SIEMENS SIMATIC S5 1P 243 Analog Module with FB 160/ FB 161 Application and Application Area 1 Mechanical Construction 2 Function Description 3 Interrupt Processing 4 Putting into Operation 5 Technical Specifications 6 Programming Instructions 7 Equipment Manual 8 9 Order No: 6ES5998-0KF21 Subject to change without notice @ Siemens AG 1989, All rights reserved 10 @ Copyright Siemens AG 1989 All Rights Reserved Passing on and reproduction of these documents, or utilization and disclosure of their contents is prohibited unless specifically authorized. Violations are cause for damage liability. All rights reserved, particularly in the event a patent is issued or a utility-model patent registered. SIEMENS Warning Risks involved in the use of so-called SIMATIC-compatible modules of non-Siemens ma-nufacture "The manufacturer of a product (SIMATIC in this case) is under the general obligation to give warning of possible risks attached to his product. This obligation has been extended in recent court rulings to include parts supplied by other vendors. Accordingly, the manufacturer is obliged to observe and recognize such hazards as may arise when a product is combined with products of other manufacture. For this reason, we feel obliged to warn our customers who use SIMATIC products not to install so-called SIMATIC-compatible modules of other manufacture in the form of replacement or add-on modules in SIMATIC systems. Our products undergo a strict quality assurance procedure. We have no knowledge as to whether outside manufacturers of so-called SIMATIC-compatible modules have any quality assurance at all or one that is nearly equivalent to ours. These so-called SIMATIC- compatible modules are not marketed in agreement with Siemens; we have never recommended the use of so- called SIMATIC- compatible modules of other manufacture. The advertising of these other manufacturers for so-called SIMATIC-compatible modules wrongly creates the impression that the subject advertised in periodicals, catalogues or at exhibitions had been agreed to by us. Where so-called SIMATIC- compatible modules of non-Siemens manufacture are combined with our SIMATIC automation systems, we have a case of our product being used contrary to recommendations. Because of the variety of applications of our SIMATIC automation systems and the large number of these products marketed worldwide, we cannot give a concrete description specifically analyzing the hazards created by these so-called SIMATIC- compatible modules. It is beyond the manufacturer's capabilities to have all these so-called SIMATIC-compatible modules checked for their effect on our SIMATIC products. If the use of so-called SIMATIC- compatible modules leads to defects in a SIMATIC automation system, no warranty for such systems will be given by Siemens. In the event of product liability damages due to the use of so-called SIMATIC-compatible modules, Siemens is not liable since we took timely action in warning users of the potential hazards involved in so-called SIMATIC- compatible modules. " @) Siernem AG 1990, All rights rexwed Contenta R02192 1 Application and Application Area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 - 1 2 2.1 2.2 2.3 2.4 2.5 Mechanical Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 1 Dimensions and Mechanical Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 1 Overview of thelndividual Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 Block Diagram 1P 243 - IAA, Full Configuration . . . . . . . . . . . . . . . . . . . . . . . . . 2 - 3 Block Diagram 1P 243 - IAB, Partial Configuration . . . . . . . . . . . . . . . . . . . . . . . 2 - 4 Block Diagram 1P 243 - IAC, Partial Configuration . . . . . . . . . . . . . . . . . . . . . . . 2 - 5 3 3.1 3.2 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.4.1 3.4.2 3.4.2.1 3.4.2.2 3.4.2.3 3.4.3. 3.4.3.1 3.4.3.2 3.4.3.3 3.4.4 3.4.4.1 3.4.4.2 3.5 3.5.1. 3.5.2 3,5.3 3.6 3.6.1 3.6.2. 3.6.3 3.6.4 3.6.4.1 3.6.4.2 3.6.4.3 3.6.4.4 3.7 3.7.1 3.7.2 3.7.3 Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 3 - 1 Binary Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 1 Binary Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-2 Analog Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Rated Input Ranges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 Conversion of the Analog input Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-4 InputCircuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Digital Representation ofMeasuring Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-5 Analog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Jumpering ofAnalog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Digitai/Analog Convertersl and2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Rated Output Range and Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Writing theAnalog Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-7 Digital Representation ofAnalog Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8 Digital/Analog Converter3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Rated OutputRangeand Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 - 9 WritingtheAnalog Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Digital Representation ofAnalog Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-9 Analog OutputAmplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Circuihy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-10 Analog Value Conditioning Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 Operating Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 Functioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-11 InputCircuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-13 Comparatorsand Gating Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 input Signal Range and PossibleCircuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-14 InputCircuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Reading the Comparatorsand the Gating Logic . . . . . . . . . . . . . . . . . . . . . . . . . . 3-15 Evaluation ofthe Comparator States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 Representation ofComparator States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-16 ValueTableforComparators land2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-17 Explanation oftheValueTable and the lndividualValues . . . . . . . . . . . . . . . . . . . 3-18 Representation intheTime/Voltage Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-19 DifferenceAmplifier(P Controller) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 input Signal Range andAmplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 InputCircuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 Circuitry Possibilities and Output Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-20 lP243 Equipment Manual @.SiemensAG 1989, ClrderNo:6ES5 gg8-0KF21 o-1 Contenta R02192 4 4.1 4.2 4.3 4.3.1 4.3,2 4.4 4.4,1 4.4.2 4.4,3 Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 General Conditions for Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 Possibilities for Interrupt Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 DirectBusAccess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 lnterruptProcessing intheS5-1 15U/H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 2 4 - 6 lnterruptProcessing intheS5-135U with CPU 9220rCPU 928A/B . . . . . . . . . Separate interrupt lnputModule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 2 InterruptProcessing inthe S5-135U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 2 lnterruptProcessing inthe S5-150U/S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 1 6 InterruptProcessing inthe S5-155U/H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 2 1 5 5.1 5.2 5.3 5.4 5.5 5.5.1 5.5.2 5.6 5.7 5.8 Putting into Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 1 BasicConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Front Plate and FrontConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1 Explanation ofthe Signal Names andAbbreviations . . . . . . . . . . . . . . . . . . . . . . . 5-3 LayoutofSetting Elementsand Jumpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-4 Jumpering oftheAnaIog Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 CircuitryoftheAnalog SignalJumpering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-5 Soldering Base PinAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-6 Jumpering ofthe BinarySignaIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-8 lnterruptJumpering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 - 9 Setting the ModuleAddress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-11 6 6.1 . -1 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 lnWhich Slots CanthelP243 Analog Module BeUsed? . . . . . . . . . . . . . . . . . . 6-6 7 7.1 7.2 7.3 7.4 7.5 Programming Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-1 Function Block FB160(PER:ANL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-2 Function Block FB161 (PER:ANS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-7 Example .....,.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-12 ProgrammingwithoutFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7-19 O-ii lP243 Equipment Manual @.SiemensAG 1989j0rderNo: 6ES5998-0KF21 Contents R 02/92 Texts in these boxes contain important information/instructions which must absolutely be observed/followed to ensure correct function or protection of the module. For clarity's sake, this equipment manual does not contain complete, detailed information and cannot cover every conceivable operating situation. Contact your local Siemens office if you require additional information or if a special problem arises which is not covered in sufficient detail by this equipment manual. In addition, be aware that the contents of this documentation do not constitute a part of a previous or existing agreement, promise, or a legal relationship, and are not intended to alter same. All obligations on the part of Siemens are based on the respective purchase order which also contains the complete and solely valid warranty provisions. This 1P 243 equipment manual neither widens nor restricts these contractual warranties. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 o - Ill Application and Application Area R 02/92 1 The 1P 243 is a module for input and output, for preliminary processing, and forjumpering of analog signals within short processing times. The submodule in its full configuration has eight quick analog input channels with max. 35 psec. conversion time, four input channels with analog value conditioning and four analog output channels. Two comparators allow the comparison of analog values with each other and via two value difference amplifiers, the signals can be amplified up to 20 times their original strength. All analog signals can be freely jumpered via soldering bases on the circuit board. This means that as a user you can decide about the individual combinations of the available hardware components. Furthermore, eight digital inputs and eight outputs with direct bus access are available. Customer-specific interrupt processing can be effected by means of the jumpering base. The 1P 243 submodule can be used for the following programmable controllers: - - - - S5-115U/H S5-135U s5-150s/u S5-155U/H or expansion units (see section 6.1). For the programmable S5-115U, an adapter casing is required. No fan assembly is required. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 1-1 Mechanical Construction R02192 2 Mechanical Construction 2.1 Dimensions and Mechanical Data The 1P 243 is a printed circuit board in double European format, with dimensions of 233.4 mm x 160 mm (DIN 41494). In accordance with the SIMATIC S5 compact peripheral system, the PCB takes up one slot in the rack. It has a width of 1-1/3 SPS1 (20 mm). 42 Faston connector pins (2.4 mm x 0.8 mm) are located on the front plate. The bus connection is made via a second row, 48-way base connector. The base connector is located on the upper half. Ground (Mext) connection is provided via contact strips in the guide rails. Overview of the Individual Variants The 1P 243 is available in one full-configuration version and two different part-configuration versions. The full-configuration module has the following independent functions: - 1 Analog/digital converter, 8 channels, 12 bits, 35 psec. conversion time, bipolar or unipolar - 2 Digital/analog converters, 12 bits, bipolar - 1 Digital/analog converter, 8 bits, unipolar - 1 Analog output amplifier - 4 Analog value conditioning circuits with operating point and amplifier setting - 2 Difference amplifiers (P controllers) with adjustable gain - 2 comparators with gating logic connected in series, can be read in statically and/orwith interrupt generation (interrupt evaluation is only possible for the SIMATIC S5-150U/S and S5-155U with externally-wired digital input module for interrupt generation). - 8 binary inputs can be read in statically and/orwith interrupt generation (interrupt evaluation is only possible for the SIMATIC S5- 150U/S and S5-155U with externally-wired digital input module for interrupt generation). - 8 binary outputs, 24 V, 200 mA, switching to P potential, not current-limited. The inputs and outputs of the analog function groups are routed to the analog signal jumper block. This makes it possible to combine the individual functions to suit user requirements. All signals are nonfloating. 1 s~ndard plug-in station 1P 243 Equipment Manual @ %311WIIS AG 1989, Order No: 6ES5 998-0KF21 2-1 R 02/92 Mechanical Construction The following table shows which components are for the part-configuration versions: Full Con figura- Part Configura- Part Configuration Module tion Module tion Module Type 243- IAA 243-IAB 243-1 AC ND converter, 12 bits 1 2 1 1 -- -- -- 2 1 4 2 2 8 8 x 4 -- -- -- -- -- 2 2 -- -- -- -- D/A converter, 12 bits D/A converter, 8 bits (with driver) Analog value conditioning circuit Difference amplifier (P controller) Comparators (alarm generation) Binaty inputs Binaty outputs Interrupt/alarm 2-2 1P 243 Equipment Manual @SiemensA(31989, Order No: 6ES5998-0KF21 Mechanical Construction R 02/92 2.3 Block Diagram 1P 243 - IAA, Full Configuration tiEzizl 8binary inputs .. 1P 243 Equipment Manual @ Siemens AG 1989, order No: 6ES5 998-0KF21 2-3 R 02/92 Mechanical Construction 2.4 Block Diagram 1P 243- IAB, Partial Configuration Ll4+1 Measuring sockets El- 0 4 analog actual values Analog value condi- tioning Analog signal jumpering (Soldering base) IEEl- 2-4 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Mechanical Construction R02192 EE@zl w 2 Difference amplfiers (P controllers) ;ca;~;og values m" m" Analog signal jumpering Analog - value condi- tioning (Soldering base) m m DAC 8 bits + * - * Analog amplifier (driver) " 1P 243 Equipment Manual @ Siemens AG 1969, Order No: 6ES5 998-0KF21 2-5 Function Description R 02/92 3 Function Description Binary Input 3.1 The characteristics of the eight digital input channels BIO to B17 are: - Rated input voltage : 24 V DC - Input voltage for signal"1" : 12.7 Vto 30 V - No potential isolation - Pole protection available - Input filtering: Typical delay time 2.7 msec. -- Inputs selectable for interrupt generation (therefore, input filtering time is relevant.) Input circuitry for one input A 1 8.2 k 74LS245 BIO to B17 + 0.33 WF Mew 1.5 k m 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 3-1 R 02/92 Function Description I 3.2 Binary Output Eight digital output channels (BOO to B07) are available which, however, are only used for triggering of indicator elements ( e.g., lights). Contrary to the standard S5 set-up no BASP signal is generated. Other characteristics: - P switching "open emitter" - Not "short-circuit proof" - After return of voltage all channels carry the signal "O" - Output current per BO: maximum of 200 mA - Output total current (for all 8 BOS): maximum of 600 mA Output circuitry per output: 74LS273 1 T+*4V Front connector BOO to B07 3-2 1P 243 Equipment Manual @.SiemensA(31989, Order No: 6ES5998-0KF21 Function Description R02/92 3.3 Analog Input 3.3.1 Rated Input Ranges The analog input is applicable to the following voltage ranges: -5 v to +5 v -lo v to +10 v o v to +10 v The ranges can be set via jumpers on the module (seethe layout plan in section 5.4, Setting Elements and Jumpers). Upon delivery the jumpers are set for the voltage range O V to 10 V. The jumper settings for the respective rated input ranges must be made as follows: Rated input range -5 v to +5 v -lo v to +10 v o v to +10 v p: Bi -+ + -+ Jumper installed Unipolar Bipolar 1P 243 Equipment Manual @.SiemensA(31989, Order No: 3-3 6ES5998-0KF21 Function Description R 02/92 3.3.2 Conversion of the Analog Input Signals The central circuit of the analog input is the analog/digital converter which converts an applied setpoint in a maximum of 35 ~sec. with a resolution of 12 bits. An analog eight-channel multiplexer is connected on the input side of the converter. The conversion of the analog input values takes place in three stages: 1) Select the channel 2) Output the conversion command 3) Read the result 1) Select the channel: The multiplexer is addressed under the module address +7. The channel to be converted (O to 7) is selected by writing the three data bits 2, 21, and 22. Channel selection: (in the byte module address +7) DO D7 LOG STR I x x 1 x 2 2 2 ' 2 1 If the same channel is read in several times in sequence, it need not be selected each time. In such a case it suffices when the active values are converted and read out. The selected channel remains current until a different channel number is written. The current channel selected by the program is indicated by the three yellow LEDs on the module front plate. 2) Output the conversion command: The conversion command is given by writing the module address +6, whereby the written data is irrelevant. 3) Read the result: The result can be read immediately in the peripheral word module address +6 as the "Ready" signal is only generated when the ADC has completed the conversion (i.e., after a maximum of 35 psec.). No additional waiting time is required. It is also possible to process other parts of the user program within the 35 psec. period. 3 - 4 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 3.3.3 Input Circuitry At the pins AR1 to AR8 of the analog signal jumping block, the analog input AIO to A17 can be not only active, but they can also be switched to the inputs of the analog-value conditioning circuit or to the outputs of the difference amplifiers. Input circuitry of the multiplexer input (per input) Front connector n 100 Q $%:;7 AR1 to AR8 I CMOS- Multiplexer +15 v -15 v 3.3.4 Digital Representation of Measuring Values For representation of the analog values in digital form, two bytes (per word) are required. LOW byte HIGH byte I Module address +6 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 I Module address +7 3-5 R 02/92 Function Description The coding of the analog input signals is accomplished by accepting only the positive values in the range O V to 20 V (rated input range &10 V) respectively O V tol O V (rated input range i-5 V). The digital values are then referred to the rated input range and are allocated in accordance with the following table. LOW HIGH `w&a [v] Units Byte Byte ~048 *1O v ~lo.oor)r) +2047 +9.9951 +4.9976 +2000 +9.7656 +1000 + 2"2'5 92 d Conversion of bit pattern In ut voltage in reference to range 0 Vto +20 v 26 2 1 3 2 22 ` 00 0 0 0 o v to +1OV ~4r3g8 220.000 >lr).r)fjo 1 1 1 1 1 1 1 1 1 1 1 1 0000 4095 19.9951 9.9976 i-4.8828 1 1 1 1 1 1 0 1 00 00000 4048 19.7656 9.8828 +4.8828 +2.4414 1 0 1 1 1 1 1 0 1 0000000 3048 14.8828 7.4414 1 +0.0049 +0.0024 1 00 00 0 0 000 0 1 0000 2049 10.0049 5.0024 Switch pt. +0.0024 +0.0012 10.0024 5.0012 10.0000 5.0000 9.9976 4.9966 1 1 1 1 1 1 1 1 1 1 1 1 0000 o o o 0 1 000 0 0 000000 0000 2048 - 0.0024 -0.0012 -0.0049 -0.0024 0 1 1 1 1 1 1 1 1 1 1 1 0000 2047 9.8951 4.9976 -1000 - 4.6628 -2.4414 0 1 00000 1 1 0000000 1048 5.1172 2.5566 -2000 - 9.7656 -4.8828 000000 00000000 48 0.2344 0.1172 -2048 -10.0000 -5.0000 0000000000000000 0 0.0000 0.0000 -2049 -10.0049 -5.0024 0000000000000000 I I Switch pt. - 1 1 1 I Attention: By adding 8000H to the digital values, the values can be converted to a dual-complement format. In the input voltage range O V to 10 V, the active analog value is represented directly as an amount (without sign). Units Input voltage [V] o v to +1 o v &4r)gf3 2+1 0.0000 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 +4095 +9.9976 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 +4000 +9.7656 1 1 1 1 +2000 +4.8828 0 1 1 1 +1 +0.0024 0 0 0 0 0 0 0 0 o ~ -1 3 - 6 o s -0.0024 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 I 3.4 Analog Output ,. .,,.,$4, B 3.4.1 Jumpering of Analog Output Five channels are available (AO1 to A05) which can be freely distributed via the soldering base. It is possible to output analog values (provided by the D/A converters) on a certain channel, and transfer this signal simultaneously to different outputs. In the same way, for instance, the outputs of the difference amplifiers (P controllers) or conditioned analog values can be directly output as analog values. Attention must be paid to the input side of the analog output A05 to make sure that an analog amplifier is connected. It is not only able to amplify the value provided by DAC3, but also a value which, via an analog input, is present as an actual-value conditioning input on the P controller. Three digital/analog converters, which are described in more detail below, convert binary values into analog signals. 3.4.2 Digital/Analog Converters 1 and 2 3.4.2.1 Rated Output Range and Resolution Digital/analog converters DAC1 and DAC2 are systems independent from each other. The resolution is 11 bits plus sign. Bipolar analog values in the range of *1 O V can be output. 3.4.2.2 Writing the Analog Outputs DAC1 is addressed under the module address +0 and DAC2 under the module address +2. The binary value should be transferred to DAC1/2 by a word statement to prevent possible peaks during byte-wise write procedures. Example: S5 : TPW address 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 3-7 R 02/92 Function Description 3.4.2.3 Digital Representation of Analog Values Two bytes are required for representing the values, the output from DAC1 and DAC2, in digital form. HIGH byte LOW byte X: irrelevant DAC1: Module address +0 DAC2: Module address +2 Module address +1 Module address +3 The representation of the digital values in the bit pattern is to be interpreted in a way that the output voltage range *1 O V is only considered as a positive range within O V to +20 V. The 12th bit is cutoff and written separately as sign bit at position 2 15. The highest representable value FFFH, at a resolution of 12 bits, corresponds to the maximum voltage +20 V, but it is adapted to the output voltage range and is converted to the negative voltage -10 V. The digital representation of analog values over the entire rated output range appears as follows: Units output voltage HIGH Byte LOW Byte rJl SN X X X X 2 `~ ~ ~ 272 !2 % ? 232 2 ` 0 Amount of bit pattern (including sign) o Output voltage in reference to range o v to +20 v 0.0049 +2047 +9.9951 +2000 +9.7656 0 Xxxx o 0 0 0 0 1 0 1 1 1 1 47 0.2344 +1000 +4.8828 0 Xxxx 1 0 0 0 0 0 1 0 1 1 1 1047 5.1172 +1 +0.0049 0 Xxxx 1 1 1 1 1 1 1 1 1 1 0 2046 9.9951 0 Xxxx o 0 0 0 0 0 0 0 0 0 0 o o 1 1 1 1 2047 10.0000 -1 -0.0049 1 Xxxx o 0 0 0 0 0 0 0 0 0 0 2048 10.0049 -1000 -4.8828 1 Xxxx o 1 1 1 1 1 0 0 1 1 1 3047 14.8628 -2000 -9.7656 1 Xxxx 1 1 1 1 1 0 0 1 1 1 1 4047 19.7656 -2048 -10.0000 1 Xxxx 1 1 1 1 1 1 1 4095 20.0000 0 Xxxx 1 1 1 1 1 1 1 1 1 1 1 Attention: If a value provided in the two's complement form by the programmable controller is output as an analog value, this value must first be converted to a format suitable for a DAC1 or DAC2. For this purpose the sign bit 215 must at first be saved, then the bit pattern must be inverted (command CFW) and the sign bit must be written back. Attention: When the power supply of the programmable controller is initially turned on, or when the voltage returns after power-off, DAC1 and DAC2 are preset with the value 000000000000 = +9.9951. This value remains until it 3 - 8 1P 243 Equipment Manual @ .5kMWIS AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 3.4.3. Digital/Analog Converter 3 3.4.3.1 Rated Output Range and Resolution The digital/analog converter DAC3 has an 8-bit resolution. Unipolar analog values in the range O V to +10 V can be output. The analog output amplifier should be added on the output side of DAC3 to amplify the analog output signal, as output current fromDAC3 is too low to carry a load. 3.4.3.2 Writing the Analog Output DAC3 is addressed under the module address +4. The command TPY suffices, since only 8 bits need to be transferred to the output. 3.4.3.3 Digital Representation of Analog Values The digital value to be converted to an analog voltage has a 1-byte format: DO D7 27 26 25 24 23 22 2' 2 Module address +4 The value to be output is represented as an amount (without sign) in the following bit pattern: Units Byte Output voltage 272 `?? 52 ?? 232 255 9.961 1 1 1 1 1 1 1 1 200 7.812 1 1 0 0 1 0 0 0 100 3.906 0 1 1 0 0 1 0 0 0.039 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 2 ` 0 Attention: When the power supply of the programmable controller is initially turned on, or when the voltage returns after power-off, DAC3 is not preset. It can assume anv value which remains until it is overwritten. 1P 243 Equipment Manual @ skJfTWnS AG 1989, Order No: 6ES5 998-0KF21 3-9 R 02/92 Function Description 3.4.4 Analog Output Amplifier 3.4.4.1 Description Mainly in cases where DAC3 is used for analog output, the analog output amplifier is added on the output side of the digital/analog converter as a voltage booster. This is necessary because the converter is not permanently "short-circuit proof" and the short circuit current is not defined. It is possible, however, to route signals other than those of DAC3 to the output amplifier, via analog-signal jumpering. The voltage booster has a 1:1 amplification. 3.4.4.2 Circuitry The analog output amplifier has the following circuitry: Analog-signal jumpering 1 AR29 22 k!il I I - m AA5 + F Front connector 3 - 10 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 3.5 Analog Value Conditioning Circuit 3.5.1 Operating Elements The four inputs of the analog value conditioning circuits are meant to standardize the voltages provided by encoders to the O V to +10 V range, and are conditioned in accordance with the setting of the trimming potentiometer on the module front plate. Conversion in the O to +10 V range is not possible unless input voltage > -4 V. Conditioning is always necessary when negative voltages are processed and routed via the comparators. The comparators are designed for positive voltages so that the input voltages must be transformed to the positive range. In addition to the 4 trimming potentiometers for setting the amplification and the offset, there are four measuring sockets on the front plate via which the conditioned analog values can be scanned. A socket (socket 6) is also available. This socket is connected to analog ground Maria. This socket can be used as the ground connection for a graphic recorder which records the conditioned analog signals. Attention: Socket5 hasnofixed internal connection toaspecificsignal. Itis located on the analog-signal jumpering space AR32. This socket is free for switching, either for a signal from an 1P 243. The conditional socket (i.e., the component routed to the soldering base) or for another external sig- 3.5.2 Functioning On the front plate of the 1P 243 there is one trimming potentiometer per input (AV1 to AV4) for the offset of the operation point by a binary amount between -2 V and +2 V and for setting the amplification (gain) as a factor in the range from 1 to 10. First, the active analog value is multiplied by the fixed factor 0.5 specified by the module. Then, the set offset is added, and finally this value is multiplied by the desired gain factor. The possible total gain is between 0.5 and 5. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 3 - 11 R 02/92 Function Description The following block diagram shows the operating method of the analog value conditioning circuit: O crating point o#set -2 v to +2 v Front connector AVI to AV4 m Input time constant IL Multiplication constsnt - Gain setting + x 1 to 10 Y * Analog signal jumpering AR13 toAR16 XO.5 T SpprOX, 0.1 msec. n Measuring socket 1 to 4 Analog value conditioning Example: An input voltage which can vary in the range from -1 V to -1.5 V is to be compared in terms of hardware with an input voltage from -0.5 V to -2 V. Both signals are routed through the analog value conditioning circuit. The following settings are possible: Offset = +2 Gain = 3 -1 .0 v x 0.5 = -0.50 v +2.00 v +1 .50 v x 3 -1.5 v x 0 , 5 = -0.75 v +2.00 v +1.25 V X 3 -0.5 v x 0 . 5 = +4.50 v = +3.75 v = -0.25 V +2.00 v -2.0 v x 0 . 5 +1 .75 v x 3 = +5.25 V = -1 .00 v +2.00 v +1 .00 v x 3 = +3.00 v Accordingly, the voltages 3.75 V to 4.5 V on one side are compared with 3.0 V to 5.25 V on the other side. There are many possibilities for setting the trimming potentiometers. The user decides which conversion is most suitable. 3 - 12 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 R 02/92 Function Description 3.5.3 Input Circuitry Input circuitry for value conditioning (per input) EEiEEEa+"v "5" `"'to'"- `M 100kS2 + -- ?;~1 nF 56kQ I Attention: ma The input constant of approximately 0.1 msec. was selected to filter out possible interferences. The delay is approximately proportional to the capacitor 1 nF. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 3 - 13 R 02/92 Function Description 3.6 Comparators and Gating Logic 3.6.1 Input Signal Range and Possible Circuitry The two comparators are designed to compare positive voltages in the range of O V to +10 V. If negative input voltages need to be compared, they must be routed through the analog value conditioning circuit and converted to a positive value. The inputs of the comparators are connected with analog-signal jumpering via a filter circuit (AR17 to AR20). Depending on the application, the comparator inputs can be connected with two signals each that are routed through the soldering base. Via gating logic, the current comparator status can be read in, and/or an interrupt can be generated. In case of interrupt processing, be aware that a hardware interrupt, fed directly from the module to the bus, can only be processed by the controllers S5-115U/H and S5-135U with CPU 922 or CPU 928AJB. (For interrupt processing with different programmable controllers, see sec- 3 - 14 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 3.6.2. Input Circuitry Input circuitty for each comparator M alla COMP+ AR17/20 1 I M~ 2.2 k~ +15 v 22 k~ Gating logic Analog signal jumpering COMP- AR18/19 +5 v 22 k~ I M."= M ma Cs o Xl 9 Pins 7/8 * output gating logic (ARCOMP) Data bus *routed to interrupt jumpering base CS = Chip Select Attention: When comparators are used to compare voltages, the circuit specific, absolute hysteresis of approximately 4.4Y0 of the voltage difference between comparator output (O V/5 V) and input COMP+ (O V to 10 V) must be considered. 3.6.3 Reading the Comparators and the Gating Logic The two comparators are addressed under module address +5. The data bits O to 3 contain information about the current comparator status. The data bits are identified by the characters A, B, C, and D. Read module address +5 DO D7 1 1 1 1 D c B A Byte module address +7 not only specifies the analog input channel which is to be converted by the ADC, but also specifies the status of the signals LOG and STROBE. The bit LOG switches the gating logic from rising to falling edge, while STROBE locks or releases an interrupt. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 898-0KF21 3 - 15 R 02/92 Function Description Write to module address +7 DO D7 LOG STR x x x TT IL 2 2 2' 4 2 ~ ADC channel selection at multiplexer STROBE for comparator gating logic interrupt, signal STR O = locked, 1 = released I Changeover of gating logic, signal LOG O = rising edge of comparator output, 1 = falling edge of comparator output The default status of the STROBE signal is"1". Attention: The signals LOG and STROBE must be allocated together for both comparators. Separate addressing is not possible. 3.6.4 Evaluation of the Comparator States 3.6.4.1 Representation of Comparator States As already mentioned in section 3.6.3., information about current comparator status is read in byte module address +5. In this case, only the bits 2, 21, 22, and 23 (now represented by the characters A, B, C, and D) are relevant. DO D7 1 1 1 1 D c B A Module address +5 Data bits DO = A and D1 = B are allocated to comparator 1 Data bits D2 = C and D3 = D are allocated to comparator 2 The status of the evaluative bits A, B, C, and D of the respective comparator and the pertaining gating logic depends on the input voltage at the comparator ( +comparator and -comparator) and the selection of the signal states for LOG and STROBE. The individual possibilities are shown in the table in section 3.6.4.2. 3 - 16 1P 243 Equipment Manual @ .Siemens AG 1989, Order No: 6ES5 998-0KF21 Function Description R 02/92 3.6.4.2 Value Table for Comparators 1 and 2 STROBE Bits Input voltage at comparators 1 and 2 Signals LOG + Comp - Comp A/c Status BID Comparator status 1 and 2 ~M;g~ogic 1 1 u, U* 1 0 0 1 1 1 U* u, 1 1 1 0 1 0 u, u, 1 1 0 0 1 0 u, u, o 1 1 1 0 1 u, u, 1 0 0 0 0 1 U* u, 1 1 1 0 0 0 u, u, 1 1 0 0 0 0 U2 u, o 1 1 0 Attention: The input voltages applied at the comparators are identified as U 1 and U2 in the value table where U2 is always greater than U1. Explanation of signal names: STROBE: Enable/Inhibit a hardware interrupt in case of exceeding or dropping below the setpoint O = Interrupt inhibited 1 = Interrupt enabled LOG: Changeover of the gating logic as a reaction (interrupt) to rising or falling edge (i.e., exceeding or dropping below a setpoint). O = Rising edge 1 = Falling edge + Comp: "+" input of the comparator with the rated input range O V to +1 O V; - Comp: " -" input of the comparator with the rated input range O V to +1 O V; 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6E.% ggs-i)l(l+l 3 - 17 R 02/92 Function Description 3.6.4.3 Explanation of the Value Table and the Individual Values Some important deductions can be drawn from the value table presented below. A clear definition of the status of the comparators and gating logic is dependent on the evaluation of "bits" A, B, C, and D. The easiest way to evaluate the "bits" is to apply the conditions necessary to make the status of one "bit" (i.e., either A or B, or C or D) equal to "O". Ntention: The text of section 3.6.4.3 applies when STROBE = 1. If STROBE = O, then gating logic 1/2 = O. The comparator outputs comp. 1/2, however, react the same way as when STROBE = 1. A becomes O only if: LOG = O and + comp. > - comp. - > comp. 1 becomes 1 - > gating logic 1 becomes 1 - > interrupt is possible B becomes O only if: LOG = 1 and + comp. < - comp. - > comp. 1 becomes O - > gating logic 1 becomes 1 - > interrupt is possible C becomes O only if: LOG = O and + comp. > - comp. - > comp. 2 becomes 1 - > gating logic 2 becomes 1 - > interrupt is possible D becomes O only if: LOG = 1 and + comp. e - comp. - > comp. 2 becomes O - > gating logic 2 becomes 1 - > interrupt is possible Summarized statements: - Gating logic 1/2 - Comp. 1/2 3 - 18 = 1 if LOG <> comp. 1/2 = 1 if + comp. > - comp. 1P 243 Equipment Manual @.SiemensA(31989, order No: 6ES5 gg8-I)KF21 Function Description Representation in the Time/Voltage Diagram L + Comparator L rl r ---- 1 r ---1 ./ - Comparator t I LOG "Bits" A/C 1- -- "Bits" B/D 1!1 Comp. L ~ STROBE -- Gating logic Interrupt IR 1 S5 Interrupt extension module The signals LOG and STROBE were selected randomly for this example. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 R 02/92 Function Description 3.7 Difference Amplifier (P Controller) 3.7.1 Input Signal Range and Amplification Voltages in the range from - 10Vto + 10 V can be applied at the input of the two difference amplifiers. The desired amplification is set via the trimming potentiometer. For each of the two P controllers, one trimming potentiometer is available on the module front plate, and amplification factors from 1.1 to 20 can beset. The difference between the input voltages applied at P+ and P- is amplified. 3.7.2 Input Circuitry Since the two P controllers are built as device amplifiers, both input values have the same polarity. Input circuitry of the difference amplifiers (for each amplifier) 22 k~ 22 k~ Difference + Difference - AR9/11 22 k~ I M arm 3.7.3 Circuitry Possibilities and Output Signal Range The inputs and outputs of the difference amplifiers are routed to the analog jumpering block and can be connected to other analog signals also running to this same soldering base. Amplifier input values, for example, can be signals coming via the channels of the analog value conditioning circuits, or values provided by the digital/analog converters. Again, the respective output of the P controller can be either applied to the digital/analog converter or to the comparators, or it can immediately be used as an analog output. The output signal range of the difference amplifiers is within +1 O V. 3 - 20 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R02/92 4 Interrupt Processing 4.1 General Conditions for Interrupt Processing This section now covers specific characteristics of interrupt processing in relation to the individual programmable controllers. Interrupt jumpering on the 1P 243 is described in section 5.7. An interrupt can only be triggered by the comparators or the gating logic on the output side. The condition for generating an interrupt is its enable by the signal STROBE. The corresponding parameter assignment is described in section 3.6, as well as a description of the switching of gating logic between rising edge and falling edge (signal LOG). This makes alarm processing only possible when the 1P 243-lAA.. module is fully configured. 4.2 Possibilities for Interrupt Processing In principle, interrupts can be evaluated in any programmable controller which allows operation with the 1P 243. In practice, however, this evaluation depends on the type of controller. Only with the S5-115U/H and S5-135U with CPU 928A/B or with CPU 922, is direct access to the bus with interrupt lines possible. For all other programmable controllers, a separate digital input module with interrupt-generating capability must be used. This module must be externally wired with the binary outputs of the 1P 243. 4.3 Direct Bus Access Direct access to the interrupt lines is only possible for programmable controllers with edge- triggering. This means that the central unit reacts only to edge changes without regard to specific status levels. This applies to allCPUSoftheS5-115U/H series, CPU 922 and the 928NB CPUS of the S5-135U series. If interrupts are triggered via direct bus access, the memory latch D9 may D@ be exchanged for the soldering base D9, included with delivery. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4-1 R 02/92 Interrupt Processing 4.3.1 Interrupt Processing in the S5-l15U/H In the S5-115U with CPU 941A, interrupt lines ~Aand ~B are available for CPU 941B, 942-7UH.... From CPU 942A/B on, the four interrupt lines-~~, ~B, ~? and ~Don, which interrupts can be initiated, are available. The two pins IRF and ~Gon the interrupt-jumper~g block X19may not be used; they must always be grounded on M (pin 6). The same applies to IRC and ~Dwhen CPU 941A is installed. Furthermore, all process interrupts which are not used must be connected to grounding M. An organization block is allocated to each interrupt in the S5-1 15U. The organization block must be programmed for interrupt evaluation. The following relations apply: Interrupt Interrupt Interrupt Interrupt ~% ~B ~C ~D - - - - OB OB OB OB 2 3 4 5 Each interrupt line should be allocated to only one interrupt-generating 1P 243. In the case of several accessing modules, it would require considerable software effort to determine which 1P 243 triggered an interrupt (no evaluation possible via peripheral byte O!). Attention; Interrupt requests can be processed only in the central unit. The interru t program structure and interrupt-OB handling are found in the ~5-115U manual or the S5-115H manual. Exception: Alarm processing in the expansion device is possible with EG 701 -3 (from release 6ES5 701-31A13) or EG 186U, when Iigth wave conductor interfaces 6ES5307-3UA1 1 and 6ES5 317-3UA11 are used. II Example: The two analog input channels AlO and All are compared with each other by comparator 1 (AIOto +Comp. and All to -Comp.). As soon as All exceeds the value of AIO, this is indicated by a signal light connected to the binary output B02 of the 1P 243. At the same time channel A13 is read in once in the interrupt program. The module starting address is given as 144, and interrupt line ~Bisselected. Only in the case of parameterization for falling edge can a reasonable evaluation of the interrupt request be made. 4-2 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R02/92 The required solder connections on the jumpering block for analog signals are: Front connector S5 bus , Socket 6 Socket 5 Diff. amp. 2 +-A Diff. amp. 1 +-A M ma Comp. Comp. 1 +- 2 +- m Socket 4 Socket 3 4 Socket 2 4 Socket 1 4 Pin Signal 20 + 15 v 21-15 v 23 Maria 24 AV1 25 AV2 26 AV3 27 AV4 1 0 9 2 3 1 2 1 1 2 4 20 1 ! 1 7 31 21 + 32 AV1 AV2 AV3 AV4 - D 16 9 15 * ~ 14 A D 13 -- 22 Sog;gase -u< DACI 12 bits DAC2 12 bits U(!. r A 30 J I I DAC3 8 bits ;2345678 v Sensor 1 - 34AI0 2 - 35A11 36 A12 3 - 37A13 38A14 39 A15 40 A16 41 A17 Diff. amp. = Comp. = Chan. = m D s w w T w v . D * Chan. 1 Chan. 2 Chan. 3 + ADC Chan. 4 12 bits Chan. 5 Chan. 6 Chan. 7 Difference amplifier Comparator Channel 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4-3 Interrupt Processing R 02/92 The pins of the binary signal/interrupt jumpering are connected as follows: Front connector /' S5 bus / ~~ Signal 1 ;24V 2 +24V 11 610 12 Bll 13 B12 14 613 15 614 16 615 17 616 16 617 I Binary Binary Binary Binary Binary Binary input input input input input input 2 3 4 5 6 7 m * Buffer -1 + Q 1'`` `1 Comparator 1 Comparator 2 Gating logic 2 Gating logic 1 10-11 I 9 8 Sokk:ng b a s e 12 l? 7 = 1 1 r :4 Indicator light -- @ 4 - 4 3 BOO 4601 -- 5602 6603 7604 8605 9606 10607 42 M ~ti 43 M ,ti 4 a 4 4 4 4 4 4 Binary Binary Binary ~p* Binary Binary Binary Binary Binary output O output 1 output 2 output 3 output 4 output 5 output 6 output 7 e * * * a * m 2 5 6 9 12 15 16 19 D Interrupt driver Memory latch D9 IP 243 Equipment Manual @SiernensA(21989, Order No: 6E!35998-I)KF21 Interrupt Processing R 02/92 The Step 5 program can have the following structure: 0000 NETWORK 1 0000 : :L KM 1 IXXXXXX 0001 :T PY 151 0003 0004 : 0005 : :BE 0006 OB 1 for S5-115U Enable Interrupt ("STROBE"=l ) and Reaction to falling edge ("LOG''=1) (2!3s 0000 NETWORK 1 :JU FB X 0000 0001 NAME :SAVE 0002 : PY 149 :L 0003 :T m 100 0004 :AN F 100.1 0005 F 102.2 0006 := IA F 102.2 0007 :JC FB Z 0008 0009 NAME :INTERRUPT OOOA : :JU FB Y OOOB OOOC NAME :LOAD :BE OOOD Interrupt OB forS5-115U Save scratchpad flag Load comparator states Evaluate parameter bit "B" Set flag for output Interrupt reaction (S5-11 5U) Load scratchpad flag FB Z NETWORK 1 0000 NAME :INTERRUPT 0005 0006 0007 0009 OOOA OOOB Oooc OOOD :L :T :L :T :T :L :T :BE a 102 m 149 KM 1 IXXXO1l E 151 m 150 Pw 150 Fw 104 Interrupt reaction (S5-1 15U) Write binary outputs Read in A13 Select ADC Convert ADC Read ADC Store value Attention: Save the scratchpad flag bytransferring itto a data block. Atthe end, the scratchpad flag must be read into the interrupt processing. The flag bytes FY 200 to FY 255 are defined as scratchpad flags. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4-5 R 02/92 Intermpt Processing 4.3.2 Interrupt Processing in the S5-135U with CPU 922 or CPU 928A/B In the multiprocessor system S5-135U, the four interrupt lines ~A, ~B, ~G and ED are allocated to one CPU slot per tine: CPU 1 CPU 2 CPU 3 CPU 4 - Interrupt - Interrupt - Interrupt - Interrupt IZRl ~B IRC ~D An interrupt organization block OB 2 can be filed in each of the central modules. Pttent i on ; The presetting of data block DX O for "edge-triggered interrupt processing" is mandatory to work with direct hardware interrupts. In the S5-135U, interrupt processing is also only possible in the central rack. Exception: Alarm processing in the expansion device is possible with EG 701-3 (from release 6ES5 701-3M13) or EG 186U, when Iigth wave conductor interfaces 6ES5307-3UA1 1 and 6ES5317-3UA11 are used. ~ Only ~ 1P 243 should access an interrupt line. Otherwise, no evaluation or only limited evaluation is possible (see also section 4.3.1). See the appropriate equipment manual for a description of interrupt handling in the S5-135U with CPU 922 or CPU 928A/B. Example : The S5-135U is operated with two central processors, (i.e., a CPU 922 ad a Cpu 928AM. comparator of the IP243 compares thetwovalues AVl and All (All to +comp., AV1 to -comp.). The +comp. of comparator 2 is connected with A12 which is compared with a user-specified value (KF = +5000). As soon as the two analog input channel values exceed the correlated "setpoints", an interrupt is generated. In case of an interrupt from gating logic 1, AV1 is read in at the ADC of CPU 922 and a check is made to see ifthe value exceeds KF = + 3000. If so, an output is set. If gating logic 2 reports an interrupt, the binary inputs B13 to B15 of the IP 243 are read into CPU 928A/B. As soon as one of the inputs has the signal"1", the output byte 4 is overwritten with OOFFH. The module starting address is given as 128, the parameter setting on rising edge. 4 - 6 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 Analog signal jumpering: IGzEEIl Socket 6 Socket 5 Socket 4 Socket 3 Socket 2 Socket 1 Pin Signal 20 + 15 v 21 - 15V 23 M ana 24 AV1 25 AV2 26 AV3 27 AV4 32 A05 33 M ana AV1 AV2 AV3 AV4 d a 15 14 13 ---ELI Multiplexer 34AI0 35 AH 36 A12 37 A13 38 A14 39 A15 40 A16 41 A16 w w T WI I 1 * Chan. 1 * Chan. 2 Chan. 3 Chan. 4 Chan. 5 ADC 12 bits ~chan" 7 Diff. amp. = Comp. = Chan. = Difference amplifier Comparator Channel 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4-7 R 02/92 Interrupt Processing Binary signal/interrupt jumpering: Pin Signal No. 1 +24 V 2 +24 V 11 BIO 12 Bll 13 B12 14 B13 15 B14 16 B15 17 B16 18 B17 Binary input O Binary input 1 Binary input 2 Binary input 3 Binary input 4 Binaty input 5 Binary input 6 Binary input 7 Buffer ~ It ,4 >1 M I ,,, . , 0 6 5 ~ Sold;;;g b a s e !' Comparator 1 Comparator 2 Gating logic 2 Gating logic 1 12 I 8 7 : 13 ;4 `~ 15 16 Interrupt driver for S5-135U ~~;&B and 922) w~G +~F -K -R * ~B - CPU 928AJB *FA - CPU 922 Indicator light - - - 4 - 8 3 B O 0 4 BO1 5 B02 6 B03 7 B04 8 B05 9 B06 10 B07 42 M ,ti 43 M ~ti ~ Binary output O ~ ~ ~ ~ ~ ~ Binary Binary Binary Binary Binary Binary Binary output 1 output 2 output 3 output 4 output 5 output 6 output 7 + 4 a * @ t - 2 5 6 9 12 15 16 19 Memory latch D9 I 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 At first, the DX O for the CPU 928A/B and the CPU 922 must be parameterized for edge-triggered interrupt processing. The DX O for the two central processors is as follows: m O : KH = 4D41 > > Start identification 1 : KH = 534B 2 : KH = 5830 ;Iock identification/length 3 : KH = 0601 Edge-triggered interrupt processing 4 : KH = 2001 5 : KH = EEEE End identification The user programs for the CPU 922 and for the CPU 928A/B can look like this: QEL! NETWORK 1 0000 : :L 0001 :T 0003 0004 : 0005 : :BE 0006 0000 OB 1 for CPU 922 KM OIXXXXXX PY 135 Enable interrupt ("STROBE" = 1) and Reaction to rising edge ("LOG" = O) Q!32 NETWORK 1 0000 0001 NAME 0002 0003 0004 0005 0000 :JU FB X :SAVE : :L PY 133 :T B 50 Interrupt OB for CPU 922 Save scratchpad flag :AN Evaluate parameter bit "A' Interrupt reaction (CPU 922) F 50.0 :JC FB Z1 0007 NAME :INTERRUPT 922 0008 : 0009 :JC FB Y OOOA NAME :LOAD :BE OOOB 0006 1P 243 Equipment Manual @SiemensA(31989, Order No: 6ES5 gg8-0KF21 Load comparator states Load scratchpad flag 4-9 Interrupt Processing R 02/92 FB Z1 NETWORK 1 0000 NAME :INTERRUPT 922 Interrupt reaction (CPU 922) 0005 0007 0008 0009 OOOA Oooc OOOD OOOE Q 12.0 Read in All Select ADC Convert ADC Read ADC Load KF = +3000 Compare for excess value Set output 0000 OB 1 for CPU 928A/B KM OIXXXXXX PY 135 Enable interrupt ("STROBE"=l ) and Reaction to rising edge ("LOG''=1) Load KF = +4000 Write DAC1 :L :T :T :L :L :>F .-- :BE KM OIXXXOO1 PY 135 PY 134 Pw 134 KF +3000 m NETWORK 1 0000 : :L 0001 :T 0003 0004 : :L 0005 :T 0007 :BE 0008 KF +4000 PW 128 Q!32 NETWORK 1 0000 0001 NAME 0002 0003 0004 0005 0006 0000 :JU FB X :SAVE : :L PY 133 :T a 60 :AN F 60,2 :JC FB Z2 0007 NAME :lNTERRUPT 928A/B 0008 : 0009 :JU FB Y OOOA NAME :LOAD :BE OOOB 4 - 10 Interrupt OB for CPU 928A/B Save scratchpad flag Load comparator states Evaluate parameter bit "C" Interrupt reaction (CPU 928A/B) Load scratchpad flag 1P 243 Equipment Manual @SiemensA(31989, order No: 6ES5998-I)KF21 R 02/92 Interrupt Processing FB Z2 NETWORK 1 0000 NAME :INTERRUPT 928A/B 0005 0006 0007 0008 0009 OOOA OOOB Oooc OOOD OOOF 0010 PY 132 :L m 65 :T :0 F 65.3 :0 F 65.4 :0 F 65.5 .-- --- F 66.0 :AN F 66.0 :BEB :L KH OOFF :T QB 12 :BE Interrupt reaction (CPU 928A/B) Read binary inputs Evaluate B13, B14, B15 Load KH=OOFF Overwrite QB 12 For the saving and loading of scratchpad flags, the system organization blocks OB 190 to OB 193 in the CPU 922 and CPU 928A/B of the S5-135U can be used. 1P 24S Equipment Manual @SiemensA(31989, Order No: 6ES5998-0KF21 4 - 11 R 02/92 Interrupt Processing 4.4 Separate Interrupt Input Module If a programmable controller is designed for fundamental mode operation (level-triggered mode), i.e., the CPU only reacts when a certain level is active on the interrupt lines, or if a control without interrupt lines on the S5 bus is involved, interrupts can only be evaluated by means of a separate binary input module with process interrupt generation. The CPUS of systems S5-135U (CPU 922 and CPU 928A/B when parameterized accordingly) and S5-155WH oPerate in level-triggered mode. For devices without interrupt lines, the interrupt scan is made via the input byte O. This applies to the S5-150S and S5-150U controllers. If interrupt processing is desired for one of the aforementioned systems, replace the memory latch D9 on the 1P 243 with the soldering base D9, included with delivery. In addition an interrupt module is required. 4.4.1 Interrupt Processing in the S5-135U In the S5-135U programmable controller, both CPU 922 and CPU 928A/B operate in level- triggered mode. The CPUS, however, can also be parameterized for edge-triggered processing. In case of level-triggered operation, the digital input module6ES5432-4UA11 must be additionally inserted. On the 1P 243 module, the comparator outputs and the interrupt-generating outputs of the gating logic must be jumper-connected to the soldering base D9, which in turn is connected with the binary outputs of the 1P 243. Furthermore, the jumper connections on the soldering base X19 (pins 11, 12, 13, 14, 15 and 16 connected to grounding M, pin 6) may not be changed from their original delivery condition. Then the binary outputs are externally connected to the inputs of the interrupt module. The interrupt triggering is handled exclusively by the module 6ES5432-4UA1 1. A description is found in the appropriate equipment manual. When working with a separate interrupt input module, the 1P 243 can operate from any 1P slot, whether in the central unit or in an expan- sion unit. The interrupt module 6ES5432-4UA1 1, however, must always be inserted in the central unit. Several interrupts from one 1P 243 or from different IPs 243 can be routed to a digital module with the capability of process interrupt generation. Example: In the S5-135U with CPU 922the two analog input values AIOand All are applied tothe difference amplifier. The amplifier output runs to +comp. and is compared with -comp. which is connected to the input A16. If the value at the A16 channel exceeds the output voltage at the difference amplifier, an interrupt is generated and a value which was previously filed in FW 120 is output at A02 via DAC2. The module address is given as 160; parameterization is for falling edge. 4 - 12 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 Analog signal jumpering: Elm 7T3- m M ana Socket 6 Socket 5 Socket 4 Socket 3 Socket 2 Socket 1 Pin Signal 20 + 15 v 21 - 15 v 23 M ma AV1 24 AV1 AV2 25 AV2 AV3 26 AV3 AV4 27 AV4 ~: 28 AO1 29 A02 4 30 A03 * 31 A04 Analog * a output 32 A05 amplifier 33 M ma 10923 1211242019 1718 31 32 16 15 Solderin base 14 X2W?32 13L `: 25 26 27 28 21 22 29 r 1 23 45678 30 P I'-El DAC1 12 bits DAC2 12 bits - DAC3 8 bits " Multiplexer 34 AIO 35 AH 36 A12 37 A13 38 A14 39 A15 40 A16 41 A17 Diff. amp. = Comp. = Chan. = 1P 243 Equipment Manual @.SiernensA(31989, Order * * D w v w T * Chan. O Chan. 1 Chan. 2 Chan. 3 ADC m Chan. 4 ~ 12 bits o Chan. 5 9 Chan. 6 1 -lchan71 I Difference amplifier Comparator Channel 4 - 13 No: 6Es!j 998-I)KF21 R 02/92 Interrupt Processing Binary signal interrupt jumpering: 1 +24V 2 +24V 11 BIO 12 Bll Sinary input 1 13 B12 Birmy input.2 D 14 B13 Binary input 3 - 15 B14 Binary input 4 m 16 S15 Binary input 5 m 17 S16 Binwy input 6 D IB B17 Binary input 7 D Buffer D Wwwv I i 61 234 51 - ,0 ~ 11 9 Soldering base {z Comparator 1 Comparator 2 Gating logic 2 Gating logic 1 * l#e~ruPt r 6 m 7 X19 *%G F 9 13 *HY {4 15 *TZ 16 z *TZ D9 I m I I I P I 19 -- 3 BOO 4 BO1 5 B02 6 B03 7 B04 6 S05 9 B06 Sinaty w+.put 7 10 S07 F-t F- L- 1 2 3 4 5 6 7 8 9 10 11 12 =4 0 1 2 3 4 I 5 6 7 + Interrupt module 6ES5432-4UA1 1 ... ... 4 - 14 IP 243 Equipment Manual @SiemensA(31989, Order No: 6ES5 gg8-0KF21 Interrupt Processing R02/92 On the interrupt module6ES5432-4UA1 1 various presetting are required. For the relevant input in this case the setting "rising edge" was selected. The module address is given as 128. For a more detailed description of interrupt procedures, see the appropriate equipment manual. Simplified user program for scanning the interrupt inputs: m NETWORK 1 0000 : :L 0001 :T 0003 0004 : 0005 : :BE 0006 0000 OB 1 for CPU 921 KM 1 IXXXXXX PY167 Enable interrupt ("STROBE" = 1) and Reaction to falling edge ("LOG" = 1) Q!3-2 0000 NETWORK 1 :JU FB X 0000 0001 NAME :SAVE 0002 : :L PW 128 0003 :T Fw 114 0004 Pw 130 :L 0005 :T FW 116 0006 PY 165 :L 0007 Fw 110 :T 0008 :AN F 110.1 0009 F 114.0 :A OOOA :JC FB Z OOOB OOOC NAME :INTERRUPT 922 OOOD : :JU FB Y OOOE OOOF NAME :LOAD :BE 0010 Interrupt OB for CPU 921 Save scratchpad flag Read in interrupt module Read in interrupt module Load comparator states Evaluate parameter bit "B" Evaluate interrupt input Interrupt reaction (CPU 922) Load scratchpad flags w NETWORK 1 NAME :INTERRUPT 922 0005 0006 0007 :L :T :BE Fw 120 PW 162 Interrupt reaction (CPU 922) Write DAC2 In addition, system organization blocks OB 190 to OB 193 are available in CPUS 922 and 928A/B for saving and loading the scratchpad flags. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 888-0KF21 4 - 15 R 02/92 Interrupt Processing 4.4.2 Interrupt Processing in the S5-150U/S The systems S5-150U/S have no interrupt lines. In this case an interrupt signal is only possible via evaluation of the peripheral byte O. For details of this procedure seethe appropriate equipment manual. An interrupt OB is allocated to each bit of the input byte O, as follows: 10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 - OB 2 - OB3 - OB 4 - OB 5 - OB 6 - OB 7 - OB 8 - OB 9 In case of a signal change for a bit of IBO, a branch to the correlated interrupt block takes place. Generally an interrupt module is used for interrupt generating (for the S5- 150U this is the module 6ES5432-4UA1 1, and for the S5- 150S it is the module6ES5432-3BA11 ). See the appropriate equipment manual for specifications and operation. On the 1P 243 itself, the memory latch D9 must be replaced by the soldering base D9. The interrupt-generating outputs of the gating logic are connected with the binary outputs BOO to B07 via the soldering base D9. Then the outputs are externally connected with the inputs of a binary input. The solder connections on soldering base Xl 9 remain in their original delivery state (all interrupt lines to grounding M). Attention: With the systems S5-150U/S, interrupt processing is only possible in an expansion rack. The same applies to the use of IPs. All interrupt-generating modules must be located in the same expansion rack. Example: In theS5-150U an 1P 243 is operated under the following conditions: A value stored in EJ!Y 78 is output on DAC2 and stored on the difference amplifier. Difference + is connected with AV3. The amplifier output value is compared with the analog input channel A15 at comparator 1, whereby A15 is also read in on ADC. If A15 is less than the value of the signal at +comp, A12 is first converted three times, then AV4 twice on the ADC. The module address is given as 240; parameterization is for rising edge.A6ES5432-4UA11 interrupt module is used and parameterized accordingly. 4 - 16 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 Analog signal jumpering: M ma Socket 6 Socket 5 ., Socket 4 Socket 3 Socket 2 1109231211 ?4 2019 Socket 1 Pin Signal 31 20 + 15 v 21 - 15V 32 23 M,m 16 AV1 24 AV1 AV2 15 25 AV2 AV3 14 A 26 AV3 AV4 27 AV4 ~: 13 28 AO1 25 718 21 1 r L2 Solderin base X291X f/2 3C 1I 12345678 Hffwf 34 AlO 35A11 36A12 37 A13 38 A14 39 A15 40 A16 41 A17 Diff. amp. = Comp. = Chan. = U(J DAC3 8 bits Multiplexer Chan. O Chan. 1 Chan. 2 Chan. 3 Chan. 4 Chan. 5 Chan. 6 Chan. 7 ADC 12 bits [ Q Difference amplifier Comparator Channel IP 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4 - 17 R 02/92 Interrupt Processing Binary signal/interrupt jumpering: Pin Signal No. 1 +24V 2 +24V 11 BIO 12 Bll 13 B12 14 B13 15 B14 16 B15 17 B16 18 B17 b t Binary input O Binary input 1 Binary input 2 Binary input 3 * Binary input 4 D Binary input 5 m Binary input 6 Binary input 7 , h m m D 0 Buffer w T m T I Comparator 1 Comparator 2 Gating logic 2 Gating logic 1 D9 I 3 BOO 4 BO1 5 B02 - 6 B03 7 B04 8 B05 9 B06 3 10 B07 4 42 M 43 M ~; F+ F- Binary output O Binary output 1 Binary output 2 Binary output 3 Binary output 4 Binary output 5 Binary output 6 4 - 18 a Jumpering block 6 9- for interrupt processing 12 SIMATIC S5 15 * 19 1 2 3 4 5 6 7 8 9 10 11 L- 2 5 12 r-r I 1 I Interrupt Module 6ES5432-4UA1 1 4 5 + 6 7 --i ... ... 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 User Proaram m-l NETWORK 1 0000 : :L 0001 :T 0003 0004 : :T 0005 :L 0006 0007 : 0008 : :L 0009 :T OOOA OOOB : :BE Oooc 0000 OB 1 for S5-150U/S KM O1XXX1O1 PY 247 PY 246 PW 246 Fw 90 Enable interrupt ("STROBE"= 1) and Reaction to rising edge ("LOG' '= O); selection of channel A15 Convert ADC Read ADC Store converted value FW 78 PY 242 Load value to be converted Write DAC2 m NETWORK 1 0000 :JU FB X 0001 NAME :SAVE 0002 : :L PY 245 0003 :T B 120 0004 :AN F 120.0 0005 0006 :JC FB Z 0007 NAME :INTERRUPT 150 0008 : 0009 :JU F B Y OOOA NAME :LOAD :BE OOOB 0000 1P 243 Equipment Manual @ .Wrnens AG 1989, Order No: GE% gg8-0KF21 Interrupt OB for S5- 150U/S Save scratchpad flag Load comparator states Evaluate parameter bit "A" Interrupt reaction (S5-150U) Load scratchpad flag 4 - 19 R 02/92 Interrupt Processing NETWORK 1 0000 NAME :INTERRUPT 150 0005 0007 0008 0009 OOOA OOOB Oooc OOOD OOOE OOOF 0010 0011 0013 0014 0015 0016 0017 0018 0019 OOIA 4 - 20 :L :T :T :L :T :T :L :T :T :L :T :L :T :T :L :T :T :L :T :BE KM O1XXXO1O PY 247 PY 246 PW 246 Fw 70 PY 246 PW 246 FW 72 PY 246 PW 246 Fw 74 KM 01)()()(011 PY 247 PY 246 PW 246 FW 76 PY 246 PW 246 FW 78 Interrupt reaction S5-1 50U/S Select channel A12 at the ADC Convert A12 Read A12 Store converted value Convert A12 Read A12 Store converted value Convert A12 Read A12 Store converted value Select channel 3 (AV4) at the ADC Convert A13 Read A13 Store converted value Convert A13 Read A13 Store converted value 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 R 02/92 Interrupt Processing 4.4.3 Interrupt Processing in the S5-155U/H With the S5-155U, the evaluation of interrupts is accomplished the same way as with the S5-150U/S (i.e., by scanning the input byte O [S5-150U mode]). The S5-155U system offers the additional possibility of interrupt requests via interrupt lines, but it cannot be put to use directly in connection with the 1P 243, as the hardware interrupts operate in level-triggered mode. Proceed as described in section 4.3.2 when using a CPU 922 or a CPU 928A/B (edgetriggered) in PLC S5-155U. Indirect operation via the interrupt lines is possible, if the parameters in DX O were assigned accordingly. This is only possible with an interrupt-capable, digital-input module to which the desired 1P 243 signals are routed externally. The blocks OB 2 to OB 5 are defined as interrupt blocks (S5-150U/S mode). If interrupt evaluation in this manner is desired, see the S5-155U or S5-155H equipment manual. The evaluation of the input byte O is accomplished in the same way as in theS5- 150U/S systems; for each bit of input byte O, an interrupt OB is allocated where the respective interrupt reaction is filed. A process interrupt is always initiated by a binary input (e.g., from the interrupt module 6ES5 432-4UA11. Again, this input is set by one of the binary outputs of the 1P 243. On the 1P 243, the memory latch D9 must be exchanged for the soldering base D9 (included with delivery), which serves as a connecting link between the binary signal/interrupt jumpering and the binary outputs. The jumpers between the interrupt-line pins and the grounding contact M may not be altered from their factory-delivered condition. Attention: Operation of the 1P 243 and of the interrupt module 432-4 is possible in the central or expansion rack. The 1P 243 and the interrupt module can also be located in different module racks. Example: In the S5- 155U system, the difference amplifier 2 of an 1P 243 is connected to a conditioned analog value AV1 and to the analog input channel A15. The output of the difference amplifier is checked for exceeding or dropping below certain values. If the output exceeds a value furnished by DAC2, previously filed in FW 190, then the output of the difference amplifier and the inputchannel AV1 are read in at the ADC and stored in the flag area. Depending on the signal status of the binary input B12, either KF = +800 (status "O") or KF = +1000 (status "l") is active at DAC1. If the respective value drops too low, a voltage of 5.85 V is output at DAC3. The module address is given as 176; parameterization is for falling edge. On the module 432-4, the presetting must be set according to the operating instructions. IP 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4 - 21 R 02/92 Interrupt Processing Analog signal jumpering: Socket 6 Socket 5 Socket 4 Socket 3 4 Socket 2 4 Socket 1 Pin Signal 20 + 15 v 21 - 15 v 23 Maria 24 AV1 25 AV2 26 AV3 27 AV4 DIff amp DIff Comp Comp amp +l-A +~A 1 +- 2 +- * 10923 1211242019 1718 28 AO1 29 A02 30 A03 31 A04 30 ~ DAC3 8 bits 32A05 33 M.M I 12345678 34AI0 35A11 36A12 37A13 38A14 39A15 40A16 41 A17 Diff. amp. = Comp. = Chan. = 4 - 22 4AA AA `"~ + Multiplexer Chan Chan Chan Chan Chan Chan Chan Chan O 1 2 3 4 5 6 7 ADC 12 bts Difference amplifier Comparator Channel 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 Binary signal/interrupt jumpering: 2 +24 11 12 13 14 15 16 17 18 BIO Bll B12 B13 B14 615 B16 B17 v m ~ Binary input O Binary input 1 ~ Binary input 2 ~ Binary input 3 D Binary input 4 ~ Binary input 5 m Binary input 6 ~Binary input 7 Buffer * m D m iwlt` >1 M . D D D Comparator 1 Comparator 2 Gating logic 2 Gating logic 1 I ,,,, ,() `~: 9 Solj:rp base :2 I 8 13 7 D 0 Interrupt driver -Yz4 -z *W -7X ~4 * 15 m b7m :6 e Dim- D9 -- -- 4 5 3 BOO BO1 B02 6 B03 7 B04 8 B05 9 B06 10 B07 42 M ...+ ~ ~ ~ ~ ~ ~ ~ ~ F+ F- L- Binary Binary Binary Binary Binary Binary Binary Binary output O output 1 output 2 output 3 output 4 output 5 output 6 output 7 0 4 * 4 * 1 2 3 4 5 6 7 8 9 2 5 . 6-- 9 Jumpering block 12 for 15 interrupt ,6 processing ,9 SIMATIC 55 0 1 2 3 Interrupt Module 6ES5432-4UA1 1 4 5 10 + 6 11 12 71 ... ... IP 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 4 - 23 R 02/92 Interrupt Processing QJM NETWORK 1 0000 0000 : KM 1lXXXXXX :L 0001 :T PY 183 0003 0004 : :L Fw 190 0005 :T PW 178 0006 :L PY 180 0007 :T m 192 0008 :A F 192.2 0009 OOOA :JU FB A OOOB NAME :SIGNAL 1 :AN F 192.2 Oooc :JU FB B OOOD OOOE NAME :SIGNALO :BE OOOF NETWORK 1 0000 NAME :SIGNAL 1 0005 0007 0008 OB 1 for S5-155U :L :T :BE KF +1000 PW 176 Enable interrupt ("STROBE''=1) and Reaction to falling edge ("LOG''=I) Load stored value Write DAC2 Read binary inputs Scan B12 Value for B12 = "1" Scan B12 Value for B12 = "O" Value for B12 = "1" Load KF=+1OOO if B12 = "l" Write DAC1 H NETWORK 1 0000 Value for B12 = "O" NAME :SIGNAL O 0005 0007 0008 :L :T :BE KF +800 PW 176 Load KF=+800 if B12 = "O" Write DAC1 m NETWORK 1 0000 :JU F B X 0000 0001 NAME :SAVE 0002 : :L PY 181 0003 :T B 194 0004 :AN F 194.3 0005 0006 :JC FB Z2 0007 NAME :INTERRUPT 2 0008 : :JU FB Y 0009 OOOA NAME :LOAD 4 - 24 Interrupt OB(S5-155U) at value drop Save scratchpad flag Load comparator states Evaluate parameter bit "D" Interrupt reaction at value drop Load scratchpad flag 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Interrupt Processing R 02/92 OOOB :BE QB_5 NETWORK 1 0000 :JU FB X 0000 0001 NAME :SAVE 0002 : :L PY 181 0003 :T B 196 0004 :AN F 196.1 0005 :JC FB Z1 0006 0007 NAME :INTERRUPT 1 0008 : :JU FB Y 0009 OOOA NAME :LOAD :BE OOOB Interrupt OB (S5- 155U) at excess value Save scratchpad flag Load comparator states Evaluate parameter bit "B" Interrupt reaction at excessive value Load scratchpad flag FB Z1 NETWORK 1 0000 NAME :INTERRUPT 1 0005 0007 0008 0009 OOOA OOOB OOOD OOOE OOOF 0010 0011 :L :T :T :L :T :L :T :T :L :T :BE KM 1IXXX101 PY 183 PY 182 PW 182 Fw 200 KM 1 IXXXO1l PY 183 PY 182 PW 182 Fw 202 Excess value: Diff > DAC2 Enable interrupt ("STROBEn=l ) and select channel 5 at the ADC Convert output difference 2 Read output difference 2 Store value in FW 200 Select channel 3 at the ADC Convert AVI Read AV1 Store value in FW 202 FB Z2 NETWORK 1 NAME :INTERRUPT 2 0005 0007 0008 :L :T :BE KM 10010110 PY 180 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Value drop: Diff e DAC1 Load 5.85 V =150 units Write DAC3 4 - 25 Putting into Operation R 02/92 5 Putting into Operation 5.1 Basic Connector Any of the three 1P 243 versions (i.e., with full or part configuration) has a basic connector which provides the link to the SIMATIC S5 bus, and the S5 bus, respectively. This connector is located on the upper half of the module. b d 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 ~A ~B Fc ~D ~F KG M PESP AB O AB 1 AB 2 AB 3 AB 4 AB 5 AB 6 AB 7 AB 8 AB 9 AB 10 AB 11 z +5 v CPKL -R -w WY DBO DB1 DB2 DE33 DB4 DB5 DB6 DB7 M Basic connector pin assignment 5.2 Front Plate and Front Connector The required 43-way front connector is available in versions for crimp connection or screw connection: - Crimp connection: - Screw connection: Order No. 6XX3068 Order No. 6XX3081 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 5-1 R 02/92 Putting into Operation Schematic diagram of the front connector: + 24 V external 8 binary outputs 8 binary inputs Ground analog Ground analog 5analog output channels Ground analog :::flog channels Ground external digital 5-2 LED areen: + 24 V external existing, fuse okay @-- 3 - BOO 4 - BO1 5 - B02 6 - B03 7 - B04 8 - B05 9 - B06 10 - B07 11 - BIO 12 - Bll 13 - B12 14 - B13 15 - B14 16 - B15 17 - B16 18 - B17 19 - Man. .20 - + 15 v 21 - - 15 v 22 23 - M... 24 - AVI ~ 27 - AV4 28 - AO1 29 - A02 30 - A03 31 - A04 32 - A05 33 - M. a 3 4 - AIO 35 - All 36 - A12 37 - A13 38 - A14 39 - A15 40 - A16 41 - A17 42 - M.xt 43 - M.. a LED ve Ilow: diaital indication of the presentlv selected analoa channel at w @---- @-- @-- o-- o-- o-- o-- o-- o-- H Measurina sockets for analoa value conditionmq -- Socket 1: analog value acquisition 1 Socket 2: analog value acquisition 2 Socket 3: analog value acquisition 3 Socket 4: analog value acquisition 4 Socket 5: free measuring point of analog signal routing Socket 6: c;;~~~ion point for analog 0-- 0-- Trimmina DOtentiometers for analoa value acquisition. each with 4 trimmina ~otentio- meters for zero ~oint conditioning a nd 4 sockets for multmlication Trimmer: Working point analog value 1 Trimmer: Amplification analog value 1 Trimmer: Working point analog value 2 Trimmer: Amplification analog value 2 Trimmer: Working point analog value 3 Trimmer: Amplification analog value 3 Trimmer: Working point analog value 4 Trimmer: Amplification analog value 4 0-- 0-- Trimmina potentiometers for difference amdifiers Trimmer: Amplification difference amplifier 1 Trimmer: Amplification difference amplifier 2 0-- 0-- I LED 1 = 2 LED 2 = 2' LED 3 = 22 0-- 0-- @-- 0-- 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Putting into Operation R 02/92 5.3 Explanation of the Signal Names and Abbreviations +24 V M,fl M ana BOO to 607 610 to 617 AW to AV4 AO1 to A05 AIO to A17 &15 v Supply voltage +24 V DC O V reference potential (M from +24 V supply) O V reference potential (analog) Binary outputs O to 7 Binary inputs O to 7 Analog input channels 1 to 4 with analog value condition Analog output channels 1 to 5 Analog input channels O to 7 Sensor power supply Attention: No load should be hooked up to the sensor power supply of unless it is ensured that the supply voltage doesn't exceed Up = +24 V k 10'%. and that the consumption does not exceed 50 mA with a fully configured system and 70 mA with a partly configured version. If these values are not observed, this can cause an overload of the DC/DC converter and thus a function breakdown of the module. Attention: i Do not connect Maria and Meti, since a separation between the analog and the digital section must be maintained. u 1P 243 Equipment Manual @ %31TKMS AG 1989, Order No: 6ES5 998-0KF21 5-3 R 02/92 5.4 Layout of Setting Elements and Jumpers Jumper A-B closed: S5 central rack open: ex~ansion rack PP 10 A Q 18 x l `9 x5 ,Vl X6 ,V2 ,V4 x9 R Xlo i ! 10 1 ,V3 X8 %=3 16 X19 ma 9 INTERRUPT JUMPERING n 1 8 Offaat AVl R42 Amplification AVl R38 Y&4 AV2 R39 hplification AV2 R44 Maat AV3 R40 hnplification AV3 R45 )ffaat AV4 R41 3 R50 4mDlification AV4 amplification difference 1 R49 3 knplifcation X29 17 r 1 R I R46 R46 R47 0@ 5-4 X32 25 8 R81 R27 R82 R28 Selection of the input voltage range 0-0-00 -0-0 UNI Bi 10 V 20 V m Offaat iwlation W#ar Ei amDlfier 24 difference 2 olar A m p l i f i e r 0#set 0 0 0 0 m DAC2 DACI OAC2 OACI Amplification Orraat 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Putting into Operation R 02/92 5.5 Jumpering of the Analog Signals 5.5.1 Circuitry of the Analog Signal Jumpering The two soldering bases X29 and X32 (see section 5.1) form the basis for the jumpering of the analog signals. Via these bases, by means of soldering in jumpers, the required analog signals or the different internal module components can be connected in a user-specific way. The following diagram shows all signals on the jumpering base which can be combined. * IEll=lFllcomp'l M ma Socket 6 I +'-All +:AII+'-II+2-I Socket 5 Socket 4 Socket 3 Socket 2 Socket 1 Pin Signal 20 + 15 v 21 - 15V 23 M ~, 24 AV1 25 AV2 26 AV3 27 AV4 F 109231 2112420 19 17 18 r JI 31 J 32 21 DAC1 12 bits .rxv. 22 30 I 1 2 3 4 5 6 7 8 HHHH w 34 AlO 35A11 36A12 37 A13 38 A14 39 A15 40 A16 41 A17 I I II R+ 12 bits DAC3 8 bits Multiplexer m e Chan. O l-- - Chan. 1 m * * Chan. 3 - Chan. 4 h Chan. 5 ADC 12 bits ---- Diff.amp. Comp. Chan. = Difference amplification = Comparator = Channel IP 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 5-5 R 02/92 Putting into Operation 5.5.2 Soldering Base Pin Assignment The analog signal jumpering comprises the two 16-way soldering base X29 and X32 (see section 5.4, Layout of Setting Elements and Jumpers). The available 32 pins of the soldering bases have the following signal assignment: AR32: Socket 5 on front plate (free measuring wing point) AR31: Socket 6 on front plate Maria AR30: output of DAC3 AR29: Analog output channel A05 via an output amplifier I AR28: AR27: AR26: AR25: Analog Analog Analog Analog output channel A04 output channel A03 output channel A02 output channel AO1 R 3231302928272625 1 192( 2 I I Soldering base X29 -m' 222324 k ~ AR24: Output difference amplifier 2 AR23: Output difference amplifier 1 AR22: output DAC2 AR21 : Output DAC1 AR20: Input comparator 1 "comparator" AR19: Input comparator 1 "-comparator" -- 5 - 6 AR18: Input comparator 2 "-comparator" AR17: Input comparator 2 "comparator" 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Putting into Operation R 02/92 AR16: Output analog value conditioning AV1 socket 1 AR15: Output analog value conditioning AV2 socket 2 AR14: Output analog value conditioning AV3 socket 3 I AR13: Output analog value conditioning AV4 socket 4 AR12: Input difference amplifier 2" +difference" AR11: Input difference amplifier 2" -difference" ,--, AR1O: Input difference amplifier 1 " +difference" AR9: Input difference amplifier 1 " -difference" I i 1161514131211109 I I I I 3 4- n-)I__ 6 Soldering base X32 78 L AR8: Analog input channel A17/channel 7 of ADC AR7: Analog input channel A16/channel 6 of ADC AR6: Analog input channel A15/channel 5 of ADC AR5: Analog input channel A14/channel 4 of ADC AR4: Analog input channel A13/channel 3 of ADC AR3: Analog input channel A12/channel 2 of ADC AR2: Analog input channel All/channel 1 of ADC AR1: Analog input channel AlO/channel O of ADC All analog components are designed in a way that the signals at the analog signal jumpering are standardized in the ranges O V tol O V or *1 O V. 1P 243 Equipment Manual @ .%31WIS AG 1989, Order No: 6ES5 w8-0KF21 5-7 R 02/92 Putting into Operation 5.6 Jumpering of the Binary Signals The binary signals are also conducted via a soldering base and can be interswitched in a user- specific way. If desired, the interrupt evaluation is also activated via the binary signal jumpering. The digital inputs and outputs can be directly read in or read out via the bus. For interrupt processing, however, jumpers must be installed on the soldering base X19. The following diagram shows the structure of the binary signal jumpering: , r S5 bus $3 ~ ~ * - @ $- @ $ ~ @ ~ .$ Pin Signal No. 1 +24 V 2 +24 V 11 6[0 12 611 13 612 14 15 16 17 18 B13 B14 B15 B16 617 Binary input O Binary input 1 m Binary input 2 D Binary input 3 Binary input 4 * Binary input 5 o Binary input 6 Binary input 7 w ? Buffer : 1 ,,1 ~1 M 61 2 34 5 Comparator 1 D 10 Comparator 2 D 9 Solci;~ng b a s e 11 12 D 8 13 7 14 Gating logic 2 Gating logic 1 15 16 Interrupt * driver for S5-115U - S5-135U " ~%3;B and CPU 922) _~G D= -~D *TC -m -= D9 10607 ~ 42 Meti 43 Mea 5 - 8 Binary Binary Binary Binary Binary Binary Binary Binarv output O output 1 output 2 output 3 output 4 output 5 output 6 outrwt 7 =1 6 9 12 -:: Memory or w%%$ase processing "MAT'CS5 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Putting into Operation R 02/92 5.7 Interrupt Jumpering If an interrupt evaluation is intended, this is possible with the programmable controllersS5-11 5U/ H and S5-135U with CPU 928A/B or CPU 922 (or same CPUS in PLC S5-155U) via direct bus access to the interrupt lines. All other control devices require an additional binary input module with process interrupt generation and external wiring. In this case, the intermediate memory latch D9 must be replaced with the soldering base D9, included in the delivery. A detailed description of the procedures for interrupt processing with the 1P 243 is given in section 4. Here, reference is made only to the pin assignment of the soldering base relevant to the jumpering of interrupts. Interrupt line Interrupt line Interrupt line lnterru~t line Interrupt line Interrupt line IR~ IR~ IR~ IR~ IR~ IR= Output of comparator 1 Output of comparator 2 1, 16+5 `t4 +3 W 11109 123 45 6 I 78 Soldering base X19 I Output of gating logic 2 Output of gating logic 1 Grounding M Binary input B17 Binary input B16 Binary input B15 Binary input B14 1 Binary input B13 Binary input B12 >1 Binary input Bll Binary input BIO Attention: At delivety, the jumpers are installed as shown in the diagram: ~ - ~ - ~ - ~ - ~ - ~ - M (Pins 16-15-14-13-11 -6) If the 1P 243 is used in SIMATIC S5 systems with Ievel-tri gered interrupt processing, these jumpers must not be changec?. 1P 243 Equipment Manual @SiemensA(31989, Order No: 6ES5998-0KF21 5-9 R 02/92 Putting into Operation If. however, the module is o~erated with a different rxo~rammable controller which allow interrupt processing directly via the bus, then the corresponding pins of the interrupt lines must be free from their soldered connections. All unused interrupt lines must retain their jumper connection with grounding M. In the programmable controllerS5-115U, an interrupt is activated on interrupt line B via gating logic 1. The following jumpers must be established on the soldering base: -- -- -- . ---- I R A IRB IRC IRD IRF IRG Compl Cornpz 1.6 15 14 13.12.11 .10 !? II I I LkdL-1`" 1 BIo O V Bll O V B12 O V 6130 V 2 3 4 5 B14 B15 B16 B17 6 M 7 %!? 8 gw As already mentioned, for interrupt jumpering in SIMATIC S5 units without direct bus access, memory latch D9 must be replaced by the soldering base D9. This soldering base has the following pin assignment: 1 Binary output Binary output Binary output Binary output B07 B06 B05 B04 20191817161514131211 Soldering base D9 Binary output B03 Binary output B02 Binary output BO1 Binary output BOO Attention: To evaluate interrupts with an additional interrupt module, the interrupt- generating outputs of the comparators or the gating logic must be connected by jumpers from the soldering base Xl 9 to base D9 to the binary outputs of the 1P 243. These outputs are then connected externally to the binary input module with process-interrupt generation. 5 - 10 1P 243 Equipment Manual @ .%31TWS AG 1989, Order No: 6ES5 998-0KF21 R 02/92 Putting into Operation Setting the Module Address 5.8 The module address is set via the DIP FIX switch on the soldering base X2 (see the layout of setting elements in section 5.4). Addressing in the 1/0 area is between the starting addresses 128 and 248. The address displacement is 8 (i.e., a maximum of 16 modules can be addressed). First starting address 144 Second starting address 152 Example: It should be noted that when the 1P 243 is used in a central rack (S5-115U/H, S5-135U or S5-155U/H), the jumper A-B must be closed. In an expansion device, the jumper A-B I?WX remain open. The soldering base X2 appears as follows: Address bit ADB ADB ADB ADB ADB 3 4 5 6 7 Jumper 1-18 2-17 3-16 4-15 5-14 Address 23 24 25 26 27 = = = = 8 16 32 64 = 128 { This jumper must always be installed in the P area as the module address is always ~ 128. With SIMATIC S5, this "umper is only installed { when the module is addressed in Q area. ADB 8 6-13 26 = 256 ADB 9 7-12 29 = 512 ~ ADB 10 ADB 11 8-1 1 9-lo With SIMATIC S5 these jumpers are 2 '0 = 1024 always open. 2" = 2048 J Attention: Only the programmable controllers S5-135U, S5-150U/S S5-155U/H are capable of addressing the Q area. The module must be inserted in an expansion rack. The Q area comprises the start adresses 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 5 - 11 Putting into Operation R 02/92 Addressing at the SIMATIC S5 system bus appears as follows: SUB SUB SUB ADB ADB ADB ADB ADB ADB ADB ADB ADB x 4 3 ,tix,,ins: + ~:$ `-+ `::6n - ;;: :#J==:i;h:nQarea Module startin address (jumper setting7 &!"&j\j',i:- section 7.5.) Example: Setting of module address 144 10 - - - - - - -O 18 2 ()..__ --41 7 ADB 3 ADB 4 30 - - - - - - -O 16 40 - - - - - - -o 1 5 ADB 5 5 o-------------------- ADB 7 -014 60 - - - - - - -O 13 70 - - - - - - -o 12 80 - - - - - - -O 11 90 - - - - - - -o 10 ADB 6 17 -t 24 = 16 and 5 - 14 -+27 = 128 installed @ Jumper 2 - : p' Jumper = 25 corresponds to the Sf3tthlg `nodule = 26 address 144 (in the P areea) = 27 = 28 = 29 ADB 9 ADB 10 = 210 ADB 11 = 211 ADB 8 Base X2 assignment 5 - 12 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-OKF21 Technical Specifications R 02/92 6 Technical Specifications Binary Inputs: Rated Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 24VDC Number oflnputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Input Voltage Corresponding to: -5Vto5.l V "O" Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . open-circuitedor . "l" Signal , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12.7vto30v InputResistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . typically lOkQ Input Current (''l'' Signal) . . . . . . . . . . . . . . . . . . . . . typicaliy2.5mA DelayTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .typicaily2.7msec Polarization Protection . . . . . . . . . . . . . . . . . . . . . . . . yes Maximum Permissible Cable Lengths: - Unshielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400m -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000m Interrupt-Generating Inputs (Optional) Binary Outputs: NumberofOutputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Outputvoltage - Nominal Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2 4 V -ForSignal "O" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximumof3V -ForSignal "l" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . minimum of-l.9V Output CurrentforSignal "1" - Nominal Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200mA - Permissible range . . . . . . . . . . . . . . . . . . . . . . . . . .2t0200mA Residual CurrentforSignal "O" . . . . . . . . . . . . . . . . . maximumof250@ Total Switching Current . . . . . . . . . . . . . . . . . . . . . . . maximumof600mA Switching FrequencywithoutLoad . . . . . . . . . . . . . maximumofl kHz Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Fuse (Externa124VSupply) . . . . . . . . . . . . . . . . . . . 0.8 A, medium slow Short-CircuitProtection . . . . . . . . . . . . . . . . . . . . . . fuse Maximum Permissible Cable Lengths: -Unshielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. .. . . . . . . . . 400m -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000m 6-1 lP243 EquipmentManual @S@mensAG 1989,0rderN0:6ES5 998-0KF21 Technical Specifications R 02/92 Analog Inputs: Input Signal Ranges . . . . . . . . . . . . . . . . . . . . . . . . . .*5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .-- +1 o v . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . o v to +10 v Number of Inputs . . . . . . . . . . . . . . . . . . . . . .. .....8 Digital Representation of Input Signal 11 bits and sign or 12 bits Measuring Principle . . . . . . . . . . . . . . . . . . . . . . . . . . successive approximation Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Conversion Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 psec. 1 Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . approximately 1Mf2 Permissible Voltage between Input and Earth (Destruction Limit) . . . . . . . . . . . . . . . . . . *35 V Maximum Permissible Voltage between Two Inputs (Destruction Limit) . . . . . . . . . . . . . . . . . . *35 V Linearity Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s ~3.1 0-4 Zero Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .< *5.1 0-4 -5 Temperature Error . . . . . . . . . . . . . . . . . . . . . . . . . . . .~ *3.1 0 pro Kelvin Basic Error Limit (DIN 43745) . . . . . . . . . . . . . . . . . . stO.6%0 Operational Error Limit (between 0 C and +55 C) (DIN 43745) . . . . . . . s&l.2%. Maximum Permissible Cable Length -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20m 12-Bit Analog Output: Input Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . . .*1O V bipolar Number of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Digital Representation of Output Signal . . . . . . . . . 11 bits and sign Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A5 mA Burden Resistance . . . . . . . . . . . . . . . . . . . . . .. ....22 kQ Burden Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . burden connected to OV Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . yes Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . approximately 25 mA Settling Time to 99% of Rated Output Value for a Cable Length of 20 M .. . . . . .. .......5 psec. Linearity Error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .< *3.1 0-4 Zero Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .s ~5.10-4 -6 Temperature Error . . . . . . . . . . . . . . . . . . . . . . . . . . . .<*2.1 0 pro Kelvin Basic Error Limit (DIN 43745) . . . . . . . . . . . . . . . . . . <&O.6%0 Operational Error Limit (between 0 C and +55 C DIN 43745) . . . . . . . . . s~O.85%0 Maximum Permissible Cable Length -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20m I Thecommand processing times for the selection of measuring points and the start of coding are not included here. 6-2 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5998-OKF21 R 02/92 Technical Specifications 8-Bit Analog Output: Output Signal Range . . . . . . . . . . . . . . . . . . . . .. ...0 V to +10 V, unipolar Number of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Digital Representation of Output Signal . . . . . . . . . . . . . . . . . . . . . . . . .. ......8 bits Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .*5 mA Burden Resistance . . . . . . . . . . . . . . . . . . . . ... ... .>2 kQ Burden Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . burden connected to O V Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . temporary Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . undefined Settling Time tO 9W0 Of Rated Output Value for a Cable Length of 20 M . . . . . . . . . . . . . . . . . . . . . . . . . 10 psec. Basic Error Limit (DIN 43765) . . . . . . . . . . . . . . . . . . s*2% Operational Error Limit (between 0 C and +55 C) (DIN 43765) . . . . . . . . s*4% Maximum Permissible Cable Length -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20m Analog Output Amplifier Output Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . A1OV bipolar Number of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..i5 mA Burden Resistance . . . . . . . . . . . . . . . . . . . . . .. ....22 kQ Burden Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . burden connected to O V Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . yes Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . approximately 20 mA Maximum Permissible Cable Length -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20m 8-Bit Analog Output with Analog Amplifier Series: Output Signal Range . . . . . . . . . . . . . . . . . . . . . . . ..0 Vto 10 Y unipolar Number of Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Digital Representation . . . . . . . . . . . . . . . . . . . . . . . . 8 bits Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .L5 mA Burden Resistance . . . . . . . . . . . . . . . . . . . . . . .. ....22 k!2 Burden Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . burden connected to O V Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . yes Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . approximately 20 mA Settling Time to 99% of Rated Output Value for a Cable Length of 20 M . . . . . . . . . . . . . . . 10 psec. Error Limit at 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . .s ~0.2% Error Limit between 0 C and +55 C s tO.4Y0 Maximum Permissible Cable Length -Shielded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20m 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 6-3 R 02/92 Technical Specifications Analog Value Conditioning Circuits: Input Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . . .~10 V Number oflnputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . typically 200kQ Input Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . typically 110psec. Setting Range for Zero Displacement -2 Vto +2 V (Operating Point) Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.5 to 5 Voltage between Input and 0 V Connection (Destruction Limit) . . . . . . . . . . . . . maximum .&35 V Difference Amplifier (P controller): Input Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . . .~10 V Output Signal Range . . . . . . . . . . . . . . . . . . . . . . . . . A1OV Number of Controllers . . . . . . . . . . . . . . . . . . . . . . . . 2 Galvanic Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . no Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . &5mA Amplification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1 to 20 Input Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . typically 500psec. Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . typically 1MQ Burden Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . .22 kQ Short-Circuit Protection . . . . . . . . . . . . . . . . . . . . . . yes Short-Circuit Current . . . . . . . . . . . . . . . . . . . . . . . . . approximately 50 mA Voltage between Two Inputs (Destruction Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . .*35 V Voltage between input and 0 V connection (Destruction Limit) . . . . . . . . . . . . . .*35 V Comparators: Input Signal Range . . . . . . . . . . . . . . . . . . . . .. .....0 V to +10 V Number oflnputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Input Time Constant . . . . . . . . . . . . . . . . . . . . . . . . . . typically 250psec. Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .typically44 kQ Voltage between Two Inputs (Destruction Limit) . . . . . . . . . . . . . . . . . . . . . . . . . . . .maximumi35 V Voltage between Input and OVConnection (Destruction Limit) . . . . . . . . . . . . . ~35V Interrupt-Generating Option 6-4 1P 243 Equipment Manual @ Siernens AG 1989, order No: 6E.S5998-I)KF21 R 02/92 Technical Specification Power Supply Voltage UP: Rated value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24VDC Ripple U~~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . maximum 3.6 V Permissible Range (Including Ripple) .. . . .......20 Vto 30 V DC Value for t e 0.5 sec. . . . . . . . . . . . . . . . . . . . . . . . . . maximum 35V Current Consumption: Internal +5 V Supply . . . . . . . . . . . . . . . . . . . . . . . . . typically 600 mA External +24 V Supply (without Sensor Power Supply and Total Switching Current) . . . . . . . . . . . . . . . . . . . typically 270mA External Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . +20 V DC to +30 V Power Loss -Full Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.8 W (6ES5243-lAA1 1) -Part Configuration, Al Only .. .................4.6 W (6ES5243-lAB1l) -Part Configuration, AO Only .. ................6.1 W (6ES5243-lACI 1) Mechanical Data: Dimensions (W x H x D) . . . . . . . . . . . . . . . . . . . . . . . 20 mm x 244 mm x 202 mm Mounting Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1/3 SPS = 1 module slot Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .approximately 0.46 kg (6ES5243-lAA11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .approximately . 0.38 kg (6ES5243-lAB11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .approximately . 0.39 kg (6ES5 243-1AC11 ) Ambient Conditions: Operating Temperature . . . . . . . . . . . . . . . . . . . . . . . 0 to +55 C Storage and Transport Temperature . . . . . . . . . . . . -40 to +70 C 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 6-5 Technical Specifications R 02/92 6.1 Programmable Controller Slot Designain Module Rack _ Q ORerationoflp 243 inthkslot~ossible Ps IM 2 3 CPU I o I 1 CR 700-OIA Central Controller S5-115U I o Ps CPU Ps CPU Ps CPU I o Ps CPU I o CR 700-OLB CR 700-1 CR 700-2 CR 700-3 Expansion Device Central Controller S5-1 35L Central Controller S5-1 55L 3 Expansion Device S5-183U Expansion Device S5- 1841 Expansion Device S5- 1851 Expansion Device@ S5-186U : 3 I 19 131 I 147 63 1 The 1P 243 analog module cannot be inserted in central unit S5-150U/S or in `: expansion devices ER 701 -1, ER 701 -2, and 187U. 1. Interrupts can be processed in expansion devices starting at release 6ES5 701-31A13 when optical fiber links 6ES5307-3UAI 1 and 6ES5317-3UA11 are used. 2. Functionality very restricted since no interrupt lines available 3. Functionality restricted since not all interrupt lines available 4. Changing of jumpers on the bus PCB is required. 6 - 6 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Table of Contents R 02/92 7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 Function Block FB160(PER:ANL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Calling the Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Explanation ofParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ParameterAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Data AreaAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function BlockApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7-7 Function Block FB161 (PER:ANS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Function Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 7 Calling the Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 7 Explanation ofParameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 8 ParameterAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 8 Data AreaAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 9 Technical Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - l o Function BlockApplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 1 7.4 7.4.1 7.4.2 7.4.3 7.4.4 7.4.5 7.4.6 7.4.7 7.4.8 7.4.9 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 2 Device Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 2 JumperAssignmentoftheAnalog Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 3 Assignmentofthe lnputsand Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 4 Turn-On, Start-UpBehavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 5 Reading the Binarylnputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 5 Reading theAnalogValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 6 Checking theComparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 7 Writing the Binary Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 7 Writing theAnalogValue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 8 7.5 7.5,1 7.5.2 7-19 ProgrammingWithoutFB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . AddressAssignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 1 9 Reading and Writingthelnputs and Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . 7 - 2 0 lP248 EquipmentManual @SiemensAG 1989, OrderNo: 6ES5998-0KF21 7 7 7 7 7 7 7 7 - - - - - - - - 2 2 2 3 4 4 5 6 7-1 Programming Instructions R02/92 7.1 Overview These programming instructions describe the following standard function blocks: FB 160 (PER:ANL) "Read analog module" FB 161 (PER:ANS) "Write analog module" The function blocks, together with the 1P 243 analog module, are used in the following programmable controllers. FB 160 FB 161 PLC/CPU x x x x S5-115U (CPU 941A/B to CPU 944A/B) S5-115H (CPU 942-7UH...) x x S5-135U (CPU 922, CPU 928A/B) x x s5-150u/s x x S5-155U/H These programming instructions require users to be familiar with sections 1 through 6 and with the programmable controllers they are using. The following example shows a test assembly (with the analog module 1P 243) for easily testing the jumper assignments and functions. This test program can also be used as the basis for a future automation task. The S5-DOS floppy disk contains the files of the function blocks with example, and the English and French commentary blocks for the respective programmable controllers. I Function Block PLC S5- File Commentary Block English German French S5MXXXSTS5D ECMXXXSTS5D FCMXXXSTS5D 115U/H S5MA50ST.S5D ECMA50ST.S5D FCMA50ST.S5D 135U S5MB22ST.S5D ECMB22ST.S5D FCMB22STS5D 15ou/s S5MA40STS5D ECMA40ST.S5D FCMA40STS5D 155 U/Ht) S5MA60ST.S5D ECMA60ST.S5D FCMA60ST.S5D Copy the commentary block to the S5MXXXSTS5D file to obtain the commentary in your language when the example is printed out. Use the S5MXXXDR.INI for the printout. The appropriate title block file are: S5MX)O(F1 .INI ECMXXXF1 .INI FCMXXXF1 .INI 1) Use the XXMB22STS5D files when a CPU 922 or 928A/B is used in PLC S5-155U. 1P 248 Equipment Manual @ .%311WIS AG 1989, Order No: 6ES5 998-0KF21 7-1 Programming Instructions 7.2 R 02/92 Function Block FB 160 (PER:ANL) 7.2.1 Function Description The function block "Read analog module" (when the module is outfitted accordingly) accepts the selected analog value and outputs it either as a bit pattern, the way it arrives from the module, or as a 16-bit fixed point numeral, standardized to the respective nominal value. Furthermore, the binary inputs and the comparator outputs can be read with this function block. Prior to reading the comparator outputs, the gating logic is switched over. Function FB 160 reads the analog and binary inputs, switches over the gating logic and reads the comparator outputs. 7.2.2 Calling the Function Block In the STL (statement list): In the IAD/CSF (Ladder diagram/ control system flowchart) S5-115U/H :JU FB160 NAME :PER:ANL BGKN BT NORM DEL KP L LOG STR ADU DE KOMP PAFE FB 160 -- -- -- -- -- -- -- PER:ANL BGKN ADU BT DE NORM KOMP -- DEL PAFE -- KP L LOG STR S5-135U s5-150u/s S5-155U/H NAME BGKN P/Q BT NORM DEL KP L LOG STR ADU DE KOMP PAFE :JU FB160 :PER:ANL : : : : : : : : : : : : FB ~60 -- -- -- -- -- -- -- -- PER:ANL BGKN ADU P/Q DE BT KOMP -- NORM PAFE -- DEL KP L LOG STR 7-2 1P 243 Equipment Manual @ %3fIN3flS AG 1989, Order No: 6ES5 998-0KF21 Programming Instructions R 02/92 7.2.3 Explanation of Parameters I I NAME I CLASSI TYPE I DESIGNATION I BGKNI D I K Y I Specificationof themoduleaddressand I P/Q I D I KS I D I BT I I NORMI Specification F I ` I I I BI I Specification of module type (nominal range) Switchovertoinputof I I I BI I Readdigitalinputs I KPL I I I BI I Readcomparatoroutputs I ! I STR I 1 I BI I I I ADU DE I Q Q I Q I I Q PAFE ! Enable I I KOMPI BI ! I I Switching over the gating logic signal W I I I standardizedvalues DEL LOG number I ofl/Oarea ` I I channel forcomparator I I I I I interrupt I Analogvalueoutput BY I Outputtingthedi$jitalinputs B Y I Outputtingthecomparatoroutputs I Parameterization error 1 This parameter is not available on the S5-115U/H programmable controller. It can only be addressed in the P area. 1P 248 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 7-3 R 02/92 Programming Instructions 7.2.4 Parameter Assignment BGKN : KY = x, y x = Module address 128< X ~ 248 0< X <248 for P/Q : KS=P for P/Q: KS=Q y = Channel number o5y57 P/Q : KS = P KS = Q Normal 1/0 area Expanded 1/0 area BT : KF = X Module type; Specification of the nominal range 10 v x = O unipolar O V to x = 1 bipolar -10 V to +10 V x = 2 bipolar -5 V to +5 V PAFE : In case of illegal parameterization the signal status is"1". The recog- nized error is then shown by the assignment of the flag byte FY 255: F 255.0 The module address is outside of the specified area or is not within the 8-bit grid pattern (first part of parameter BGKN) F 255.1 The parameter P/Q is not set with `P-' or `Q-'. (Does not apply to programmable controller S5-115U/H.) F 255.2 -- F 255.3 -- F 255.4 QVZ, no module found under this address. (first part of parameter BGKN) (only set with S5-155U/H) F 255.5 -- F 255.6 The channel number is outside the specified range (second part of parameter BGKN) F 255.7 The parameter BT is outside the specified range. 7.2.5 Data Area Assignment No data blocks are addressed. Addressing the Module in S5-155/H For proper operation of the function block, the analog module 1P 243 must be addressed in the address range from KH = FF080 to KH = FF1 FE This corresponds to the 1/0 area from KH = FF080 to KH = FFOFF (byte number 128 to 255) and to the Q range from KH = FF1OO to KH = FF1 FF (byte number O to 255). 7-4 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Programming Instructions R 02/92 7.2.6 Technical Specifications 160 Block no. PER:ANL Block name PLC S5- Library no. P71200-S... 13 Block length (in words) 165 155U 4160-A-1 9160-A-1 51 60-A-2 Call length (in words) 15ou/s 135U 115U 61 60-6-1 14 222 180 Processing time (in msec) Without standardization With standardization CPU 941A/B 8.2/4.9 11.115.9 CPU 922 1.8 2.1 Without standardization With standardization CPU 942A/B 5.4/4.9 6.4/5.9 CPU 928A/B 1 .1/1.0 1 .2/1.1 Without standardization With standardization CPU 943A/B 3.3/4.1 4.5/5.5 Without standardization With standardization CPU 944A/B 0.5/0.3 2.1/1 .7 Nesting depth 1 0 Blocks called FB 242 (integrated in PLC) None -- Data areas used Flag areas used FY 244 to FY 255 FY 238 to FY 255 System instructions Other 0.69 0.74 0.4 0.5 1) I None -- I 2) 1) Interruptions (interrupts and wake-up alarms) are temporarily disabled in the block with the AS/AF commands. This cancels out any "AS" command which you may have programmed. 2) All interruptions (process alarms, interrupts and wake-up alarms) are disabled in the block for approximately 42 pee. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 7-5 R 02/92 Programming Instructions 7.2.7 Function Block Application The module basic address and the channel number for the analog value are specified by parameter BGKN. Depending on the channel number, the function block reads an analog value from the module and outputs it at parameter ADC. The representation of the analog value depends on the NORM parameter: NORM = "O": The analog value read at the module is output unchanged at parameterADC (as a bit pattern according to the description in the operating instructions). NORM = "1" The analog value read at the module is converted to the nominal range. The nominal range is defined by the values at parameter BT The conversion formulas are: for BT = O (Nominal range O V to 10 V): 20000 ADC = rough value x ~192 for BT = 1 (Nominal range -10 Vto +10 V): 20000 ADC = rough value x ~096 for BT = 2 (Nominal range -5 V to +5 V): 20000 ADC = rough value x ~192 The analog value is output as a 16-bit fixed-point numeral for the unit mv. When parameter DE-L has the signal status"1", the binary module inputs are read and then output at parameter DE. If the module has no binary inputs, signal status "O" is output to all bits. When parameter KP-L has the signal status"1", the comparator outputs of the module are read and then output at parameter KOMI? The bits now required, LOG and STR, are set in accordance with the parameters LOG and STR, and they are transferred to the module during channel selection. 7-6 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Programming Instructions R 02/92 Function Block FB 161 (PER:ANS) 7.3 7.3.1 Function Description The function block "Write analog module" either transfers a specified bit pattern or a 16-bit fixed-point numeral, standardized to the nominal value, to the module. The function block can also control the binary outputs if the module is outfitted accordingly. Function FB 161 outputs an analog value and the 8 binary outputs. 7.3.2 Calling the Function Block In the STL (statement list): In the IAD/CSF (Ladder diagram/ control system flowchart): S5-115U/H NAME BGKN NORM DAC DAS DA PAFE :JU FB161 :PER:ANS : : : : : : S5-135U, S5-150U/S, S5-155U/H :JU FB161 NAME :PER:ANS BGKN : P/Q : NORM : DAC : DAS : DA : PAFE : 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 FB 161 PER:ANS PAFE BGKN NORM DAC DAS DA n FB 161 PER:ANS PAFE BGKN P/Q NORM DAC DAS DA r 7-7 R 02/92 Programming Instructions 7.3.3 Explanation of Parameters NAME I CLASS I TYPE I DESIGNATION 1 1 I KY ! Specification of the module address and channel number BGKN I D ! I . KS I Specification of 1/0 area ` P/Q I D I I NORM I I DAU I I DAS I DA BI I Switchovertoinputof standardizedvalues PAFE Q I Specification of the 1/0 area BI Write digital outputs BY Specification of the digital outputs BI I I I 1 w , 1 I I Parameterization error 1 This parameter is not available on the S5-1 ICW+ Pmwrnrnable controller. [t can oniY be addressed in the P area. 7.3.4 Parameter Assignment BGKN : KY = X, y x = Module address 128< X <248 O Channel O -> (PIN 2) Comparator 1 + (PIN 20) Analog value 2 (PIN 15) -> Channel 1 -> (PIN 2) Comparator 1 - (PIN 19) DAC1 (PIN 21) -> AQ1 (PIN 25) DAC2 (PIN 22) -> AQ2 (PIN 26) DAC3 (PIN 30) -> AQ3 (PIN 27) 1P 243 Equipment Manual @ .%311WflS AG 1989, Order No: 6ES5 998-0KF21 7 - 13 R 02/92 Programming Instructions 7.4.3 Assignment of the Inputs and Outputs The program is designed in a way that allows easy adaptation to different input and output assignments. The program block (PB 243) that contains the test program works with flags only. The inputs and outputs to be used are allocated to these flags by organization block OB 1. In the example the flags are the input word IW4 and the output word QW4 or the input word IW4 and the output word QW8 for theS5-115U. I 4.0 I 4.1 14.2 I 4.3 I 4.4 F 4.0 F 4.1 F 4.2 F 4.3 F 4.4 NORM DE L KP:L LOG STR Standardize analog value (convert) Read binary inputs Read comparator outputs Switch over gating logic Enable signal for comparator interrupt I 4.5 14.6 I 4.7 F 4.5 F 4.6 F 4.7 -- DA-S -- Write binaty outputs Reset all binary outputs and flags IB5 FY5 DA Binary outputs for output via the analog module QB4/QB8 FY8 DE Binary inputs read by the analog module QB5/QB9 FY 9 KOMP Comparator outputs read by the analog module Q 6. O/Q 10.0 Q 6.1/Q 10.1 F 14.0 F 14.1 PAFE PAFE Parameterization error bit of FB 160 Parameterization error bit of FB 161 -- -- -- -- FW 10 FW 12 FY 16 FY 17 ADU DAU Analog value read by the module Analog value output via the module Error flag byte (FY 255) of FB 160 Error flag byte (FY 255) of FB 161 7 - 14 1P 243 Equipmant Manual @ Siemens AG 1989, Ordar No: 6ES5 998-0KF21 R 02/92 Programming Instructions 7.4.4 Turn-On, Start-Up Behavior The program is loaded entirely from the floppy disk to the user memory of the programmable controller. During start-up there is no need to supply any data to the analog module. Its ready state is indicated by the green LED on the front panel. The LED lights up when an external 24 V voltage is applied. If at the time the programmable controller is turned on, all simulator inputs are in switch position "O", no outputs maybe set after the start-up of the programmable controller. If one of the outputs Q 6. O/Q 10.0 (flag F 14.0) or Q 6.1/Q 10.1 (flag F 14.1) is set, a para-meterization error was made. The exact error cause can be identified at flag byte FY 16 (for the parameterization error shown for output Q 6. O/Q 10.0) or at flag byte FY 17 (for the parametrization error shown for output Q 6.1/Q 10.1). Both flag bytes are set in accordance with the error bytes FY 255 of the standard function blocks FB 160 and FB 161. 7.4.5 Reading the Binary Inputs If input 14.1 is brought to switch position"1", the binary inputs connected to the analog module are displayed at output byte QB4/QB8. If the signal status of these inputs is modified, the display on the simulator is modified accordingly. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 7 - 15 R 02/92 Programming Instructions 7.4.6 Reading the Analog Value The channel numbers from O to 7 are specified via the parameter BGKN of function block FB 160. The LEDs on the module's front plate indicate the currently selected channel as a bit pattern. The analog value read in the example is transferred to the module through the front panel connector via input IW1 (contact 24) and the appropriate potential contact (contact 23). It can be measured simultaneously at sockets 1 (IW1) and 6 (ManJ. The output for analog value acquisition AV1 (Pin 16) must be brought to channel O of the ADC (Pin 1) via analog value jumpering. The analog value read by function block FB 160 is output in flag word FW 10. Via the programmer function "Control Variable", the actual value can be displayed directly. If input 14.0 ("NORM") is brought to switch position"1", the analog value is displayed in mV given in binary code (ranging from -1 0000 to +10000). Othetwise it is given as a bit pattern, the way it arrives from the module. Via the two potentiometers "Work point AV1" and "Amplification AV1", the analog value can be changed. In order to check whether the module reproduces the applied value in correct form, the amplification should be set to value"1" and the work point to "O". For this purpose a firm value (e.g., 2 V) should be specified at the analog value input AV1. Then a reading should be taken at the sockets and the amplification changed until the input value matches the end value. The work point is set by zero adjustment (i.e., the applied and the measured voltages are both zero). Via soldered jumpers the individual voltage ranges can be set as follows: UNI - 10V (BT = O: Voltage range from O V to 10 V) BI - 20 V (BT = 1: Voltage range from -10 Vto +10 V) BI - 10V (BT = 2: Voltage range from -5 V to +5 V) 7 - 16 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 Programming Instructions R 02/92 7.4.7 Checking the Comparators lf routing of analog values has not been completed, the output for analog value acquisition AV1 (Pin 16) must be connected with the "+" input of comparator 1 (Pin 20). Furthermore, the output for analog value acquisition AV2 (Pin 15) must be connected with channel 1 of the ADC (Pin 2) and with the "-" input of comparator 1 (Pin 19). Channel O is set to 2 V. Depending on whether the analog value measured at channel 1 is below or above 2 V, there will be different states of the comparator outputs (in this case A and B for comparator output 1). The function KP-L "Read comparator outputs" is switched on via input 14.2. Depending on the status of the LOG bit (I 4.3), the following signal states will result for comparator output 1: LOG (1 4.3) Channel 1<2 V Channel 1>2 V I I I = " 1" = " o" A = "O", B = "1" A = "l", B = "1" I I A = "1"j B = "l" A = "1", B = "O" The comparator outputs are conducted to the output byte QB5/QB9 and are displayed there. In this case "A" corresponds to output Q 5. O/Q 9.0 and "B" corresponds to Q 5.1/Q 9.1. After turning off the function "Read comparator outputs", the outputs at the simulator remain active. Via input I 4.7 (flag F 4.7) the outputs can be reset. 7.4.8 Writing the Binary Outputs When the function "DA-S Write binaty outputs" (1 4.6) is activated, the binary outputs of the analog module, connected to the simulator, are indicated by LEDs on the simulator. The binary outputs are entered at input byte IB5. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 7 - 17 R 02/92 Programming Instructions 7.4.9 Writing the Analog Value When the analog routing operations have been performed in single steps so far, they now must be supplemented by the following jumpers: DAC1 (PIN 21) -> AOI (PIN 25) DAC2 (PIN 22) -> A02 (PIN 26) DAC3 (PIN 23) -> A03 (PIN 27) Via the programmer function "Control variable" a value can be specified via flag word FW 12 which is output as an analog value. If input 14.0 (NORM) has signal status"1", the value can be output in mV in binary form (ranging from -1 0000 to +10000). Otherwise the bit pattern is required and is then directly transferred to the module. In order to determine the written analog value, it is measured at the contacts in the front connector of the analog module (e.g., pin 28 for AO1 and pin 33 for potential). 7 - 18 1P 243 Equipment Manual @.SiemensA(31989, Order No: 6E.S5998-0KF21 Programming Instructions R 02/92 I 7.5 Programming Without FB k 7.5.1 Address Assignment For read and write operations the 1P 243 requires an 8-byte address area. These eight bytes are assigned as follows: READ L L Startina address Starting address + 1 Starting address + 2 Starting address + 3 Starting address + 4 +5 address -- Starting address + 6 Startina address -- +7 o 1 2 3 4 J-I 6 7 r I Starting addresc Starting address + 1 Starting address + 2 Starting -----. address ---+ 3Startina address + 4 address + 5 address + 6 address + 7 - I WRITE LSB s x x x x 210 1 - 8 o 2 3 I - - - - - - - - (READY-Delay) (READY-Delay) - - - - - - - - - - - - - - (READY-Delay) - - - - - - - - (READY-Delay) 7 6 5 4 3 2 1 0 DIGITAL INPUT 1 D c B A COMPARATORS 2 7 7 26 75 24 HIGH- B~E ADC I 2'1 2'? 29 3 2 Zo () () f) o LOW-BYTE ADC 2 2-- 2' -- -- ADR MSB r LSB m 2 9 28 HIGH-BYTE DAC1 27 26 2 P @ 2 2 ' 20 LOW-BYTE DAC1 s x x x x 210 29 2' HIGH-BYTE IMC2 27 26 25 @ $ 22 21 20 LOW-BWE DAC2 271261251 f I ZJL ,2 ~1 , 0 DAC3 2 5 A 5 6 7 7 6 5 4 3 x x x x LOG 8TR x x x x ADR = Address byte MSB = Most significant bit LSB = Least significant bit Attention: Although the four bytes ADR O to 3 are not set for READ and no READY is generated, no input module maybe addressed in this area, as the data bus driver of the module is "turned on" in this area also. 1P 243 Equipment Manual @ Siemens AG 1989, Order No: 6ES5 998-0KF21 7 - 19 R 02/92 Programming Instructions 7.5.2 Reading and Writing the Inputs and Outputs The descriptions of the individual 1P 243 hardware components also refer to software handling. With an example, this section summarizes the programming commands for the respective accesses. Example for module address 128 with SIMATIC S5 Data IFunction Subaddresses D7 D6 D5 D4 D3 D2 D1 DO STEP 5 Statement 222 12(J BI Read 7 6 5 4 3 2 1 0 1 0 0 Q Mod. adr. + 4 LPY 132 BO Write 7 6 5 4 3 2 1 0 1 0 1 S Mod. adr. + 5 TPY 133 VZ X X X X 20 29 % O 0 0 C Mod. adr. + O TPY 128 27 26 25 28 23 22 21 20 0 0 1 Q Mod. adr. + 1 TPY 129 vz x x x x 20 23 x O 1 0 Q Mod. adr. + 2 TPY 130 27 26 25 26 23 22 21 20 0 1 12 Mod. adr. + 3 TPY 131 27 26 25 28 23 22 21 20 1 0 0 Q Mod. adr. + 4 TPY 132 1111 1 0 1 Q Mod. adr. + 5 LPY 133 22 21 ~ 1 1 1 Q Mod. adr. + 7 TPY 135 x x x 1 1 0 G Mod. adr. + 6 TPY 134 1 20 29 26 27 26 25 24 1 1 Os Mod. adr. + 6 LPY 134 0 0 0 1 1 1 S Mod. adr. + 7 LPY 135 DAC1 Write DAC2 Write DAC3 Write Read Comparators Write ADC selection L S X DCBA X X Write ADC conversion X x x x x z ADC Read 23 22 21 20 0 0 0 TPW 128 TPW 130 0 LPw 134 The propagation times for these three commands must be added to the converting times of a maximum of 35 psec. per channel to obtain the time required for reading in an analog input If the same channel is converted in repeated sequence, the command "ADC channel. channel select" can be omitted, as the selected channel remains active after the call until it is overwritten. Attention: Not only the channel, which is selected by the multiplexer and then converted by the ADC, is stored in byte "subaddress 7" but also the desired states of the "LOG" and "STROBE" bits. When writing the data, make sure that no other functions are overwritten. 7 - 20 1P 243 Equipment Manual @ siWfW3flS AG 1989, Order No: 6ES5 998-0KF21