10-FZ06NBA030SA-P914L33 preliminary datasheet flowBOOST 0 600 V/30 A flow 0 housing Features Symmetric boost Clip-In PCB mounting Low Inductance Layout Target Applications Schematic UPS Types 10-FZ06NBA030SA-P914L33 Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V 31 41 A 90 A 60 91 W 20 V 6 360 s V 175 C 600 V 19 25 A 30 A 35 53 W 175 C Input Boost IGBT Collector-emitter break down voltage DC collector current Repetitive peak collector current VCE IC ICpulse Power dissipation per IGBT Ptot Gate-emitter peak voltage VGE Short circuit ratings tSC VCC Maximum Junction Temperature Tj=Tjmax Th=80C Tc=80C tp limited by Tjmax Tj=Tjmax Th=80C Tc=80C Tj150C VGE=15V Tjmax Input Boost Inverse Diode Peak Repetitive Reverse Voltage DC forward current VRRM Tj=25C IF Tj=Tjmax Repetitive peak forward current IFRM tp limited by Tjmax Power dissipation per Diode Ptot Tj=Tjmax Maximum Junction Temperature copyright Vincotech Tjmax 1 Th=80C Tc=80C Th=80C Tc=80C Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Maximum Ratings Tj=25C, unless otherwise specified Parameter Condition Symbol Value Unit 600 V Input Boost FWD Peak Repetitive Reverse Voltage DC forward current VRRM IF Tj=25C Tj=Tjmax Th=80C 30 Tc=80C 39 A Repetitive peak forward current IFRM tp limited by Tjmax Tc=100C 60 A Power dissipation Ptot Tj=Tjmax Th=80C Tc=80C 48 73 W Tjmax 175 C Storage temperature Tstg -40...+125 C Operation temperature under switching condition Top -40...+(Tjmax - 25) C 4000 V Creepage distance min 12,7 mm Clearance min 12,7 mm Maximum Junction Temperature Thermal Properties Insulation Properties Insulation voltage copyright Vincotech Vis t=2s DC voltage 2 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Characteristic Values Parameter Conditions Symbol VGE [V] or VGS [V] Vr [V] or VCE [V] or VDS [V] Value IC [A] or IF [A] or ID [A] Tj Unit Min Typ Max 5 5,8 6,5 1 1,58 1,81 2,05 Input Boost IGBT Gate emitter threshold voltage VGE(th) Collector-emitter saturation voltage VCE(sat) 15 Collector-emitter cut-off ICES 0 600 Gate-emitter leakage current IGES 20 0 Integrated Gate resistor Rgint Turn-on delay time td(on) Rise time Turn-off delay time Fall time VCE=VGE 0,00043 30 tf 0,03 350 none tr td(off) Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C Rgon=16 Rgoff=16 Turn-on energy loss per pulse Eon Turn-off energy loss per pulse Eoff Input capacitance Cies Output capacitance Coss Reverse transfer capacitance Crss Gate charge QGate f=1MHz Thermal resistance chip to heatsink per chip RthJH Thermal grease thickness50um = 1 W/mK 300 15 30 Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C Tj=25C Tj=150C V V mA nA 103 103 14 19 152 173 85 103 0,40 0,54 0,68 0,92 ns mWs 1630 f=1MHz 25 0 pF 108 Tj=25C 50 0 25 Tj=25C 167 nC 1,58 K/W Input Boost Inverse Diode Diode forward voltage Thermal resistance chip to heatsink per chip VF RthJH 10 Tj=25C Tj=125C 1 Thermal grease thickness50um = 1 W/mK 1,79 1,67 2,05 2,69 V K/W Input Boost FWD Forward voltage Reverse leakage current VF Irm Peak recovery current IRRM Reverse recovery time trr Reverse recovery charge Qrr Reverse recovered energy Peak rate of fall of recovery current Thermal resistance chip to heatsink per chip 30 15 Rgon=16 600 15 300 Erec di(rec)max /dt RthJH 30 Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C Tj=25C Tj=125C 1 1,71 1,64 2,05 30 33 39 111 178 1,30 2,57 0,27 0,58 3664 1549 Thermal grease thickness50um = 1 W/mK V A A ns C mWs A/s 1,97 K/W 22000 Thermistor Rated resistance R Deviation of R100 R/R Power dissipation P Tj=25C R100=1486 Tj=100C Power dissipation constant -5 +5 % Tj=25C 200 mW Tj=25C 2 mW/K B-value B(25/50) Tol. 3% Tj=25C 3950 K B-value B(25/100) Tol. 3% Tj=25C 3996 K Vincotech NTC Reference copyright Vincotech Tj=25C 3 B Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 1 Typical output characteristics ID = f(VDS) BOOST IGBT Figure 2 Typical output characteristics ID = f(VDS) 120 IC(A) IC (A) 120 100 100 80 80 60 60 40 40 20 20 0 0 0 1 At tp = Tj = VDS from 2 3 4 V CE (V) 5 0 1 At tp = Tj = VDS from 250 s 25 C 7 V to 17 V in steps of 1 V BOOST IGBT Figure 3 Typical transfer characteristics ID = f(VDS) 2 3 4 V CE (V) 5 250 s 150 C 7 V to 17 V in steps of 1 V BOOST FWD Figure 4 Typical diode forward current as a function of forward voltage IF = f(VF) 90 ID (A) IF (A) 30 25 75 20 60 15 45 30 10 Tj = Tjmax-25C Tj = 25C 15 5 Tj = Tjmax-25C Tj = 25C 0 0 0 At tp = VDS = 2 4 250 s 10 V copyright Vincotech 6 8 10 V GS (V) 0 12 At tp = 4 0,5 250 1 1,5 2 2,5 3 V F (V) 3,5 s Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 5 Typical switching energy losses BOOST IGBT Figure 6 Typical switching energy losses as a function of collector current E = f(ID) as a function of gate resistor E = f(RG) 1,5 Eon High T E (mWs) E (mWs) 1,5 Eoff High T 1,2 1,2 Eon Low T Eoff Low T 0,9 Eoff High T Eon High T 0,9 Eoff Low T Eon Low T 0,6 0,6 0,3 0,3 0 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/150 C VDS = 300 V VGS = 15 V Rgon = 16 Rgoff = 16 15 30 45 60 RG ( ) 75 With an inductive load at Tj = 25/150 C VDS = 300 V VGS = 15 V ID = 30 A BOOST IGBT Figure 7 Typical reverse recovery energy loss as a function of collector (drain) current Erec = f(Ic) BOOST IGBT Figure 8 Typical reverse recovery energy loss as a function of gate resistor Erec = f(RG) 1 E (mWs) E (mWs) 1 Erec High T 0,8 0,8 0,6 0,6 Erec High T Erec Low T 0,4 0,4 0,2 0,2 0 Erec Low T 0 0 10 20 30 40 50 I C (A) 60 0 With an inductive load at Tj = 25/150 C 15 30 60 R G( ) 75 With an inductive load at Tj = 25/150 C VDS = 300 V VDS = 300 V VGS = Rgon = Rgoff = 15 16 V VGS = ID = 15 30 V A 16 copyright Vincotech 45 5 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 9 Typical switching times as a BOOST IGBT Figure 10 Typical switching times as a function of collector current t = f(ID) function of gate resistor t = f(RG) 1 t ( s) t ( s) 1 tdoff tdoff tdon tf 0,1 tf 0,1 tdon tr 0,01 0,01 tr 0,001 0,001 0 10 20 30 40 50 I D (A) 0 60 With an inductive load at Tj = 150 C VDS = 300 V VGS = 15 V Rgon = 16 Rgoff = 16 15 30 45 60 R G( ) 75 With an inductive load at Tj = 150 C VDS = 300 V VGS = 15 V IC = 30 A BOOST FWD Figure 11 Typical reverse recovery time as a function of collector current trr = f(Ic) Figure 12 Typical reverse recovery time as a function of MOSFET turn on gate resistor trr = f(Rgon) 0,6 t rr( s) t rr( s) 0,3 BOOST FWD 0,25 0,5 trr High T trr High T 0,2 0,4 trr Low T 0,15 0,3 trr Low T 0,1 0,2 0,05 0,1 0 0 0 At Tj = VDS = VGS = Rgon = 10 20 25/150 C 300 15 V V 16 copyright Vincotech 30 40 50 I C (A) 60 0 At Tj = VR = IF = VGS = 6 15 30 25/150 C 300 30 V A 15 V 45 60 R Gon ( ) 75 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST FWD Figure 13 Typical reverse recovery charge as a BOOST FWD Figure 14 Typical reverse recovery charge as a function of collector current Qrr = f(IC) function of MOSFET turn on gate resistor Qrr = f(Rgon) 5 Qrr ( C) Qrr ( C) 4 4 3,2 Qrr High T Qrr High T 3 2,4 Qrr Low T 2 1,6 Qrr Low T 1 0,8 0 0 0 At At Tj = VDS = VGS = Rgon = 10 25/150 300 15 16 20 30 40 50 I C (A) 60 C V V BOOST FWD Figure 15 Typical reverse recovery current as a function of collector current IRRM = f(IC) 0 15 At Tj = VR = IF = VGS = 25/150 300 30 15 30 45 60 75 C V A V BOOST FWD Figure 16 Typical reverse recovery current as a function of IGBT turn on gate resistor IRRM = f(Rgon) 50 R Gon ( ) IrrM (A) IrrM (A) 100 IRRM High T 80 40 IRRM Low T 30 60 20 40 10 20 IRRM High T IRRM Low T 0 0 0 At Tj = 10 20 VDS = 25/150 300 C V VGS = Rgon = 15 16 V copyright Vincotech 30 40 50 I C (A) 0 60 At Tj = 7 15 30 VR = 25/150 300 C V IF = VGS = 30 15 A V 45 60 R Gon ( ) 75 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST FWD Figure 17 Typical rate of fall of forward and reverse recovery current as a function of collector current dI0/dt,dIrec/dt = f(Ic) and reverse recovery current as a function of IGBT turn on gate resistor dI0/dt,dIrec/dt = f(Rgon) 6000 15000 direc / dt (A/ s) direc / dt (A/ s) BOOST FWD Figure 18 Typical rate of fall of forward dI0/dt dIrec/dt 5000 dI0/dt dIrec/dt 12000 4000 9000 3000 6000 2000 3000 1000 0 0 0 At Tj = VCE = VGE = Rgon = 10 25/150 300 15 16 20 30 40 50 I C (A) 60 0 At Tj = C V V VR = IF = VGS = BOOST IGBT Figure 19 MOSFET transient thermal impedance as a function of pulse width ZthJH = f(tp) 25/150 300 30 15 30 45 60 R Gon ( ) 75 C V A V BOOST FWD Figure 20 FWD transient thermal impedance as a function of pulse width ZthJH = f(tp) 101 ZthJH (K/W) ZthJH (K/W) 101 100 100 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 10-1 10 15 10-2 -2 10 -5 At D= RthJH = 10 -4 -3 10 -2 10 -1 10 0 10 t p (s) -5 1 10 10 1 At D= RthJH = tp / T 1,58 copyright Vincotech K/W D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 -1 10 IGBT thermal model values 10 -4 10 -3 -2 10 10 -1 0 10 t p (s) tp / T 1,97 K/W FWD thermal model values R (C/W) 0,034 0,168 Tau (s) 7,75E+00 9,36E-01 R (C/W) 0,03 0,17 Tau (s) 9,53E+00 8,69E-01 0,630 0,427 1,45E-01 2,94E-02 0,70 0,54 1,31E-01 2,74E-02 0,199 0,122 5,22E-03 3,91E-04 0,33 0,20 4,55E-03 3,66E-04 8 1 10 1 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 21 Power dissipation as a BOOST IGBT Figure 22 Collector/Drain current as a function of heatsink temperature Ptot = f(Th) function of heatsink temperature IC = f(Th) 50 IC (A) Ptot (W) 125 100 40 75 30 50 20 25 10 0 0 0 At Tj = 50 175 100 150 o Th ( C) 200 0 At Tj = VGS = C BOOST FWD Figure 23 Power dissipation as a function of heatsink temperature Ptot = f(Th) 50 175 15 100 150 Th ( o C) 200 C V BOOST FWD Figure 24 Forward current as a function of heatsink temperature IF = f(Th) 50 IF (A) Ptot (W) 100 80 40 60 30 40 20 20 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 o T h ( C) 200 0 At Tj = C 9 50 175 100 150 o T h ( C) 200 C Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet INPUT BOOST BOOST IGBT Figure 25 Safe operating area as a function BOOST IGBT Figure 26 Gate voltage vs Gate charge of drain-source voltage ID = f(VDS) VGS = f(Qg) 3 18 ID (A) UGS (V) 10 16 120V 10 14 2 480V 12 1mS 101 10uS 100uS 10 10mS 8 DC 6 100 4 2 100mS 0 101 100 At D= Th = VGS = single pulse 80 C V 15 Tj = Tjmax copyright Vincotech 102 V DS (V) 0 103 20 40 60 80 100 120 140 160 180 200 220 Qg (nC) At ID = 30 A C 10 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet BOOST INV. DIODE BOOST INV. DIODE Figure 1 Typical diode forward current as BOOST INV. DIODE Figure 2 Diode transient thermal impedance a function of forward voltage IF= f(VF) as a function of pulse width ZthJH = f(tp) 40 ZthJC (K/W) IF (A) 101 32 0 10 24 D = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 16 10-1 8 Tj = 25C Tj = Tjmax-25C 0 0 0,5 At tp = 1 250 1,5 2,5 V F (V) 10-2 3 10-5 At D= RthJH = s BOOST INV. DIODE Figure 3 Power dissipation as a function of heatsink temperature Ptot = f(Th) 10-4 10-3 10-2 10-1 100 t p (s) 1011 tp / T 2,69 K/W BOOST INV. DIODE Figure 4 Forward current as a function of heatsink temperature IF = f(Th) 30 70 IF (A) Ptot (W) 2 60 25 50 20 40 15 30 10 20 5 10 0 0 0 At Tj = 50 175 copyright Vincotech 100 150 o T h ( C) 0 200 At Tj = C 11 50 175 100 150 o T h ( C) 200 C Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Thermistor Thermistor Figure 1 Typical NTC characteristic as a function of temperature RT = f(T) NTC-typical temperature characteristic R(T ) = R25 e R/ 24000 Thermistor Figure 2 Typical NTC resistance values 22000 B25/100 1 - 1 T T25 [] 20000 18000 16000 14000 12000 10000 8000 6000 4000 2000 0 25 copyright Vincotech 50 75 100 T (C) 125 12 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Switching Definitions Boost IGBT General conditions Tj Rgon Rgoff = = = BOOST IGBT Figure 1 Turn-off Switching Waveforms & definition of tdoff, tEoff (tEoff = integrating time for Eoff) 175 C 16 16 BOOST IGBT Figure 2 Turn-on Switching Waveforms & definition of tdon, tEon (tEon = integrating time for Eon) 250 125 tdoff % % VCE IC 200 100 VCE 90% VGE 90% 150 75 IC VCE 100 50 tEoff VGE tdon 50 25 VGE 0 VGE 10% 0 IC 1% VCE 3% Ic 10% tEon -50 -25 -0,3 -0,15 0 VGE (0%) = 0,15 -15 15 300 30 0,17 0,46 VGE (100%) = VC (100%) = IC (100%) = tdoff = tEoff = 0,3 0,45 2,9 0,6 time (us) 3 VGE (0%) = VGE (100%) = VC (100%) = IC (100%) = tdon = tEon = V V V A s s BOOST IGBT Figure 3 Turn-off Switching Waveforms & definition of tf 3,1 -15 15 300 30 0,10 0,23 3,2 3,3 3,4 V V V A s s BOOST IGBT Figure 4 Turn-on Switching Waveforms & definition of tr 125 time(us) 250 fitted % % VCE IC Ic 200 100 IC 90% 150 75 IC 60% VCE 100 50 IC 90% IC 40% tr 50 25 IC 10% 0 IC 10% 0 tf -50 -25 0 VC (100%) = IC (100%) = tf = copyright Vincotech 0,1 0,2 300 30 0,10 0,3 time (us) 3 0,4 VC (100%) = V A s IC (100%) = tr = 13 3,05 3,1 300 30 0,02 3,15 3,2 time(us) 3,25 V A s Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Switching Definitions Boost IGBT BOOST IGBT Figure 5 Turn-off Switching Waveforms & definition of tEoff BOOST IGBT Figure 6 Turn-on Switching Waveforms & definition of tEon 120 180 Poff % IC 1% Pon % Eoff 100 150 80 120 Eon 60 90 40 60 30 20 VGE90% tEon tEoff -30 -20 -0,2 0 Poff (100%) = Eoff (100%) = tEoff = 0,2 9,06 0,92 0,46 0,4 time (us) 2,9 0,6 3 Pon (100%) = Eon (100%) = tEon = kW mJ s BOOST IGBT Figure 7 Gate voltage vs Gate charge (measured) VGE (V) VCE 3% VGE 10% 0 0 3,1 9,06 0,54 0,23 3,2 3,3 120 3,4 kW mJ s Figure 8 Turn-off Switching Waveforms & definition of trr 20 time(us) BOOST FWD Id % 15 80 trr 10 40 5 Vd 0 fitted 0 IRRM 10% -40 -5 -80 -10 IRRM 90% -120 -15 -20 -50 0 VGEoff = VGEon = VC (100%) = IC (100%) = Qg = copyright Vincotech 50 100 150 -15 15 V V 300 30 270,23 V A nC 200 IRRM 100% -160 250 300 Qg (nC) 3 Vd (100%) = Id (100%) = IRRM (100%) = trr = 14 3,1 3,2 3,3 300 30 V A -39 0,18 A s 3,4 time(us) 3,5 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Switching Definitions Boost IGBT BOOST FWD Figure 9 Turn-on Switching Waveforms & definition of tQrr BOOST FWD Figure 10 Turn-on Switching Waveforms & definition of tErec (tErec= integrating time for Erec) (tQrr = integrating time for Qrr) 150 130 % % Id 100 Erec 100 tQrr 50 tErec 70 Qrr 0 40 -50 Prec 10 -100 -150 -20 3 3,15 3,3 3,45 3,6 3,75 3 time(us) Id (100%) = Qrr (100%) = tQrr = copyright Vincotech 30 2,57 0,42 Prec (100%) = Erec (100%) = tErec = A C s 15 3,15 3,3 9,06 0,58 0,42 3,45 3,6 time(us) 3,75 kW mJ s Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet Ordering Code and Marking - Outline - Pinout Ordering Code & Marking Version Standard in flow 0 12 mm housing Ordering Code in DataMatrix as 10-FZ06NBA030SA-P914L33 P914L33 in packaging barcode as P914L33 Outline Pinout copyright Vincotech 16 Revision: 2 10-FZ06NBA030SA-P914L33 preliminary datasheet PRODUCT STATUS DEFINITIONS Datasheet Status Target Preliminary Final Product Status Definition Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. The data contained is exclusively intended for technically trained staff. First Production This datasheet contains preliminary data, and supplementary data may be published at a later date. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. Full Production This datasheet contains final specifications. Vincotech reserves the right to make changes at any time without notice in order to improve design. The data contained is exclusively intended for technically trained staff. DISCLAIMER The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. LIFE SUPPORT POLICY Vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of Vincotech. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. copyright Vincotech 17 Revision: 2