SWITCHING REGULATOR CONTROL CIRCUIT eee ALOG INTEGRATED CIRCUIT uPC494 SILICON MONOLITHIC BIPOLAR INTEGRATED CIRCUIT DESCRIPTION The uPC494 is an inverter control unit which provides all the control circuitry for PWM type switching regulators. Included in this device is the voltage reference, dual error amplifiers, oscillator, pulse width modulator, pulse steering flip flop, dual alternating output switches and dead time control. FEATURES @ Complete PWM Power Control Circuit. Adjustable Dead-time (0 to 100 %). Full Pin-Compatible TL494C. ORDERING INFORMATION Circuit architecture provides easy synchronization. Uncommitted outputs for 250 mA sink or source. Part Number Package uPC494C 16 Pin Plastic DIP (300 mil) uPC494G 16 Pin Plastic SOP (375 mil) uPC494GS 16 Pin Plastic SOP (300 mil) Document No. |C1299A, (0.D.No. |C--7779) Date Published November 1989 M Printed in Japan No Double pulsing of same output during load transient condition. Dual error amplifiers have wide common mode input voltage capability (-0.3 V to Vec-2 V). With Miss-operation Prevention Circuit for low level supply voltage. CONNECTION DIAGRAM (Top View) NON. INV. INV. REF. QUTPUT INPUT INPUT OUT CONTROL Vcc C2 Eo &) fie] fis] fia) [a3] x2] fii] fro] [o ERROR AMP |_| REFERENCE 2 REGULATOR ? f ERROR AMP OSCILLATOR + i> lv 0. L . Ly 12] La] [eT Ts} Tel 17] Ts] NON. INV. FEED. DEAD- cy RT GND Cy INV. INPUT BACK TIME INPUT CONTROL NEC Corporation 1988BLOCK DIAGRAM RT CT Dead-Time Control Non-Inv. Input Inv. Input Non-Inv. Input Inv. Input Feed-Back Osc. (6) ) (@ 2) @5) Reference |Low Voltage Regulator |Stop Dead Time COMPARATOR PWM COMPARATOR ABSOLUTE MAXIMUM RATINGS (T,=25 C) (3) Output Control Supply Voltage Vec 41 Error Amplifier Input Voltage Vicm Vect0.3 Output Voltage VcER 41 Output Current Ic 250 Total Power Dissipation PT(T,=25 C) 1000 Operating Temperature Range Topt 20 to +85 Storage Temperature Range Tstg 65 to +150 RECOMMENDED OPERATING CONDITIONS CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT Supply Voltage Vcc 7 40 Vv Output Voltage VCER 0.3 40 Vv Output Current Ic 200 mA Error Amplifier Sink Current lOAMP 0.3 mA Timing capacitor CT 0.47 10000 nF Timing Resistance RT 1.8 500 kQ Oscillation Frequency fose 1 300 kHz Operating Temperature Topt 20 +70 c <<< mA mW |ELECTRICAL CHARACTERISTICS (Vec=15 V, f=10 kHz, 20 = T, = +70 C, unless otherwise noted) BLOCK CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT TEST CONDITIONS Output Voltage Vret 4.75 5 5.25 Vv lref=t MA, Tg=25 C : . 7 VEVcc=40 V Line Regulation REGiy 8 25 mV bref=t mA, Ta=25 C Reference Load Regulation REG, 1 15 mV | 1mA1,;efS10 MA, Ta=25 C _ C S + Temperature Coefficient Viet 0.01 0.03 %IC 20 C= Ta S #85 C lref=l mA (Note 2) = =95 Short Circuit Output Current short 50 mA Vref=0, Ta=25 C Frequency fose 10 kHz C7=0.01 uF, Re= 12 k2, T3=25 C (Note 1) 7V sVcc = 40 V, Cr, RT, const. Standard Deviation of F 10 % Ta=25 C Oscillator andard Deviation of Frequency a Section Frequency Change with ocs Ta S70 C, C7=0.01 uF 1 2 % Temperature Ry=12 kQ . 7V Vcc 40 V, C7=0.01 wr Gg Frequency Change with Voltage 1 % Ta=25 C, Rr=12 ko Input Bias Current 2 10 uA OSV; =5.25 V Dead-time Control Maximum Duty Cycle 45 49 % | Vy=0 : (Each Output} Section 3 3.3 Zero duty cycle Input Threshold Voltage Vth Vv 0 Maximum duty cycle Input Offset Voltage Vio 2 10 mV VOAMP=2.5 V Input Offset Current lio 25 250 nA VOAMP=2.5 V Input Bias Current 0.2 1 LA VOAMP=2.5 V Common Mode Low Vv 0.3 < Error Input Voltage High ICM Vec2 Vv 7V3Vcec 40 V Amplifier 3 Section Open-loop Voltage Amplification] Ay 60 80 dB Voamp=0.5 V to 3.5 V, Tg=25 C Unity Gain Bandwidth 500 830 kHz Ta=25 C Common Mode Rejection Radio | CMR 65 80 dB Voc=40 V, Ta=25 C Output Sink Current 0.3 0.7 mA Voamp=0.7 V Output Source Current -2 10 mA Voamp=3.5 V Note 1: Standard deviation is a measure of the statistical distribution about the mean as derived from the formula; Calculation expression of frequency foc is as follows Note 2: 1 fosc * 0.817 Ry-Cy + 1.42-10% (Hz) (Ry) =, [Cy] =F Maximum duration of short circuit cond. is one second. (non repetitive)TEST CONDITIONS BLOCK CHARACTERISTIC SYMBOL MIN. TYP. MAX. UNIT PWM Input Threshold Voltage 4 4.5 Vv Zero Duty Cycle Section Input Sink Current 0.3 0.7 mA Vipin 3)=0.7 V Collector Cutoff Current ICER 100 HA VcE=40 V, Vec=40 V Emitter Cutoff Current 100 vA Vcece=Vc=40 V Ic=200 mA, V_E=0, VCE (sat) 0.95 1.3 Vv Common Emitter Collector Saturation Voltage 1=200 mA, Vani V E= mA, Vc= VCE(ON) 16 2.6 v Emitter follower Output common Section . 100 200 ns Output Voltage Emitter t Rise Time Emitter r follower 100 200 ns Voc=15 V, RL=150 2 I9=100 mA common _np 0 Output Voltage Emitter 70 200 ns Ta=25 C Fall Time : tf Emitter 70 200 ns follower Vcec=15 V Total Standby Current Icc(S.B) 8 12.5 mA all other inputs and outputs open Device Bias Current Icc(Bi.) 10 mA Vipin 4)=2 V, see Fig. 1Fig. 1 Test Circuit Voc=15 V (12) (4) Voc O_Dead time Test Input (3) Ora 5 Fead Back RT Ci RL RL 320 22 150 0 7 2W O Output 1 C2 Ref 1(14) Voltage Waveform Voltage at. C1 Voltage at C2 Voltage at C3 Dead-time Control Feed Back Input (E.A. Output) 07 FUNCTION TABLE Threshold Input Voltage Output 2 a * Recommend film capacitor 0 % Threshold Voltage | OUTPUT CONTROL INPUT (13 pin) OUTPUT FUNCTION At Ref-Out Normal push-pull operation Grounded Single-ended or parallel output Voc VocTYPICAL PERFORMANCE CHARACTERISTICS (T,=25 + 2 C, Viy=15 V) PTMaximum Power Dissipation W VreFReference Voltage V foSCFrequency kHz MAXIMUM POWER DISSIPATION 1.2 1.0 Thermal Resistance Rth(ja) = 125 C/W 0.8/- 0.6 0.4 0.2 0 25 50 75 100 125 TaAmbient Temperature C REFERENCE VOLTAGE vs. SUPPLY VOLTAGE 0 5 10 15 20 25 30 635 640 VcocSupply Voltage V FREQUENCY vs. R7 AND Cr 500 Vec=15 V 200 100 50 20 50 100 200 500 2 5 10 20 RTTiming Resistance k Q VcEOutput Voltage V AVREFReference Voltage Change mV 4f/foscFrequency Change % GL MISS-OPERATION PREVENTION CIRCUIT CHARACTERISTICS Circuit BV VCE 3 4 5 6 VcocSupply Voltage V REFERENCE VOLTAGE vs. TEMPERATURE 40 Vec=15 V IREF=1 mA 20 o ZZIZA Ll) 7]; A eo Mw 40 60 25 0 25 50 75 100 TaAmbient Temperature C FREQUENCY vs. TEMPERATURE 4 Vec=15 V 2 RT=12 ko CT=0.01 pF ! > I > | n ~25 0 25 50 7 100 Ta~Ambient Temperature CDuty Cycle % (Common Emitter) V (Emitter follower) V VCE(sat)~Collector Saturation Voltage VCE(ON)Collector Saturation Voltage DUTY CYCLE vs. DEAD TIME CONTROL INPUT VOLTAGE OPEN-LOOP VOLTAGE GAIN vs. FREQUENCY nm oOo ran So Oo ao oO \ nD So > oO \ N o \ AvOpen-Loop Voltage Gain dB 0) & o& &y y ea 10 ~ 2 Ae Y 20 ZA 30 40 Vec=15 V RT=12 kQ =0.01 50 ; CT 0.0 uF 0 71 2 3 COLLECTOR SATURATION VOLTAGE Dead Time Control Input Voltage V vs. OUTPUT CURRENT 2.0 1.8 0.8 0.6 0.4 VCE(ON) 40 80 120 160 Ic, !E-Output Current mA 10 100 1k 10k 100k 1M 10M fFrequency Hz STANDBY AND BIAS CURRENT vs. SUPPLY VOLTAGE _ rh nt 'ec(Bi) | __ mt _ Oo / ICC(S.B)_ | [ant ICC(S.B) ICC(S.8) Standby Current mA Icc(BI.)Bias Current mA Voc Terminal Biased Other Terminal Open lec(Bl) VpT=2 V(4 pin) 10 20 30 40 VccSupply Voltage VBASIC APPLICATION CIRCUIT: Fig. 2 Circuit Vout . Output Terminal 5 of S.M.P.S Je "sense GND 7 1 Voc VR 3 9 EO R13 i] [ | + 1102 110 Q R14 75 kQ 5 kQ JP1 47 uF = ~losense Ny B C26 + losense R15 E MAN 2 PO 0.01 nF 100 ne O Cc VL C1 Lo T Sil f_fia_fia]_fi2]_fin]_fio]_fo } Cin Me Rg R10 Ri7 REFERENCE 110 9 110 9 5.1 kQ IREGULLATORT OSCILLATOR R2 5.1 kQ{5.1 kQ Ca Re og 001 pF 24 kOi5 4 CONNECTION DIAGRAM +5 V (VREF) : recommend film capacitor Emitter Follower (R14, R420 ) Ei, OUTPUT OUTPUT CONTROL P WAVEF FUNCTION INPUT (13 pin) OUTPUT MODE OUTPUT VOLTAGE WAVEFORM Open Collector (Rg, R19 0 2) cl U Z e en Collector (Rg, Push-Pull At Ref-Out p 910 c2 | LI LJ 0 0 tion JP1 Wired Et mM i M7 Pere ired) Emitter Follower (R141,R420 2) ? E2 on Lo Single-Ended or Grounded Open Collector (Rg, R19 0 2) C1,C2 | | | | | | | | | | 0 Parallel Output (JP2 Wired) 2 (LIUWULIL_o -Printed Pattern (Pattern Side, Actua! Size) O Voc C2 f2 losense Fl + losense Cy Vosense GND GND TYPICAL EXAMPLE OF APPLICATION CIRCUITS 1) Forward Type +Vcc e +12 V | Vout (12) vec (8) Cy (13) OUTPUT 2 os CONTROL To EAI] To EAL 7 (Over Current (Vo sense) (14)|Re OUT GND Protection) GND2) Push-pull Type (Isolated) +VCc Vout GND To EAI To EAI D 14 Ref Out (Non Isolated) +Vcc (40 V max.) (12) Vv ce Co (11) E2 (10) Vout (9) Ey Ref Out , [68 J GND To EAI GND To EAI 0 3) Stepdown Chopper +Vcc (40 V max.) = + rOO AWW (12) + Voc z Vout (11) _ C2 (10) - Eo \ O (9) El (13)JOUTPUT ,](8) controtel > -- GND To EAU To EAI (7) 7 (Over Current Protection) 10SYNCRONIZED OPERATION If syncronized operation is needed, muster-slave circuit can be used. This circuit is shown bellow. Initially, Rp terminal of slave IC is connected to Pin 14 (Ref Out) and interna! oscillator is stopped. +Vcc (12) (7) (12) Ref | 4) (6) (5) RT (M) : Muster CT (S) : Slave (7) (14) veo Sur 6) R (s) 7 5 GND CT &) as y | next CT terminal 1116 PIN PLASTIC DIP (300 mil) (uPC494C) 16 9 M61 61 fifi [11m 5 7 1 UU CO DILU LI Ou 8 A NOTES 1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition. 2) Item K to center of leads when formed parallel. 12 0~15 P16C-100-300B ITEM MILLIMETERS INCHES A 20.32 MAX. 0.800 MAX. B 1.27 MAX. 0.050 MAX. Cc 2.54 (T.P.) 0.100 (T.P.) D 0.50701 0.02078:088 F 1.1 MIN. 0.043 MIN. G 3.5793 0.138*-912 H 0.51 MIN. 0.020 MIN. i 4.31 MAX. 0.170 MAX. J 5.08 MAX. 0.200 MAX. K 7.62 (T.P.) 0.300 (T.P.) L 6.5 0.256 M 0.25 -0:68 0.010 *8:883 N 0.25 0.01 P 1.1 MIN. 0.043 MIN.16PIN PLASTIC SOP (375 mil) (upc494c) HARAARAR O HHHBHBEE A NOTE Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition. H |