Ferrites and Accessories Ring Cores Ring cores with the new blue epoxy coating from Siemens Matsushita Components Ring Cores Ring cores are firmly established in a large variety of advanced equipment and systems in electrical and electronic engineering. In telecommunications they are found in interface transformers for ISDN applications and in chokes for data and signal lines. EMC solutions with input and output chokes in switch-mode power supplies are just as dependent on ring cores as the filters of frequency converters used in electric drives for traction applications and elevators. Lighting engineering needs them too - ring cores in drive transformers for power transistors in electronic ballasts have long been state of the art. Core point: benefits that pay off Ring cores offer exceptional advantages compared to other types of core, advantages that are indispensable for special requirements. They include in particular high inductance for small space needs, low parasitic capacitance and - because of the smaller number of turns - the low ohmic resistance of chokes and transformers. A further benefit is that ring cores have low magnetic leakage. New: coating made to measure We offer a wide selection of uncoated and coated ring cores. The type of coating depends on the materials used in different size categories. We work with the following variants: parylene (Galxyl) is used for small diameter (< 10 mm) ring cores, polyamide is the material for ring core diameters from 4 to 30 mm. For ring cores of larger diameters and those of high-permeablility materials (e.g. T46), we have a new development called blue epoxy coating. This is an electrostatically deposited powder coating exhibiting decisive advantages compared to conventional polyamide coating: No drop in AL unlike uncoated cores of high-permeability materials (T38 and T46) Much higher voltage strength Noticeably higher mechanical strength Substantially higher temperature resistance (up to 200 C) In future we will make general use of the advantages of epoxy coating for all cores 30 mm in diameter. It will also be offered as a special coating for cores of other diameters. For further information contact the Siemens office near you or write us at Siemens Matsushita Components GmbH & Co. KG Marketing Kommunikation Postfach 801709 D-81617 Munchen Internet: http://www.siemens.de/pr/index.htm Siemens Matsushita Components 3.97 3 Ring Cores Our product line includes a wide range of ring cores with finely graded diameters ranging from 2,5 to 200 mm (see overview of available types). Other core heights can be supplied on request. All cores are available in the usual materials. Ring cores are available in different coating versions, thus offering the appropriate solution for every application. The coating not only offers protection for the edges but also provides an insulation function. The following test setup is used to test the dielectric strength of the insulating coating: A copper ring is pressed to the top edge of the ring. It touches the ferrite ring at the edges (see diagram). The test duration is 2 seconds; the test voltages specified in the table are minimum values: Ferrite ring Urms Metal poles Core size Urms R 4 thru R 10 R 12,5 thru R 20 > R 20 1,0 kV 1,5 kV 2,0 kV For cores with high permeability, increased spread of the AL values of several percent must be expected due to the polyamide coating (K version). This effect can be avoided by using an epoxy resin coating (L version). For small ring cores, we have introduced a parylene coating (Galxyl) which features a low coating thickness and high dielectric strength. Ring cores are used primarily for pulse and broadband transformers, baluns and chokes. Owing to the magnetically closed circuit, high flux densities can be achieved at small volume. Magnetic leakage is negligible. Ring cores are also increasingly used for power applications. Here, the typical values for ampli- tude permeability and power loss, as summarized in the section on SIFERRIT materials (Data Book "Ferrites and Accessories", 1997), are applicable to the special power materials. In the list of preferred types, the AL1min value (measurement conditions 320 mT, 100 C, 10 kHz) is also specified for power applications, in addition to a limiting value for power loss under the relevant measurement conditions. This provides a guarantee of the minimum amplitude permeability. Characteristic data for cores not included among the preferred types are available on request. Versions Version Ordering code Uncoated B64290-A... Coated with polyamide; thickness of coating approx. 0,2 to 0,4 mm B64290-K... Coated with parylene; thickness of coating approx. 10 to 15 m, B64290-P... standard coating for small cores ( R 4) Coated with epoxy resin; thickness of coating approx. 0,15 to 0,3 mm, B64290-L... coating for cores R 30 4 3.97 Siemens Matsushita Components Ring Cores Application: Ring cores to suppress line interference With the ever-increasing use of electrical and electronic equipment, it becomes increasingly important to be able to ensure that all facilities will operate simultaneously in the context of electromagnetic compatibility (EMC) without interfering with each others' respective functions. The EMC legislation which came into force at the beginning of 1996 applies to all electrical and electronic products marketed in the EU, both new and existing ones. So the latter may have to be modified so that they are neither susceptible to electromagnetic interference, nor emit spurious radiation. Ferrite cores are ideally suited for this purpose since they are able to suppress interference over a wide frequency range. At frequencies above 1 MHz, ferrite rings slipped over a conductor lead to an increase in the impedance of this conductor. The real component of this impedance absorbs the interference energy. A ferrite materials suitability for suppressing interference within a specific frequency spectrum depends on its magnetic properties, which vary with frequency. Before the right material can be selected, the impedance lZl must be known as a function of frequency. The curve of impedance as a function frequency is characterized by the sharp increase in loss at resonance frequency. Measurement results: The measurements shown here were made at room temperature (23 3 C) using an HP 4191A RF impedance analyzer with a flux density of B 1 mT. The maximum of the impedance curve shifts to lower frequencies as the number of turns increases; this is due to the capacitive effect of the turns (figure 1, using R25/15 as an example). Figure 1 For direct comparison of the typical suppression characteristics of differenct ferrite materials, the impedance curves were normalized using the equation lZ l n = lZ l / N 2 x (le / Ae); the geometry factor was calculated on the basis of the core dimensions (figure 2). These normalized impedance curves are guide values, mostly measured using ring core R 10 with a number of turns N = 1 (wire diameter 0,7 mm); they may vary slightly, depending on the geometry. Siemens Matsushita Components 3.97 5 Ring Cores Figure 2 6 3.97 Siemens Matsushita Components Ring Cores Ring cores are also available in split versions, which can easily be clipped onto cables. The residual air gap inevitable in the reassembled ferrite ring affects its impedance characteristic only slightly in the upper frequency range (figure 3, using R25/15 as an example). Integral core Split core Figure 3 The residual air gap has a positive effect on performance with dc biasing because magnetic saturation is not reached until higher signal levels (figure 4, using R25/15 as an example). Split core Integral core Figure 4 Siemens Matsushita Components 3.97 7 Ring Cores Overview of available types Type Dimensions da1) di1) mm mm R 2,5 2,5 0,12 1,5 0,1 R 3,0 R 3,9 3,05 0,2 3,94 0,12 1,27 0,2 2,24 0,12 R 3,9/2 R 4,0 3,94 0,12 4,0 0,12 (4,5 max) 2,24 0,12 2,4 0,12 (1,9 min) R 5,8 5,84 0,12 (6,36 max) 5,84 0,12 (6,36 max) 3,05 0,12 (2,53 min) 3,05 0,12 (2,53 min) R 6,3 6,3 0,15 (7,25 max) 3,8 0,12 (2,85 min) R 9,5/2 9,53 0,19 (10,5 max) 4,75 0,12 (3,8 min) R 9,5 9,53 0,19 (10,5 max) R 10 10,0 0,2 (11,0 max) 4,75 0,12 (3,8 min) 6,0 0,15 (5,05 min) R 12,5 12,5 0,3 (13,6 max) 13,3 0,3 (14,4 max) 14,0 0,3 (15,1 max) 7,5 0,2 (6,5 min) 8,3 0,3 (7,2 min) 9,0 0,25 (7,95 min) 15,0 0,5 (16,3 max) 10,4 0,4 (9,2 min) R 5,8/3 R 13,3 R 14 R 15 h1) mm 1,0 0,1 1,27 0,2 1,3 0,12 2,0 0,12 1,6 0,1 (2,1 max) 1,52 0,12 (2,05 max) 3,0 0,12 (3,55 max) 2,5 0,12 (3,4 max) 2,0 0,1 (2,9 max) 3,17 0,15 (4,1 max) 4,0 0,15 (4,95 max) 5,0 0,15 (5,95 max) 5,0 0,15 (5,95 max) 5,0 0,2 (6,0 max) 5,3 0,3 (6,4 max) Magnetic characteristics le Ae l/A mm-1 mm mm2 Approx. weight g 12,30 6,02 0,49 5,65 8,56 5,99 9,21 1,06 1,08 5,56 7,69 9,21 9,63 1,66 1,25 Ve mm3 3,0 6,4 9,9 15,3 12,0 6,36 13,03 2,05 26,7 0,1 3,22 13,03 4,04 52,6 0,3 4,97 15,21 3,06 46,5 0,2 4,51 20,72 4,59 95,1 0,5 2,85 20,72 7,28 151 0,8 3,07 24,07 7,83 188 0,9 2,46 30,09 12,23 368 1,8 2,67 32,70 12,27 401 1,8 2,84 34,98 12,30 430 2,0 3,24 39,02 12,05 470 2,4 0,02 0,04 0,05 0,07 0,06 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % 8 3.97 Siemens Matsushita Components Ring Cores Type Dimensions da1) di1) mm mm R 16 16,0 0,4 (17,2 max) 9,6 0,3 (8,5 min) R 17 17,0 0,4 (18,2 max) 10,7 0,3 (9,6 min) R 20/7 20,0 0,4 (21,2 max) 22,1 0,4 (23,3 max) 22,6 0,4 (23,8 max) 10,0 0,25 (8,7 min) 13,7 0,3 (12,6 min) 14,7 0,2 (13,7 min) R23/9 22,6 0,4 (23,8 max) 14,7 0,2 (13,7 min) R 25/10 25,3 0,7 (26,8 max) 14,8 0,5 (13,5 min) R 25/15 25,3 0,7 (26,8 max) 14,8 0,5 (13,5 min) R 25/20 25,3 0,7 (26,8 max) 29,5 0,7 (31,0 max) 30,5 1,0 (32,3 max) 14,8 0,5 (13,5 min) 19,0 0,5 17,7 min 20,0 0,6 (18,2 min) 34,0 0,7 (35,5 max) R 34/12,5 34,0 0,7 (35,5 max) R 36 36,0 0,7 (37,5 max) 20,5 0,5 (19,2 min) 20,5 0,5 (19,2 min) 23,0 0,5 (21,7 min) R 40 40,0 1,0 (41,8 max) 24,0 0,7 (22,5 min) R 42 41,8 1,0 (43,6 max) 26,2 0,6 (24,8 min) R 50 50,0 1,0 (51,8 max) 30,0 0,7 (28,5 min) R 58 58,3 1,0 (60,1 max) 40,8 0,8 (39,2 min) R 22 R23/8 R 29 R 30 R 34/10 h1) mm 6,3 0,2 (7,3 max) 6,8 0,2 (7,8 max) 7,0 0,4 (8,2 max) 6,35 0,3 (7,4 max) 7,6 0,2 (8,6 max) 9,2 0,2 (10,2 max) 10,0 0,2 (11,0 max) 15,0 0,4 16,2 max) 20,0 0,5 (21,3 max) 14,9 0,4 (16,1 max) 12,5 0,4 (13,7 max) 10,0 0,3 (11,1 max) 12,5 0,3 (13,6 max) 15,0 0,4 (16,2 max) 16,0 0,4 (17,2 max) 12,5 0,3 (13,6 max) 20,0 0,5 (21,3 max) 17,6 0,4 (18,8 max) Magnetic characteristics le Ae l/A mm-1 mm mm2 Approx. weight g 1,95 38,52 19,73 Ve mm3 760 2,00 42,0 21,04 884 4,4 1,30 43,55 33,63 1465 7,6 2,07 54,15 26,17 1417 6,8 1,92 56,82 29,56 1680 8,1 1,59 56,82 35,78 2033 9,8 1,17 60,07 51,26 3079 16 0,78 60,07 76,89 4619 24 0,59 60,07 102,5 6157 33 0,96 73,78 76,98 5680 27 1,19 77,02 64,66 4980 25 1,24 82,06 66,08 5423 27 0,99 82,06 82,60 6778 33 0,94 89,65 95,89 8597 43 0,77 96,29 125,3 12070 61 1,08 103,0 95,75 9862 48 0,62 120,4 195,7 23560 118 1,00 152,4 152,4 23230 115 3,7 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % Siemens Matsushita Components 3.97 9 Ring Cores Type Dimensions da1) di1) mm mm R 100 102,0 2,0 65,8 1,3 (104,8 max) (63,7 min) R 140 140,0 3,0 103,0 2,0 (143,8 max) (100,2 min) R 200 202,0 4,0 153,0 3,0 (206,8 max) (149,2 min) h1) mm 15,0 0,5 (16,3 max) 25,0 1,0 (26,8 max) 25,0 1,0 (26,8 max) Magnetic characteristics le Ae l/A mm-1 mm mm2 Approx. weight g 0,96 255,3 267,2 Ve mm3 68220 0,82 375,8 458,9 172440 860 0,90 550,5 608,6 335030 1600 330 1) Values in parentheses apply to coated cores, ring cores made of NiZn ferrite may exceed the specified dimensions by up to 5 % 10 3.97 Siemens Matsushita Components Ring Cores Preferred types 1) Type Mate- AL value nH rial (1mT, 10 kHz, 25C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs R 2,5 N 30 T 38 T 38 440 25% 1020 30% 1020 +30/-40% -P35-X830 -A35-X38 -P35-X38 40000 R4 K1 M 33 N 30 T 38 T 38 T46 K1 M 33 N 492) 13 25% 123 25% 700 25% 1630 30% 1630 +30/-40% 2450 +30/-30% -A36-X1 -A36-X33 -K36-X830 -A36-X38 -P36-X38 -A36-X46 16000 20 25% 190 25% 330 25% -A37-X1 -K37-X33 -K37-X49 4000 R 6,3 R 9,5 / 2 R 10 R 12,5 N 30 N 30 T38 T38 T46 K1 M33 N492) 250 < 6 mW (50 mT/500 kHz/100C) 1090 25% 1090 25% 2530 30% 2530 +30/-40% 4180 30% -A37-X830 -K37-X830 -A37-X38 -K37-X38 33 25% 308 25% 530 25% -A38-X1 -K38-X33 -K38-X49 1000 3000 3000 -A38-X830 -K38-X830 -K38-X38 1000 3000 3000 -K44-X49 < 45 mW (50 mT/500 kHz/100C) -K44-X27 < 70 mW (200 mT/25 kHz/100C) -K44-X67 < 280 mW (200 mT/100 kHz/100C) -A44-X830 -K44-X830 -A44-X35 -K44-X35 1500 -A681-X46 410 < 23 mW (50 mT/500 kHz/100C) 1760 25% 1760 25% 4090 +30/-40% N30 N30 T38 N 492) 660 25% 510 N27 1020 25% 460 N 67 1070 25% 460 N30 N30 T 35 T 35 2200 25% 2200 25% 3060 25% 3060 +25/-30% Siemens Matsushita Components 3.97 1500 1500 500 1500 500 1500 11 Ring Cores Type Mate- AL value rial nH (1mT, 10 kHz, 25C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs 1) The preferred core types are available at short notice. Other cores on request. 2) Preliminary data R 16 N 491) 840 25% 640 -K45-X49 < 95 mW (50 mT/500 kHz/100C) < 140 mW -K45-X27 (200 mT/25 kHz/100C) < 500 mW -K45-X67 (200 mT/100 kHz/100C) -K45-X830 -A45-X35 -K45-X35 -A45-X38 -K45-X38 < 280 mW -K632-X27 (200 mT/25 kHz/100C) < 1,2 W -K632-X67 (200 mT/100 kHz/100C) -A632-X830 -K632-X830 -A632-X35 -K632-X35 -K632-X38 2000 < 250 mW (200 mT/25 kHz/100C) 300 N27 1290 25% 580 N67 1350 25% 580 N30 T35 T35 T38 T38 N 27 2770 25% 3870 25% 3870 +25/-30% 6440 30% 6440 +30/-40% 870 1930 25% N 67 2030 25% N 30 N 30 T 35 T 35 T 38 4160 25% 4160 25% 5000 25% 5000 +25/-30% 8500 +30/-40% N 27 1210 25% N30 T 35 T 35 2610 25% 3200 25% 3200 +25/-30% N 27 2150 25% 970 N 67 2260 25% 970 N 30 N 30 T 35 T 35 4620 25% 4620 25% 5400 25% 5400 +25/-30% N 30 4360 25% -L58-X830 225 R 34/12,5 N 30 5460 25% -L48-X830 225 R 20/7 R 22 R 25/10 R 34/10 12 870 550 -K638-X27 2000 2000 2000 1000 2000 1000 2000 1000 1000 500 1000 500 1000 1000 -K638-X830 300 -A638-X35 500 -K638-X35 300 -K618-X27 500 < 580 mW (200 mT/25 kHz/100C) -K618-X67 < 2,4 W (200 mT/100 kHz/100C) -A618-X830 -K618-X830 -A618-X35 -K618-X35 3.97 500 400 500 400 500 Siemens Matsushita Components Ring Cores Type Mate- AL value nH rial (1mT, 10 kHz, 25C) AL1min nH (320 mT, N49: 200 mT, 10 kHz, 100 C) Power loss per core (measurement conditions) Ordering code PU B64290- Pcs 1) Preliminary data N 27 2670 25% 1200 N 67 2810 25% 1200 N 30 N 30 5750 25% 5750 25% < 1,6 W -L674-X27 200 (200 mT/25 kHz/100C) < 5,9 W -L674-X67 (200 mT/100 kHz/100C) -A674-X830 -L674-X830 N 30 N 30 N 30 N 30 7000 25% 7000 25% 5000 25% 5000 25% -A659-X830 80 -L659-X830 -A22-X830 192 -L22-X830 R 50 N 30 N 30 8700 25% 8700 25% -A82-X830 -L82-X830 64 R 58 R 100 N 30 N 30 5400 25% 5500 25% -L40-X830 -A84-X830 90 24 R 140 R 200 N 30 N 30 6200 25% 5500 30% -A705-X830 4 -A711-X830 2 R 36 R 40 R 42 Siemens Matsushita Components 3.97 13 Ring Cores Published by Siemens Matsushita Components GmbH & Co. KG Marketing Kommunikation, Postfach 80 17 09, D-81617 Munchen (c) Siemens Matsushita Components 1997. All Rights Reserved. As far as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and circuits implemented within components or assemblies. The information describes the type of component and shall not be considered as assured characteristics. Terms of delivery and rights to change design reserved. This brochure replaces the previous edition. For questions on technology, prices and delivery please contact the Sales Offices of Siemens AG, Passive Components and Electron Tubes Group, in the Federal Republic of Germany or the international Siemens Companies and Representatives. Due to technical requirements components may contain dangerous substances. For information on the type in question please also contact one of our Sales Offices. 14 3.97 Siemens Matsushita Components