Sales for die sales options.
14
0273K–PEEPR–2/09
AT28BV256
25. Packaging Information
25.1 32J – PLCC
DRAWING NO. REV.
2325 Orchard Parkway
San Jose, CA 95131
R
TITLE
32J, 32-lead, Plastic J-leaded Chip Carrier (PLCC) B
32J
10/04/01
1.14(0.045) X 45˚ PIN NO. 1
IDENTIFIER
1.14(0.045) X 45˚
0.51(0.020)MAX
0.318(0.0125)
0.191(0.0075)
A2
45˚ MAX (3X)
A
A1
B1 E2
B
e
E1 E
D1
D
D2
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This package conforms to JEDEC reference MS-016, Variation AE.
2. Dimensions D1 and E1 do not include mold protrusion.
Allowable protrusion is .010"(0.254 mm) per side. Dimension D1
and E1 include mold mismatch and are measured at the extreme
material condition at the upper or lower parting line.
3. Lead coplanarity is 0.004" (0.102 mm) maximum.
A 3.175 3.556
A1 1.524 2.413
A2 0.381
D 12.319 12.573
D1 11.354 11.506 Note 2
D2 9.906 10.922
E 14.859 15.113
E1 13.894 14.046 Note 2
E2 12.471 13.487
B 0.660 0.813
B1 0.330 0.533
e 1.270 TYP
15
0273K–PEEPR–2/09
AT28BV256
25.2 28S – SOIC
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
28S, 28-lead, 0.300" Body, Plastic Gull Wing Small Outline (SOIC)
JEDEC Standard MS-013 B
28S
8/4/03
Dimensions in Millimeters and (Inches).
Controlling dimension: Millimeters.
TOP VIEW
SIDE VIEWS
0.51(0.020)
0.33(0.013)
7.60(0.2992)
7.40(0.2914)
10.65(0.419)
10.00(0.394)
1.27(0.50) BSC
2.65(0.1043)
2.35(0.0926)
18.10(0.7125)
17.70(0.6969)
0.30(0.0118)
0.10(0.0040)
0.32(0.0125)
0.23(0.0091)
1.27(0.050)
0.40(0.016)
0º ~ 8º
PIN 1
16
0273K–PEEPR–2/09
AT28BV256
25.3 28T – TSOP
2325 Orchard Parkway
San Jose, CA 95131
TITLE DRAWING NO.
R
REV.
28T, 28-lead (8 x 13.4 mm) Plastic Thin Small Outline
Package, Type I (TSOP) C
28T
12/06/02
PIN 1 0º ~ 5º
D1 D
Pin 1 Identifier Area
b
e
EA
A1
A2
c
L
GAGE PLANE
SEATING PLANE
L1
COMMON DIMENSIONS
(Unit of Measure = mm)
SYMBOL MIN NOM MAX NOTE
Notes: 1. This package conforms to JEDEC reference MO-183.
2. Dimensions D1 and E do not include mold protrusion. Allowable
protrusion on E is 0.15 mm per side and on D1 is 0.25 mm per side.
3. Lead coplanarity is 0.10 mm maximum.
A 1.20
A1 0.05 0.15
A2 0.90 1.00 1.05
D 13.20 13.40 13.60
D1 11.70 11.80 11.90 Note 2
E 7.90 8.00 8.10 Note 2
L 0.50 0.60 0.70
L1 0.25 BASIC
b 0.17 0.22 0.27
c 0.10 0.21
e 0.55 BASIC
0273K–PEEPR–2/09
Headquarters International
Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600
Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369
Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11
Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581
Product Contact
Web Site
www.atmel.com
Technical Support
p_eeprom@atmel.com
Sales Contact
www.atmel.com/contacts
Literature Requests
www.atmel.com/literature
Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND CONDI-
TIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY
WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-
TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF
THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no
representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications
and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided
otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel’s products are not intended, authorized, or warranted for use
as components in applications intended to support or sustain life.
© 2009 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of
Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.