10-FZ06NBA030SA-P914L33
preliminary datasheet
flowBOOST 0600 V/30 A
Symmetric boost
Clip-In PCB mounting
Low Inductance Layout
UPS
10-FZ06NBA030SA-P914L33
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Input Boost IGBT
Collector-emitter break down voltage VCE 600 V
Th=80°C 31
Tc=80°C 41
Th=80°C 60
Tc=80°C 91
Gate-emitter peak voltage VGE ±20 V
tSC Tj150°C 6μs
VCC VGE=15V 360 V
Maximum Junction Temperature Tjmax 175 °C
Input Boost Inverse Diode
Th=80°C 19
Tc=80°C 25
Th=80°C 35
Tc=80°C 53
Tj=Tjmax
Tj=Tjmax
Tj=Tjmax
tp limited by Tjmax
Features
Tj=Tjmax
ICpulse
Ptot
flow 0 housing
Target Applications Schematic
Types
Maximum Ratings
Condition
Power dissipation per Diode
Tj=25°C
Power dissipation per IGBT
Maximum Junction Temperature Tjmax
IFRM
Repetitive peak forward current
DC forward current IF
°C175
A
A
V
A
600
30
90Repetitive peak collector current
IC
Ptot
W
A
W
tp limited by Tjmax
VRRM
Peak Repetitive Reverse Voltage
Short circuit ratings
DC collector current
copyright Vincotech 1 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Tj=25°C, unless otherwise specified
Parameter Symbol Value Unit
Maximum Ratings
Condition
Input Boost FWD
Th=80°C 30
Tc=80°C 39
Th=80°C 48
Tc=80°C 73
Thermal Properties
Insulation Properties
Vis t=2s DC voltage 4000 V
min 12,7 mm
min 12,7 mm
Tj=Tjmax
Tj=25°C
tp limited by Tjmax
IF
Repetitive peak forward current
VRRM
Peak Repetitive Reverse Voltage
DC forward current
IFRM
Power dissipation
Maximum Junction Temperature Tjmax
Ptot
Tj=Tjmax
W
V
A
°C
A
°C
Storage temperature Tstg -40…+125 °C
-40…+(Tjmax - 25)
Clearance
Insulation voltage
Creepage distance
Top
Operation temperature under switching condition
600
60
175
Tc=100°C
copyright Vincotech 2 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Parameter Symbol Unit
VGE [V] or
VGS [V]
Vr [V] or
VCE [V] or
VDS [V]
IC [A] or
IF [A] or
ID [A]
TjMin Typ Max
T
j
=25°C 5 5,8 6,5
T
j
=150°C
T
j
=25°C 1 1,58 2,05
T
j
=150°C 1,81
T
j
=25°C 0,03
T
j
=150°C
T
j
=25°C 350
T
j
=150°C
T
j
=25°C 103
T
j
=150°C 103
T
j
=25°C 14
T
j
=150°C 19
T
j
=25°C 152
T
j
=150°C 173
T
j
=25°C 85
T
j
=150°C 103
T
j
=25°C 0,40
T
j
=150°C 0,54
T
j
=25°C 0,68
T
j
=150°C 0,92
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK
1,58 K/W
T
j
=25°C 1 1,79 2,05
Tj=125°C 1,67
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK
2,69 K/W
Tj=25°C 1 1,71 2,05
T
j
=125°C 1,64
T
j
=25°C 30
T
j
=125°C
T
j
=25°C 33
T
j
=125°C 39
T
j
=25°C 111
T
j
=125°C 178
T
j
=25°C 1,30
T
j
=125°C 2,57
T
j
=25°C 0,27
T
j
=125°C 0,58
di
(
rec
)
max T
j
=25°C 3664
/d
t
T
j
=125°C 1549
Thermal resistance chip to heatsink per chip RthJH
Thermal grease
thickness50um
λ = 1 W/mK
1,97 K/W
BTj=25°CVincotech NTC Reference
3996 K
3950 K
B-value B(25/100) Tol. ±3% Tj=25°C
Tj=25°CB-value B(25/50) Tol. ±3%
R
300
25
10
300
25
%
22000 Tj=25°C
2
+5-5
Tj=25°C
0,00043
30
30
30
30Rgon=16
±15 600
f=1MHz 0
±20
±15
Rgon=16
Rgoff=16
VCE(sat)
VCE=VGE
Turn-off energy loss per pulse
Rgint
Turn-off delay time
Eon
td(off)
Turn-on energy loss per pulse
Fall time
Turn-on delay time
Rise time
Integrated Gate resistor
Crss
VF
QGate
VF
f=1MHz
Cies
td(on)
Eoff
tf
Qrr
ICES
Coss
IRRM
Irm
Erec
Forward voltage
Diode forward voltage
Input capacitance
Output capacitance
Reverse transfer capacitance
Input Boost Inverse Diode
Gate charge
trr
Input Boost FWD
ValueConditions
VGE(th)
IGES
Gate emitter threshold voltage
tr
Collector-emitter saturation voltage
Input Boost IGBT
Gate-emitter leakage current
Collector-emitter cut-off
Characteristic Values
Tj=25°C
0
V
mWs
pF
0
0 600
15
Reverse leakage current
Peak recovery current
Peak rate of fall of recovery current
Reverse recovery charge
Reverse recovery time
Reverse recovered energy
mW/K
PmW200
Rated resistance
Power dissipation constant
Deviation of R100
Power dissipation
ΔR/R R100=1486
±15
Thermistor
1630
50
167
108
none
A
ns
V
V
nC
V
Tj=25°C
Tj=25°C
Tj=100°C
A/μs
mWs
μC
μA
nA
ns
mA
copyright Vincotech 3Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 1 BOOST IGBT Figure 2 BOOST IGBT
Typical output characteristics Typical output characteristics
ID = f(VDS) ID = f(VDS)
At At
tp = 250 μstp = 250 μs
Tj = 25 °C Tj = 150 °C
VDS from 7 V to 17 V in steps of 1 V VDS from 7 V to 17 V in steps of 1 V
Figure 3 BOOST IGBT Figure 4 BOOST FWD
Typical transfer characteristics Typical diode forward current as
ID = f(VDS) a function of forward voltage
IF = f(VF)
At At
tp = 250 μstp = 250 μs
VDS = 10 V
INPUT BOOST
0
15
30
45
60
75
90
00,511,522,533,5
VF (V)
IF (A)
Tj = 25°C
Tj = Tjmax-25°C
0
20
40
60
80
100
120
012345
VCE (V)
IC(A)
0
20
40
60
80
100
120
012345
VCE (V)
IC (A)
0
5
10
15
20
25
30
024681012
VGS (V)
ID (A)
T
j
= 25°C
Tj = Tjmax-25°C
copyright Vincotech 4 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 5 BOOST IGBT Figure 6 BOOST IGBT
Typical switching energy losses Typical switching energy losses
as a function of collector current as a function of gate resistor
E = f(ID) E = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VDS =300 V VDS =300 V
VGS =±15 V VGS =±15 V
Rgon =16 ID = 30 A
Rgoff = 16
Figure 7 BOOST IGBT Figure 8 BOOST IGBT
Typical reverse recovery energy loss Typical reverse recovery energy loss
as a function of collector (drain) current as a function of gate resistor
Erec = f(Ic)E
rec = f(RG)
With an inductive load at With an inductive load at
Tj = 25/150 °C Tj = 25/150 °C
VDS =300 V VDS =300 V
VGS =±15 V VGS =±15 V
Rgon =16 ID = 30 A
Rgoff = 16
INPUT BOOST
Erec High T
Erec Low T
0
0,2
0,4
0,6
0,8
1
0 102030405060
IC(A)
E (mWs)
Erec High T
Erec Low T
0
0,2
0,4
0,6
0,8
1
0 1530456075
RG(
Ω
)
E (mWs)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
0,3
0,6
0,9
1,2
1,5
0 102030405060
IC(A)
E (mWs)
Eoff High T
Eon High T
Eon Low T
Eoff Low T
0
0,3
0,6
0,9
1,2
1,5
0 1530456075
RG (
Ω
)
E (mWs)
copyright Vincotech 5 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 9 BOOST IGBT Figure 10 BOOST IGBT
Typical switching times as a Typical switching times as a
function of collector current function of gate resistor
t = f(ID)t = f(RG)
With an inductive load at With an inductive load at
Tj = 150 °C Tj = 150 °C
VDS =300 V VDS =300 V
VGS =±15 V VGS =±15 V
Rgon =16 IC = 30 A
Rgoff = 16
Figure 11 BOOST FWD Figure 12 BOOST FWD
Typical reverse recovery time as a Typical reverse recovery time as a
function of collector current function of MOSFET turn on gate resistor
trr = f(Ic) trr = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VDS =300 V VR =300 V
VGS =±15 V IF =30 A
Rgon =16 VGS =±15 V
INPUT BOOST
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 102030405060
ID (A)
t ( μs)
tdoff
tf
tdon
tr
0,001
0,01
0,1
1
0 1530456075
RG(
Ω
)
t ( μs)
trr High T
trr Low T
0
0,1
0,2
0,3
0,4
0,5
0,6
0 1530456075
RGon (
Ω
)
t rr(μs)
trr High T
trr Low T
0
0,05
0,1
0,15
0,2
0,25
0,3
0 102030405060
IC (A)
t rr(μs)
copyright Vincotech 6 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 13 BOOST FWD Figure 14 BOOST FWD
Typical reverse recovery charge as a Typical reverse recovery charge as a
function of collector current function of MOSFET turn on gate resistor
Qrr = f(IC)Q
rr = f(Rgon)
At
At At
Tj = 25/150 °C Tj = 25/150 °C
VDS =300 V VR =300 V
VGS =±15 V IF =30 A
Rgon =16 VGS 15 V
Figure 15 BOOST FWD Figure 16 BOOST FWD
Typical reverse recovery current as a Typical reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
IRRM = f(IC)I
RRM = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VDS =300 V VR =300 V
VGS =±15 V IF =30 A
Rgon =16 VGS =±15 V
INPUT BOOST
IRRM High T
IRRM Low T
0
20
40
60
80
100
0 1530456075
RGon (
Ω
)
IrrM (A)
Qrr High T
Qrr Low T
0
0,8
1,6
2,4
3,2
4
0 1530456075
RGon (Ω)
Qrr ( μC)
IRRM High T
IRRM Low T
0
10
20
30
40
50
0 102030405060
IC (A)
IrrM (A)
Qrr High T
Qrr Low T
0
1
2
3
4
5
0 102030405060
IC (A)
Qrr ( μC)
copyright Vincotech 7 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 17 BOOST FWD Figure 18 BOOST FWD
Typical rate of fall of forward Typical rate of fall of forward
and reverse recovery current as a and reverse recovery current as a
function of collector current function of IGBT turn on gate resistor
dI0/dt,dIrec/dt = f(Ic) dI0/dt,dIrec/dt = f(Rgon)
At At
Tj = 25/150 °C Tj = 25/150 °C
VCE =300 V VR=300 V
VGE =±15 V IF=30 A
Rgon =16 VGS 15 V
Figure 19 BOOST IGBT Figure 20 BOOST FWD
MOSFET transient thermal impedance FWD transient thermal impedance
as a function of pulse width as a function of pulse width
ZthJH = f(tp)Z
thJH = f(tp)
At At
D = tp / T D = tp / T
RthJH =1,58 K/W IGBT thermal model values RthJH =1,97 K/W FWD thermal model values
R (C/W) Tau (s) R (C/W) Tau (s)
0,034 7,75E+00 0,03 9,53E+00
0,168 9,36E-01 0,17 8,69E-01
0,630 1,45E-01 0,70 1,31E-01
0,427 2,94E-02 0,54 2,74E-02
0,199 5,22E-03 0,33 4,55E-03
0,122 3,91E-04 0,20 3,66E-04
INPUT BOOST
0
3000
6000
9000
12000
15000
0 1530456075
RGon (Ω)
direc / dt (A/ μs)
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
tp (s)
ZthJH (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0
1000
2000
3000
4000
5000
6000
0 102030405060
IC (A)
direc / dt (A/ μs)
dI0/dt
dIrec/dt
dI0/dt
dIrec/dt
copyright Vincotech 8 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 21 BOOST IGBT Figure 22 BOOST IGBT
Power dissipation as a Collector/Drain current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
C = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
VGS =15 V
Figure 23 BOOST FWD Figure 24 BOOST FWD
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
INPUT BOOST
0
25
50
75
100
125
0 50 100 150 200
Th (oC)
Ptot (W)
0
10
20
30
40
50
0 50 100 150 200
Th (oC)
IC (A)
0
20
40
60
80
100
0 50 100 150 200
Th (oC)
Ptot (W)
0
10
20
30
40
50
0 50 100 150 200
Th (oC)
IF (A)
copyright Vincotech 9 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 25 BOOST IGBT Figure 26 BOOST IGBT
Safe operating area as a function Gate voltage vs Gate charge
of drain-source voltage
ID = f(VDS)V
GS = f(Qg)
At At
D = single pulse ID = 30 A
Th =80 ºC
VGS =±15 V
Tj =T
jmax ºC
INPUT BOOST
VDS (V)
ID (A)
103
100
100
101
102
100uS1mS
10mS
100m
S
DC
102
101
10uS
103
0
2
4
6
8
10
12
14
16
18
0 20 40 60 80 100 120 140 160 180 200 220
Qg (nC)
UGS (V)
120V
480V
copyright Vincotech 10 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 1 BOOST INV. DIODE Figure 2 BOOST INV. DIODE
Typical diode forward current as Diode transient thermal impedance
a function of forward voltage as a function of pulse width
IF= f(VF)Z
thJH = f(tp)
At At
tp = 250 μsD =
tp / T
RthJH =2,69 K/W
Figure 3 BOOST INV. DIODE Figure 4 BOOST INV. DIODE
Power dissipation as a Forward current as a
function of heatsink temperature function of heatsink temperature
Ptot = f(Th)I
F = f(Th)
At At
Tj = 175 ºC Tj = 175 ºC
BOOST INV. DIODE
0
8
16
24
32
40
00,511,522,53
VF (V)
IF (A)
Tj = 25°C
Tj = Tjmax-25°C
tp (s)
ZthJC (K/W)
101
100
10-1
10-2
10-4 10-3 10-2 10-1 100101
1
10-5
D = 0,5
0,2
0,1
0,05
0,02
0,01
0,005
0.000
0
10
20
30
40
50
60
70
0 50 100 150 200
Th (oC)
Ptot (W)
0
5
10
15
20
25
30
0 50 100 150 200
Th (oC)
IF (A)
copyright Vincotech 11 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 1 Thermistor Figure 2 Thermistor
Typical NTC characteristic Typical NTC resistance values
as a function of temperature
RT = f(T)
Thermistor
NTC-typical temperature characteristic
0
2000
4000
6000
8000
10000
12000
14000
16000
18000
20000
22000
24000
25 50 75 100 125
T (°C)
R/
[]
Ω=
25
100/25
11
25
)(
TT
B
eRTR
copyright Vincotech 12 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
T
175 °C
R
g
on 16
R
goff 16
Figure 1 BOOST IGBT Figure 2 BOOST IGBT
Turn-off Switching Waveforms & definition of tdof
f
, tEof
f
Turn-on Switching Waveforms & definition of tdon, tEon
(tEof
f
= integrating time for Eof
f
)(t
Eon = integrating time for Eon)
VGE (0%) = -15 V VGE (0%) = -15 V
VGE (100%) = 15 V VGE (100%) = 15 V
VC (100%) = 300 V VC (100%) = 300 V
IC (100%) = 30 A IC (100%) = 30 A
tdoff = 0,17 μstdon = 0,10 μs
tEoff =0,46 μstEon =0,23 μs
Figure 3 BOOST IGBT Figure 4 BOOST IGBT
Turn-off Switching Waveforms & definition of tf Turn-on Switching Waveforms & definition of tr
VC (100%) = 300 V VC (100%) = 300 V
IC (100%) = 30 A IC (100%) = 30 A
tf =0,10 μstr =0,02 μs
Switching Definitions Boost IGBT
General conditions
=
=
=
IC 1%
VCE 90%
VGE 90%
-25
0
25
50
75
100
125
-0,3 -0,15 0 0,15 0,3 0,45 0,6
time (us)
%tdoff
tEoff
VCE
IC
VGE Ic 10%
VGE 10%
tdon
VCE 3%
-50
0
50
100
150
200
250
2,9 3 3,1 3,2 3,3 3,4
time(us)
%
IC
VCE
tEon
VGE
fitted
IC 10%
IC 90%
IC 60%
IC 40%
-25
0
25
50
75
100
125
0 0,1 0,2 0,3 0,4
time (us)
%VCE
IC
tf
IC 10%
IC 90%
-50
0
50
100
150
200
250
3 3,05 3,1 3,15 3,2 3,25
time(us)
%
tr
VCE
Ic
copyright Vincotech 13 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 5 BOOST IGBT Figure 6 BOOST IGBT
Turn-off Switching Waveforms & definition of tEof
f
Turn-on Switching Waveforms & definition of tEon
Poff (100%) = 9,06 kW Pon (100%) = 9,06 kW
Eoff (100%) = 0,92 mJ Eon (100%) = 0,54 mJ
tEoff =0,46 μstEon =0,23 μs
Figure 7 BOOST IGBT Figure 8 BOOST FWD
Gate voltage vs Gate charge (measured) Turn-off Switching Waveforms & definition of trr
VGEoff = -15 V Vd (100%) = 300 V
VGEon = 15 V Id (100%) = 30 A
VC (100%) = 300 V IRRM (100%) = -39 A
IC (100%) = 30 A trr = 0,18 μs
Qg = 270,23 nC
Switching Definitions Boost IGBT
IC 1%
VGE90%
-20
0
20
40
60
80
100
120
-0,2 0 0,2 0,4 0,6
time (us)
%P
o
f
f
Eoff
tEoff
VCE 3%
VGE 10%
-30
0
30
60
90
120
150
180
2,9 3 3,1 3,2 3,3 3,4
time(us)
%Pon
Eon
tEon
-20
-15
-10
-5
0
5
10
15
20
-50 0 50 100 150 200 250 300
Qg (nC)
VGE (V)
IRRM 10%
IRRM 90%
IRRM 100%
trr
-160
-120
-80
-40
0
40
80
120
3 3,1 3,2 3,3 3,4 3,5
time(us)
%
Id
Vdfitted
copyright Vincotech 14 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Figure 9 BOOST FWD Figure 10 BOOST FWD
Turn-on Switching Waveforms & definition of tQrr Turn-on Switching Waveforms & definition of tErec
(tQrr = integrating time for Qrr)(t
Erec= integrating time for Erec)
Id (100%) = 30 A Prec (100%) = 9,06 kW
Qrr (100%) = 2,57 μCErec (100%) = 0,58 mJ
tQrr =0,42 μstErec = 0,42 μs
Switching Definitions Boost IGBT
tQrr
-150
-100
-50
0
50
100
150
3 3,15 3,3 3,45 3,6 3,75
time(us)
%Id
Qr
-20
10
40
70
100
130
3 3,15 3,3 3,45 3,6 3,75
time(us)
%
Prec
Erec
tErec
copyright Vincotech 15 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
Version Ordering Code in DataMatrix as in packaging barcode as
Standard in flow 0 12 mm housing 10-FZ06NBA030SA-P914L33 P914L33 P914L33
Outline
Pinout
Ordering Code & Marking
Ordering Code and Marking - Outline - Pinout
copyright Vincotech 16 Revision: 2
10-FZ06NBA030SA-P914L33
preliminary datasheet
PRODUCT STATUS DEFINITIONS
Formative or In Design
First Production
Full Production
DISCLAIMER
LIFE SUPPORT POLICY
As used herein:
The information given in this datasheet describes the type of component and does not represent assured characteristics. For tested
values please contact Vincotech.Vincotech reserves the right to make changes without further notice to any products herein to improve
reliability, function or design. Vincotech does not assume any liability arising out of the application or use of any product or circuit
described herein; neither does it convey any license under its patent rights, nor the rights of others.
Vincotech products are not authorised for use as critical components in life support devices or systems without the express written
approval of Vincotech.
1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or
sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be
reasonably expected to result in significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
cause the failure of the life support device or system, or to affect its safety or effectiveness.
Target
Product StatusDatasheet Status Definition
This datasheet contains the design specifications for
product development. Specifications may change in any
manner without notice. The data contained is exclusively
intended for technically trained staff.
Preliminary
This datasheet contains preliminary data, and
supplementary data may be published at a later date.
Vincotech reserves the right to make changes at any time
without notice in order to improve design. The data
contained is exclusively intended for technically trained
staff.
Final
This datasheet contains final specifications. Vincotech
reserves the right to make changes at any time without
notice in order to improve design. The data contained is
exclusively intended for technically trained staff.
copyright Vincotech 17 Revision: 2