This is information on a product in full production.
August 2017 DocID024738 Rev 9 1/139
STM32F401xB STM32F401xC
ARM® Cortex®-M4 32b MCU+FPU, 105 DMIPS,
256KB Flash/64KB RAM, 11 TIMs, 1 ADC, 11 comm. interfaces
Datasheet - production data
Features
Dynamic Efficiency Line with BAM (Batch
Acquisition Mode)
1.7 V to 3.6 V power supply
-40 °C to 85/105/125 °C temperature range
Core: ARM® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 84 MHz,
memory protection unit, 105 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions
Memories
Up to 256 Kbytes of Flash memory
512 bytes of OTP memory
Up to 64 Kbytes of SRAM
Clock, reset and supply management
1.7 V to 3.6 V application supply and I/Os
POR, PDR, PVD and BOR
4-to-26 MHz crystal oscillator
Internal 16 MHz factory-trimmed RC
32 kHz oscillator for RTC with calibration
Internal 32 kHz RC with calibration
Power consumption
Run: 128 µA/MHz (peripheral off)
Stop (Flash in Stop mode, fast wakeup
time): 42 µA typ @ 25 °C;
65 µA max @25 °C
Stop (Flash in Deep power down mode,
slow wakeup time): down to 10 µA typ@
25 °C; 28 µA max @25 °C
Standby: 2.4 µA @25 °C / 1.7 V without
RTC; 12 µA @85 °C @1.7 V
–V
BAT supply for RTC: 1 µA @25 °C
1×12-bit, 2.4 MSPS A/D converter: up to 16
channels
General-purpose DMA: 16-stream DMA
controllers with FIFOs and burst support
Up to 11 timers: up to six 16-bit, two 32-bit
timers up to 84 MHz, each with up to
4 IC/OC/PWM or pulse counter and quadrature
(incremental) encoder input, two watchdog
timers (independent and window) and a
SysTick timer
Debug mode
Serial wire debug (SWD) & JTAG
interfaces
Cortex-M4 Embedded Trace Macrocell™
Up to 81 I/O ports with interrupt capability
All IO ports 5 V tolerant
Up to 78 fast I/Os up to 42 MHz
Up to 11 communication interfaces
Up to 3 × I2C interfaces (1Mbit/s,
SMBus/PMBus)
Up to 3 USARTs (2 x 10.5 Mbit/s, 1 x
5.25 Mbit/s), ISO 7816 interface, LIN, IrDA,
modem control)
Up to 4 SPIs (up to 42 Mbits/s at fCPU = 84
MHz), SPI2 and SPI3 with muxed full-
duplex I2S to achieve audio class accuracy
via internal audio PLL or external clock
SDIO interface
Advanced connectivity
USB 2.0 full-speed device/host/OTG
controller with on-chip PHY
CRC calculation unit
96-bit unique ID
RTC: subsecond accuracy, hardware calendar
All packages are ECOPACK®2
Table 1. Device summary
Reference Part number
STM32F401xB STM32F401CB, STM32F401RB,
STM32F401VB
STM32F401xC STM32F401CC, STM32F401RC,
STM32F401VC
WLCSP49
LQFP10
0 (14×14 mm)
LQFP64 (10×10 mm)
)%*$
UFQFPN48
(7×7 mm)
UFBGA100
(7x7 mm)
(2.965x2.965 mm)
www.st.com
Contents STM32F401xB STM32F401xC
2/139 DocID024738 Rev 9
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Compatibility with STM32F4 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and SRAM . . . 15
3.2 Adaptive real-time memory accelerator (ART Accelerator™) . . . . . . . . . 15
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 16
3.6 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.7 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.8 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.9 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 17
3.10 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.11 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.12 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.13 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.14 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.14.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.15 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.15.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.15.3 Regulator ON/OFF and internal power supply supervisor availability . . 24
3.16 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 24
3.17 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.18 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.19 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19.1 Advanced-control timers (TIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.19.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
DocID024738 Rev 9 3/139
STM32F401xB STM32F401xC Contents
4
3.19.3 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.4 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.19.5 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.20 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.21 Universal synchronous/asynchronous receiver transmitters (USART) . . 28
3.22 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.23 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.24 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.25 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 30
3.26 Universal serial bus on-the-go full-speed (OTG_FS) . . . . . . . . . . . . . . . . 30
3.27 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.28 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.29 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.30 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.31 Embedded Trace Macrocell™ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 62
6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 62
6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 63
Contents STM32F401xB STM32F401xC
4/139 DocID024738 Rev 9
6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . . 83
6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 88
6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.3.24 SD/SDIO MMC card host interface (SDIO) characteristics . . . . . . . . . 112
6.3.25 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.1 WLCSP49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118
7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.5 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
8 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DocID024738 Rev 9 5/139
STM32F401xB STM32F401xC List of tables
6
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM32F401xB/C features and peripheral counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 24
Table 4. Timer feature comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Table 5. Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 6. USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Table 7. Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 8. STM32F401xB/STM32F401xC pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 9. Alternate function mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 10. STM32F401xB/STM32F401xC
register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 11. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 12. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 13. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 14. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 15. Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 16. VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 17. Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 62
Table 18. Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 62
Table 19. Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 20. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD = 1.8 V . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 22. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.8 V. . . 66
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.3 V . . 66
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory . . . . . . . . . . . . . . . . 67
Table 26. Typical and maximum current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 27. Typical and maximum current consumptions in Stop mode - VDD = 1.8 V . . . . . . . . . . . . . 68
Table 28. Typical and maximum current consumption in Stop mode - VDD=3.3 V. . . . . . . . . . . . . . . 69
Table 29. Typical and maximum current consumption in Standby mode - VDD= 1.8 V . . . . . . . . . . . 69
Table 30. Typical and maximum current consumption in Standby mode - VDD=3.3 V . . . . . . . . . . . . 69
Table 31. Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 70
Table 32. Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 33. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Table 34. Low-power mode wakeup timings(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Table 35. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 36. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Table 37. HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 39. HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Table 40. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Table 41. Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
List of tables STM32F401xB STM32F401xC
6/139 DocID024738 Rev 9
Table 42. PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 43. SSCG parameters constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Table 44. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 45. Flash memory programming. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 46. Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 47. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 48. EMS characteristics for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 49. EMI characteristics for WLCSP49 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 50. EMI characteristics for LQFP100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Table 51. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 52. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Table 53. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 54. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Table 55. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 56. I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Table 57. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Table 58. TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Table 59. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 60. SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . 98
Table 61. SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Table 62. I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
Table 63. USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 64. USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
Table 65. USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 66. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
Table 67. ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 68. ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 69. ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 108
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 108
Table 72. Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 73. Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table 74. VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 75. Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 76. Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Table 77. Dynamic characteristics: SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Table 78. RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Table 79. WLCSP49 - 49-ball, 2.965 x 2.965 mm, 0.4 mm pitch wafer level chip scale
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 117
Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Table 82. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
Table 83. LQPF100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data125
Table 84. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Table 85. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 129
Table 86. Package thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Table 87. Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
Table 88. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
DocID024738 Rev 9 7/139
STM32F401xB STM32F401xC List of figures
8
List of figures
Figure 1. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2. Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 3. STM32F401xB/STM32F401xC block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 4. Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 5. Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 19
Figure 6. PDR_ON control with internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 7. Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 8. Startup in regulator OFF: slow VDD slope -
power-down reset risen after VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 9. Startup in regulator OFF mode: fast VDD slope -
power-down reset risen before VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 10. STM32F401xB/STM32F401xC WLCSP49 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 11. STM32F401xB/STM32F401xC UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 12. STM32F401xB/STM32F401xC LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 14. STM32F401xB/STM32F401xC UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 15. Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 16. Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 17. Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 18. Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 19. Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 20. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 21. Typical VBAT current consumption (LSE and RTC ON) . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 22. High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 23. Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 24. Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Figure 25. Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 26. ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 27. ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Figure 28. PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 29. PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Figure 30. FT I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 31. I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 32. Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 33. I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Figure 34. SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 35. SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Figure 36. SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
Figure 37. I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 38. I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
Figure 39. USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 105
Figure 40. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 41. Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 110
Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 111
Figure 44. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 45. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure 46. WLCSP49 - 49-ball, 2.965 x 2.965 mm, 0.4 mm pitch wafer level chip scale
List of figures STM32F401xB STM32F401xC
8/139 DocID024738 Rev 9
package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
Figure 47. WLCSP49 - 49-ball, 2.999 mm, 0.4 mm pitch wafer level chip scale
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Figure 48. WLCSP49 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Figure 49. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
Figure 50. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Figure 51. UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
Figure 52. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 121
Figure 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Figure 54. LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Figure 55. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
Figure 56. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
Figure 57. LQPF100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Figure 58. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
Figure 59. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
Figure 60. UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
DocID024738 Rev 9 9/139
STM32F401xB STM32F401xC Introduction
53
1 Introduction
This datasheet provides the description of the STM32F401xB/STM32F401xC
microcontrollers.
The STM32F401xB/STM32F401xC datasheet should be read in conjunction with RM0368
reference manual which is available from the STMicroelectronics website www.st.com. It
includes all information concerning Flash memory programming.
For information on the Cortex-M4 core, please refer to the Cortex-M4 programming
manual (PM0214) available from www.st.com.
Description STM32F401xB STM32F401xC
10/139 DocID024738 Rev 9
2 Description
The STM32F401XB/STM32F401XC devices are based on the high-performance
ARM®Cortex®-M4 32-bit RISC core operating at a frequency of up to 84 MHz. The
Cortex®-M4 core features a Floating point unit (FPU) single precision which supports all
ARM single-precision data-processing instructions and data types. It also implements a full
set of DSP instructions and a memory protection unit (MPU) which enhances application
security.
The STM32F401xB/STM32F401xC incorporate high-speed embedded memories (up to
256 Kbytes of Flash memory, up to 64 Kbytes of SRAM), and an extensive range of
enhanced I/Os and peripherals connected to two APB buses, two AHB buses and a 32-bit
multi-AHB bus matrix.
All devices offer one 12-bit ADC, a low-power RTC, six general-purpose 16-bit timers
including one PWM timer for motor control, two general-purpose 32-bit timers. They also
feature standard and advanced communication interfaces.
Up to three I2Cs
Up to four SPIs
Two full duplex I2Ss. To achieve audio class accuracy, the I2S peripherals can be
clocked via a dedicated internal audio PLL or via an external clock to allow
synchronization.
Three USARTs
SDIO interface
USB 2.0 OTG full speed interface
The STM32F401xB/STM32F401xC operate in the - 40 to + 125 °C temperature range from
a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows
the design of low-power applications.
These features make the STM32F401xB/STM32F401xC microcontrollers suitable for a
wide range of applications:
Motor drive and application control
Medical equipment
Industrial applications: PLC, inverters, circuit breakers
Printers, and scanners
Alarm systems, video intercom, and HVAC
Home audio appliances
Mobile phone sensor hub
DocID024738 Rev 9 11/139
STM32F401xB STM32F401xC Description
53
Table 2. STM32F401xB/C features and peripheral counts
Peripherals STM32F401xB STM32F401xC
Flash memory in Kbytes 128 256
SRAM in
Kbytes System 64
Timers
General-
purpose 7
Advanced-
control 1
Communication
interfaces
SPI/ I2S 3/2 (full duplex) 4/2 (full
duplex) 3/2 (full duplex) 4/2 (full
duplex)
I2C3
USART 3
SDIO - 1 - 1
USB OTG FS 1
GPIOs 36 50 81365081
12-bit ADC
Number of channels
1
10 16 10 16
Maximum CPU frequency 84 MHz
Operating voltage 1.7 to 3.6 V
Operating temperatures
Ambient temperatures: –40 to +85 °C/–40 to +125 °C
Junction temperature: –40 to + 130 °C
Package WLCSP49
UFQFPN48 LQFP64 UFBGA100
LQFP100
WLCSP49
UFQFPN48 LQFP64 UFBGA100
LQFP100
Description STM32F401xB STM32F401xC
12/139 DocID024738 Rev 9
2.1 Compatibility with STM32F4 Series
The STM32F401xB/STM32F401xC are fully software and feature compatible with the
STM32F4 series (STM32F42x, STM32F43x, STM32F41x, STM32F405 and STM32F407)
The STM32F401xB/STM32F401xC can be used as drop-in replacement of the other
STM32F4 products but some slight changes have to be done on the PCB board.
Figure 1. Compatible board design for LQFP100 package
06Y9








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
966
9''







3% QRW DYDLODEOHDQ\PRUH
5HSODFHG E\ 9&$3B








3'
3'
3'
3'
3%
3%
3%
3%
3(
3(
3(
3(
3(
3(
3%
9&$3B
9''








670)670)OLQH
670)670)OLQH
670)670)OLQH
670)670)OLQH
9''966
3%





670)[[
670)[[
670)[[
670)[[
670)[[
670)[[
670)[[
9''966
DocID024738 Rev 9 13/139
STM32F401xB STM32F401xC Description
53
Figure 2. Compatible board design for LQFP64 package
9LQFUHDVHGWRI
(65RUEHORZ
&$3
069
966
966
670)[670)670)OLQH
9''
9''
3%QRWDYDLODEOHDQ\PRUH
5HSODFHGE\9&$3
    
















   
3&
3&
3&
3$
3$
9''
9&$3
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3
9''
    
















   
3&
3&
3&
3$
3$
9''
966
3$
3$
3$
3$
3$
3$
3&
3&
3&
3&
3%
3%
3%
3%
3%
3%
9&$3
9''
966
3%
9''
966
966
9''
Description STM32F401xB STM32F401xC
14/139 DocID024738 Rev 9
Figure 3. STM32F401xB/STM32F401xC block diagram
1. The timers connected to APB2 are clocked from TIMxCLK up to 84 MHz, while the timers connected to APB1 are clocked
from TIMxCLK up to 42 MHz.
*3,23257$
$+%$3%
(;7,7:.83
XSWR$)
3$>@
7,03:0
FRPSOFKDQQHOV7,0B&+>@1
FKDQQHOV7,0B&+>@(75
%.,1DV$)
86$57
5;7;&.
&76576DV$)
63,
026,0,62
6&.166DV$)
$3%0+]
$3%0+]
DQDORJLQSXWV
9''5()B$'&
026,6'0,626'BH[W6&.&.
166:60&.DV$)
63,6
$/$50B287
26&B,1
26&B287
9''$966$
1567
VPFDUG
LU'$
E
9%$7 WR9
'0$
6&/6'$60%$DV$)
,&60%86
-7$*6:
$50&RUWH[0
0+]
19,&
(70
038
75$&(&/.
75$&('>@
'0$
6WUHDPV
),)2
$&&(/
&$&+(
$+%0+]
86$570%SV
7HPSHUDWXUHVHQVRU
$'& ,)
#9''$
3253'5
%25
6XSSO\
VXSHUYLVLRQ
#9''$
39'
,QW
325
UHVHW
;7$/N+]
0$1$*7
57&
5&+6
5&/6
3:5
LQWHUIDFH
:'*.
#9%$7
#9''$
#9''
$:8
5HVHW
FORFN
FRQWURO
3//
$3%&/.
9'' WR9
966
9&$3
9ROWDJH
UHJXODWRU
WR9
9'' 3RZHUPDQDJPW
#9''
67$03
%DFNXSUHJLVWHU
$+%EXVPDWUL[60
$3%0+]
/6
7,0
FKDQQHOVDV$)
)ODVK
XSWR
.%
7,0
7,0
7,0
7,0
'%86
069
)38
$3%0+]PD[
$+%0+]
1-7567-7',
-7&.6:&/.
-7'26:'-7'2
,%86
6%86
'0$
6WUHDPV
),)2
3%>@
3&>@
3+>@
*3,23257%
*3,23257&
*3,23257+
E
7,0
E
7,0
E
VPFDUG
LU'$
86$57
FKDQQHODV$)
FKDQQHODV$)
5;7;&.DV$)
,&60%86
,&60%86
6&/6'$60%$DV$)
6&/6'$60%$DV$)
63,6
026,6'0,626'BH[W6&.&.
166:60&.DV$)
5;7;DV$)
&76576DV$)
86$57
VPFDUG
LU'$
E
E
E
E
FKDQQHOV
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
FKDQQHOV(75DV$)
'0$
$+%$3%
/6
26&B,1
26&B287
+&/.
;7$/26&
0+]
65$0.%
::'*
$3%&/.
$+%3&/.
$+%3&/.
&5&
0$2/&&
TO6
0$2/.
3$)/--#
&)&/
$;=
#-$#+AS!&
53"
/4'&3
&)&/
0(9
$0
$-
)$6"533/&
63,
026,0,62
6&.166DV$)
3'>@
*3,23257'
3(>@
*3,23257(
DocID024738 Rev 9 15/139
STM32F401xB STM32F401xC Functional overview
53
3 Functional overview
3.1 ARM® Cortex®-M4 with FPU core with embedded Flash and
SRAM
The ARMCortex-M4 with FPU processor is the latest generation of ARM processors for
embedded systems. It was developed to provide a low-cost platform that meets the needs of
MCU implementation, with a reduced pin count and low-power consumption, while
delivering outstanding computational performance and an advanced response to interrupts.
The ARMCortex-M4 with FPU 32-bit RISC processor features exceptional code-
efficiency, delivering the high-performance expected from an ARM core in the memory size
usually associated with 8- and 16-bit devices. The processor supports a set of DSP
instructions which allow efficient signal processing and complex algorithm execution. Its
single precision FPU (floating point unit) speeds up software development by using
metalanguage development tools, while avoiding saturation.
The STM32F401xB/STM32F401xC devices are compatible with all ARM tools and software.
Figure 3 shows the general block diagram of the STM32F401xB/STM32F401xC.
Note: Cortex-M4 with FPU is binary compatible with Cortex-M3.
3.2 Adaptive real-time memory accelerator (ART Accelerator™)
The ART Accelerator™ is a memory accelerator which is optimized for STM32 industry-
standard ARM® Cortex-M4 with FPU processors. It balances the inherent performance
advantage of the ARM Cortex-M4 with FPU over Flash memory technologies, which
normally requires the processor to wait for the Flash memory at higher frequencies.
To release the processor full 105 DMIPS performance at this frequency, the accelerator
implements an instruction prefetch queue and branch cache, which increases program
execution speed from the 256-bit Flash memory. Based on CoreMark benchmark, the
performance achieved thanks to the ART accelerator is equivalent to 0 wait state program
execution from Flash memory at a CPU frequency up to 84 MHz.
3.3 Memory protection unit
The memory protection unit (MPU) is used to manage the CPU accesses to memory to
prevent one task to accidentally corrupt the memory or resources used by any other active
task. This memory area is organized into up to 8 protected areas that can in turn be divided
up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4
gigabytes of addressable memory.
The MPU is especially helpful for applications where some critical or certified code has to be
protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-
time operating system). If a program accesses a memory location that is prohibited by the
MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can
dynamically update the MPU area setting, based on the process to be executed.
The MPU is optional and can be bypassed for applications that do not need it.
Functional overview STM32F401xB STM32F401xC
16/139 DocID024738 Rev 9
3.4 Embedded Flash memory
The devices embed up to 256 Kbytes of Flash memory available for storing programs and
data.
3.5 CRC (cyclic redundancy check) calculation unit
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.
Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a software
signature during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.
3.6 Embedded SRAM
All devices embed:
Up to 64 Kbytes of system SRAM which can be accessed (read/write) at CPU clock
speed with 0 wait states
3.7 Multi-AHB bus matrix
The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves
(Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient
operation even when several high-speed peripherals work simultaneously.
Figure 4. Multi-AHB matrix
$50
&RUWH[0
*3
'0$
*3
'0$
%XVPDWUL[6
6 6 6 6 6 6
,&2'(
'&2'(
$&&(/
)ODVK
65$0
$+%
SHULSK
0
0
0
0
,EXV
'EXV
6EXV
'0$B3,
'0$B0(0
'0$B0(0
'0$B3
069
0 $+%
SHULSK $3%
$3%
DocID024738 Rev 9 17/139
STM32F401xB STM32F401xC Functional overview
53
3.8 DMA controller (DMA)
The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8
streams each. They are able to manage memory-to-memory, peripheral-to-memory and
memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals,
support burst transfer and are designed to provide the maximum peripheral bandwidth
(AHB/APB).
The two DMA controllers support circular buffer management, so that no specific code is
needed when the controller reaches the end of the buffer. The two DMA controllers also
have a double buffering feature, which automates the use and switching of two memory
buffers without requiring any special code.
Each stream is connected to dedicated hardware DMA requests, with support for software
trigger on each stream. Configuration is made by software and transfer sizes between
source and destination are independent.
The DMA can be used with the main peripherals:
SPI and I2S
I2C
USART
General-purpose, basic and advanced-control timers TIMx
SD/SDIO/MMC host interface
ADC
3.9 Nested vectored interrupt controller (NVIC)
The devices embed a nested vectored interrupt controller able to manage 16 priority levels,
and handle up to 62 maskable interrupt channels plus the 16 interrupt lines of the Cortex-
M4 with FPU.
Closely coupled NVIC gives low-latency interrupt processing
Interrupt entry vector table address passed directly to the core
Allows early processing of interrupts
Processing of late arriving, higher-priority interrupts
Support tail chaining
Processor state automatically saved
Interrupt entry restored on interrupt exit with no instruction overhead
This hardware block provides flexible interrupt management features with minimum interrupt
latency.
3.10 External interrupt/event controller (EXTI)
The external interrupt/event controller consists of 21 edge-detector lines used to generate
interrupt/event requests. Each line can be independently configured to select the trigger
event (rising edge, falling edge, both) and can be masked independently. A pending register
maintains the status of the interrupt requests. The EXTI can detect an external line with a
pulse width shorter than the Internal APB2 clock period. Up to 81 GPIOs can be connected
to the 16 external interrupt lines.
Functional overview STM32F401xB STM32F401xC
18/139 DocID024738 Rev 9
3.11 Clocks and startup
On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The
16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 °C. The
application can then select as system clock either the RC oscillator or an external 4-26 MHz
clock source. This clock can be monitored for failure. If a failure is detected, the system
automatically switches back to the internal RC oscillator and a software interrupt is
generated (if enabled). This clock source is input to a PLL thus allowing to increase the
frequency up to 84 MHz. Similarly, full interrupt management of the PLL clock entry is
available when necessary (for example if an indirectly used external oscillator fails).
Several prescalers allow the configuration of the two AHB buses, the high-speed APB
(APB2) and the low-speed APB (APB1) domains. The maximum frequency of the two AHB
buses is 84 MHz while the maximum frequency of the high-speed APB domains is 84 MHz.
The maximum allowed frequency of the low-speed APB domain is 42 MHz.
The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class
performance. In this case, the I2S master clock can generate all standard sampling
frequencies from 8 kHz to 192 kHz.
3.12 Boot modes
At startup, boot pins are used to select one out of three boot options:
Boot from user Flash
Boot from system memory
Boot from embedded SRAM
The bootloader is located in system memory. It is used to reprogram the Flash memory by
using either USART1(PA9/10), USART2(PD5/6), USB OTG FS in device mode (PA11/12)
through DFU (device firmware upgrade), I2C1(PB6/7), I2C2(PB10/3), I2C3(PA8/PB4),
SPI1(PA4/5/6/7), SPI2(PB12/13/14/15) or SPI3(PA15, PC10/11/12).
For more detailed information on the bootloader, refer to Application Note: AN2606, STM32
microcontroller system memory boot mode.
3.13 Power supply schemes
VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor
(POR/PDR) disabled, provided externally through VDD pins. Requires the use of an
external power supply supervisor connected to the VDD and PDR_ON pins.
VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.
VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs
and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with
decoupling technique.
VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and
backup registers (through power switch) when VDD is not present.
Refer to Figure 18: Power supply scheme for more details.
DocID024738 Rev 9 19/139
STM32F401xB STM32F401xC Functional overview
53
3.14 Power supply supervisor
3.14.1 Internal reset ON
This feature is available for VDD operating voltage range 1.8 V to 3.6 V.
The internal power supply supervisor is enabled by holding PDR_ON high.
The devices have an integrated power-on reset (POR) / power-down reset (PDR) circuitry
coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and
ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is
reached, the option byte loading process starts, either to confirm or modify default
thresholds, or to disable BOR permanently. Three BOR thresholds are available through
option bytes.
The devices remain in reset mode when VDD is below a specified threshold, VPOR/PDR or
VBOR, without the need for an external reset circuit.
The devices also feature an embedded programmable voltage detector (PVD) that monitors
the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine can then generate a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.
3.14.2 Internal reset OFF
This feature is available only on packages featuring the PDR_ON pin. The internal power-on
reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to
low.
An external power supply supervisor should monitor VDD and should maintain the device in
reset mode as long as VDD is below a specified threshold. PDR_ON should be connected to
this external power supply supervisor. Refer to Figure 5: Power supply supervisor
interconnection with internal reset OFF.
Figure 5. Power supply supervisor interconnection with internal reset OFF(1)
1. The PRD_ON pin is only available on the WLCSP49 and UFBGA100 packages.
069
1567
9''
3'5B21
([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYHZKHQ
9''9
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
Functional overview STM32F401xB STM32F401xC
20/139 DocID024738 Rev 9
The VDD specified threshold, below which the device must be maintained under reset, is
1.7 V (see Figure 6).
A comprehensive set of power-saving mode allows to design low-power applications.
When the internal reset is OFF, the following integrated features are no longer supported:
The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled.
The brownout reset (BOR) circuitry must be disabled.
The embedded programmable voltage detector (PVD) is disabled.
VBAT functionality is no more available and VBAT pin should be connected to VDD.
3.15 Voltage regulator
The regulator has four operating modes:
Regulator ON
Main regulator mode (MR)
Low power regulator (LPR)
Power-down
Regulator OFF
Figure 6. PDR_ON control with internal reset OFF
069
9''
WLPH
3'5 9
WLPH
1567
3'5B21 3'5B21
5HVHWE\RWKHUVRXUFHWKDQ
SRZHUVXSSO\VXSHUYLVRU
DocID024738 Rev 9 21/139
STM32F401xB STM32F401xC Functional overview
53
3.15.1 Regulator ON
On packages embedding the BYPASS_REG pin, the regulator is enabled by holding
BYPASS_REG low. On all other packages, the regulator is always enabled.
There are three power modes configured by software when the regulator is ON:
MR is used in the nominal regulation mode (With different voltage scaling in Run)
In Main regulator mode (MR mode), different voltage scaling are provided to reach the
best compromise between maximum frequency and dynamic power consumption.
LPR is used in the Stop modes
The LP regulator mode is configured by software when entering Stop mode.
Power-down is used in Standby mode.
The Power-down mode is activated only when entering in Standby mode. The regulator
output is in high impedance and the kernel circuitry is powered down, inducing zero
consumption. The contents of the registers and SRAM are lost.
Depending on the package, one or two external ceramic capacitors should be connected on
the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available for the LQFP100 and
UFBGA100 packages.
All packages have the regulator ON feature.
3.15.2 Regulator OFF
The Regulator OFF is available only on the UFBGA100, which features the BYPASS_REG
pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode
allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins.
Since the internal voltage scaling is not managed internally, the external voltage value must
be aligned with the targeted maximum frequency. Refer to Table 14: General operating
conditions.
The two 2.2 µF VCAP ceramic capacitors should be replaced by two 100 nF decoupling
capacitors. Refer to Figure 17: Power supply scheme.
When the regulator is OFF, there is no more internal monitoring on V12. An external power
supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin
should be used for this purpose, and act as power-on reset on V12 power domain.
In regulator OFF mode, the following features are no more supported:
PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power
domain which is not reset by the NRST pin.
As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As
a consequence, PA0 and NRST pins must be managed separately if the debug
connection under reset or pre-reset is required.
Functional overview STM32F401xB STM32F401xC
22/139 DocID024738 Rev 9
Figure 7. Regulator OFF
The following conditions must be respected:
VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection
between power domains.
If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for
VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1
and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 8).
Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower
than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see
Figure 9).
If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a
reset must be asserted on PA0 pin.
Note: The minimum value of V12 depends on the maximum frequency targeted in the application
DL9
%<3$66B5(*
9&$3B
9&$3B
3$
9
9'' 1567
9''
$SSOLFDWLRQUHVHW
VLJQDORSWLRQDO
([WHUQDO9&$3BSRZHU
VXSSO\VXSHUYLVRU
([WUHVHWFRQWUROOHUDFWLYH
ZKHQ9&$3B0LQ9
9
DocID024738 Rev 9 23/139
STM32F401xB STM32F401xC Functional overview
53
Figure 8. Startup in regulator OFF: slow VDD slope -
power-down reset risen after VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Figure 9. Startup in regulator OFF mode: fast VDD slope -
power-down reset risen before VCAP_1/VCAP_2 stabilization
1. This figure is valid whatever the internal reset mode (ON or OFF).
Functional overview STM32F401xB STM32F401xC
24/139 DocID024738 Rev 9
3.15.3 Regulator ON/OFF and internal power supply supervisor availability
3.16 Real-time clock (RTC) and backup registers
The backup domain includes:
The real-time clock (RTC)
20 backup registers
The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain
the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binary-
coded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are
performed automatically. The RTC features a reference clock detection, a more precise
second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC
provides a programmable alarm and programmable periodic interrupts with wakeup from
Stop and Standby modes. The sub-seconds value is also available in binary format.
It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power
RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC
has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz
output to compensate for any natural quartz deviation.
Two alarm registers are used to generate an alarm at a specific time and calendar fields can
be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit
programmable binary auto-reload downcounter with programmable resolution is available
and allows automatic wakeup and periodic alarms from every 120 µs to every 36 hours.
A 20-bit prescaler is used for the time base clock. It is by default configured to generate a
time base of 1 second from a clock at 32.768 kHz.
The backup registers are 32-bit registers used to store 80 bytes of user application data
when VDD power is not present. Backup registers are not reset by a system, a power reset,
or when the device wakes up from the Standby mode (see Section 3.17: Low-power
modes).
Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.
Table 3. Regulator ON/OFF and internal power supply supervisor availability
Package Regulator ON Regulator OFF Power supply
supervisor ON
Power supply
supervisor OFF
UFQFPN48 Yes No Yes No
WLCSP49 Yes No Yes
PDR_ON set to VDD
Yes
PDR_ON external
control(1)
LQFP64 Yes No Yes No
LQFP100 Yes No Yes No
UFBGA100
Yes
BYPASS_REG set to
VSS
Yes
BYPASS_REG set to
VDD
Yes
PDR_ON set to VDD
Yes
PDR_ON external
control (1)
1. Refer to Section 3.14: Power supply supervisor
DocID024738 Rev 9 25/139
STM32F401xB STM32F401xC Functional overview
53
The RTC and backup registers are supplied through a switch that is powered either from the
VDD supply when present or from the VBAT pin.
3.17 Low-power modes
The devices support three low-power modes to achieve the best compromise between low
power consumption, short startup time and available wakeup sources:
Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
Stop mode
The Stop mode achieves the lowest power consumption while retaining the contents of
SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC
and the HSE crystal oscillators are disabled. The voltage regulator can also be put
either in normal or in low-power mode.
The devices can be woken up from the Stop mode by any of the EXTI line (the EXTI
line source can be one of the 16 external lines, the PVD output, the RTC alarm/
wakeup/ tamper/ time stamp events).
Standby mode
The Standby mode is used to achieve the lowest power consumption. The internal
voltage regulator is switched off so that the entire 1.2 V domain is powered off. The
PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering
Standby mode, the SRAM and register contents are lost except for registers in the
backup domain when selected.
The devices exit the Standby mode when an external reset (NRST pin), an IWDG reset,
a rising edge on the WKUP pin, or an RTC alarm/ wakeup/ tamper/time stamp event
occurs.
Standby mode is not supported when the embedded voltage regulator is bypassed and
the 1.2 V domain is controlled by an external power.
3.18 VBAT operation
The VBAT pin allows to power the device VBAT domain from an external battery, an external
super-capacitor, or from VDD when no external battery and an external super-capacitor are
present.
VBAT operation is activated when VDD is not present.
The VBAT pin supplies the RTC and the backup registers.
Note: When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events
do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal
Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected
to VDD.
Functional overview STM32F401xB STM32F401xC
26/139 DocID024738 Rev 9
3.19 Timers and watchdogs
The devices embed one advanced-control timer, seven general-purpose timers and two
watchdog timers.
All timer counters can be frozen in debug mode.
Table 4 compares the features of the advanced-control and general-purpose timers.
3.19.1 Advanced-control timers (TIM1)
The advanced-control timer (TIM1) can be seen as three-phase PWM generators
multiplexed on 4 independent channels. It has complementary PWM outputs with
programmable inserted dead times. It can also be considered as a complete general-
purpose timer. Its 4 independent channels can be used for:
Input capture
Output compare
PWM generation (edge- or center-aligned modes)
One-pulse mode output
Table 4. Timer feature comparison
Timer
type Timer Counter
resolution
Counter
type
Prescaler
factor
DMA
request
generation
Capture/
compare
channels
Complemen-
tary output
Max.
interface
clock
(MHz)
Max.
timer
clock
(MHz)
Advanced
-control TIM1 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 Yes 84 84
General
purpose
TIM2,
TIM5 32-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 42 84
TIM3,
TIM4 16-bit
Up,
Down,
Up/down
Any
integer
between 1
and
65536
Yes 4 No 42 84
TIM9 16-bit Up
Any
integer
between 1
and
65536
No 2 No 84 84
TIM10,
TIM11 16-bit Up
Any
integer
between 1
and
65536
No 1 No 84 84
DocID024738 Rev 9 27/139
STM32F401xB STM32F401xC Functional overview
53
If configured as standard 16-bit timers, it has the same features as the general-purpose
TIMx timers. If configured as a 16-bit PWM generator, it has full modulation capability (0-
100%).
The advanced-control timer can work together with the TIMx timers via the Timer Link
feature for synchronization or event chaining.
TIM1 supports independent DMA request generation.
3.19.2 General-purpose timers (TIMx)
There are seven synchronizable general-purpose timers embedded in the
STM32F401xB/STM32F401xC (see Table 4 for differences).
TIM2, TIM3, TIM4, TIM5
The STM32F401xB/STM32F401xC devices are 4 full-featured general-purpose timers:
TIM2, TIM5, TIM3, and TIM4.The TIM2 and TIM5 timers are based on a 32-bit auto-
reload up/downcounter and a 16-bit prescaler. The TIM3 and TIM4 timers are based on
a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They all feature four
independent channels for input capture/output compare, PWM or one-pulse mode
output. This gives up to 16 input capture/output compare/PWMs on the largest
packages.
The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together, or with the
other general-purpose timers and the advanced-control timers TIM1 and TIM8 via the
Timer Link feature for synchronization or event chaining.
Any of these general-purpose timers can be used to generate PWM outputs.
TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. They are
capable of handling quadrature (incremental) encoder signals and the digital outputs
from 1 to 4 hall-effect sensors.
TIM9, TIM10 and TIM11
These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.
TIM10 and TIM11 feature one independent channel, whereas TIM9 has two
independent channels for input capture/output compare, PWM or one-pulse mode
output. They can be synchronized with the TIM2, TIM3, TIM4, TIM5 full-featured
general-purpose timers. They can also be used as simple time bases.
3.19.3 Independent watchdog
The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is
clocked from an independent 32 kHz internal RC and as it operates independently from the
main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog
to reset the device when a problem occurs, or as a free-running timer for application timeout
management. It is hardware- or software-configurable through the option bytes.
3.19.4 Window watchdog
The window watchdog is based on a 7-bit downcounter that can be set as free-running. It
can be used as a watchdog to reset the device when a problem occurs. It is clocked from
the main clock. It has an early warning interrupt capability and the counter can be frozen in
debug mode.
Functional overview STM32F401xB STM32F401xC
28/139 DocID024738 Rev 9
3.19.5 SysTick timer
This timer is dedicated to real-time operating systems, but could also be used as a standard
downcounter. It features:
A 24-bit downcounter
Autoreload capability
Maskable system interrupt generation when the counter reaches 0
Programmable clock source.
3.20 Inter-integrated circuit interface (I2C)
Up to three I2C bus interfaces can operate in multimaster and slave modes. They can
support the standard (up to 100 kHz) and fast (up to 400 kHz) modes. The I2C bus
frequency can be increased up to 1 MHz. For more details about the complete solution,
please contact your local ST sales representative.They also support the 7/10-bit addressing
mode and the 7-bit dual addressing mode (as slave). A hardware CRC
generation/verification is embedded.
They can be served by DMA and they support SMBus 2.0/PMBus.
The devices also include programmable analog and digital noise filters (see Table 5).
3.21 Universal synchronous/asynchronous receiver transmitters
(USART)
The devices embed three universal synchronous/asynchronous receiver transmitters
(USART1, USART2 and USART6).
These three interfaces provide asynchronous communication, IrDA SIR ENDEC support,
multiprocessor communication mode, single-wire half-duplex communication mode and
have LIN Master/Slave capability. The USART1 and USART6 interfaces are able to
communicate at speeds of up to 10.5 Mbit/s. The USART2 interface communicates at up to
5.25 bit/s.
USART1 and USART2 also provide hardware management of the CTS and RTS signals,
Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All
interfaces can be served by the DMA controller.
Table 5. Comparison of I2C analog and digital filters
Analog filter Digital filter
Pulse width of
suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks
DocID024738 Rev 9 29/139
STM32F401xB STM32F401xC Functional overview
53
3.22 Serial peripheral interface (SPI)
The devices feature up to four SPIs in slave and master modes in full-duplex and simplex
communication modes. SPI1 and SPI4 can communicate at up to 42 Mbit/s, SPI2 and SPI3
can communicate at up to 21 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies
and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification
supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller.
The SPI interface can be configured to operate in TI mode for communications in master
mode and slave mode.
3.23 Inter-integrated sound (I2S)
Two standard I2S interfaces (multiplexed with SPI2 and SPI3) are available. They can be
operated in master or slave mode, in full duplex and simplex communication modes and
can be configured to operate with a 16-/32-bit resolution as an input or output channel.
Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of
the I2S interfaces is/are configured in master mode, the master clock can be output to the
external DAC/CODEC at 256 times the sampling frequency.
All I2Sx can be served by the DMA controller.
3.24 Audio PLL (PLLI2S)
The devices feature an additional dedicated PLL for audio I2S application. It allows to
achieve error-free I2S sampling clock accuracy without compromising on the CPU
performance.
The PLLI2S configuration can be modified to manage an I2S sample rate change without
disabling the main PLL (PLL) used for the CPU.
The audio PLL can be programmed with very low error to obtain sampling rates ranging
from 8 kHz to 192 kHz.
In addition to the audio PLL, a master clock input pin can be used to synchronize the I2S
flow with an external PLL (or Codec output).
Table 6. USART feature comparison
USART
name
Standard
features
Modem
(RTS/CTS) LIN SPI
master irDA Smartcard
(ISO 7816)
Max. baud
rate in Mbit/s
(oversampling
by 16)
Max. baud
rate in Mbit/s
(oversampling
by 8)
APB
mapping
USART1 X X X X X X 5.25 10.5
APB2
(max.
84 MHz)
USART2 X X X X X X 2.62 5.25
APB1
(max.
42 MHz)
USART6 X N.A X X X X 5.25 10.5
APB2
(max.
84 MHz)
Functional overview STM32F401xB STM32F401xC
30/139 DocID024738 Rev 9
3.25 Secure digital input/output interface (SDIO)
An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System
Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit.
The interface allows data transfer at up to 48 MHz, and is compliant with the SD Memory
Card Specification Version 2.0.
The SDIO Card Specification Version 2.0 is also supported with two different databus
modes: 1-bit (default) and 4-bit.
The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack
of MMC4.1 or previous.
In addition to SD/SDIO/MMC, this interface is fully compliant with the CE-ATA digital
protocol Rev1.1.
3.26 Universal serial bus on-the-go full-speed (OTG_FS)
The devices embed an USB OTG full-speed device/host/OTG peripheral with integrated
transceivers. The USB OTG FS peripheral is compliant with the USB 2.0 specification and
with the OTG 1.0 specification. It has software-configurable endpoint setting and supports
suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock
that is generated by a PLL connected to the HSE oscillator. The major features are:
Combined Rx and Tx FIFO size of 320 × 35 bits with dynamic FIFO sizing
Supports the session request protocol (SRP) and host negotiation protocol (HNP)
4 bidirectional endpoints
8 host channels with periodic OUT support
HNP/SNP/IP inside (no need for any external resistor)
For OTG/Host modes, a power switch is needed in case bus-powered devices are
connected
3.27 General-purpose input/outputs (GPIOs)
Each of the GPIO pins can be configured by software as output (push-pull or open-drain,
with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down)
or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog
alternate functions. All GPIOs are high-current-capable and have speed selection to better
manage internal noise, power consumption and electromagnetic emission.
The I/O configuration can be locked if needed by following a specific sequence in order to
avoid spurious writing to the I/Os registers.
Fast I/O handling allowing maximum I/O toggling up to 84 MHz.
3.28 Analog-to-digital converter (ADC)
One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels,
performing conversions in the single-shot or scan mode. In scan mode, automatic
conversion is performed on a selected group of analog inputs.
DocID024738 Rev 9 31/139
STM32F401xB STM32F401xC Functional overview
53
The ADC can be served by the DMA controller. An analog watchdog feature allows very
precise monitoring of the converted voltage of one, some or all selected channels. An
interrupt is generated when the converted voltage is outside the programmed thresholds.
To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1,
TIM2, TIM3, TIM4 or TIM5 timer.
3.29 Temperature sensor
The temperature sensor has to generate a voltage that varies linearly with temperature. The
conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally
connected to the ADC_IN18 input channel which is used to convert the sensor output
voltage into a digital value. Refer to the reference manual for additional information.
As the offset of the temperature sensor varies from chip to chip due to process variation, the
internal temperature sensor is mainly suitable for applications that detect temperature
changes instead of absolute temperatures. If an accurate temperature reading is needed,
then an external temperature sensor part should be used.
3.30 Serial wire JTAG debug port (SWJ-DP)
The ARM SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug
port that enables either a serial wire debug or a JTAG probe to be connected to the target.
Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could
be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with
SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to
switch between JTAG-DP and SW-DP.
3.31 Embedded Trace Macrocell™
The ARM Embedded Trace Macrocell provides a greater visibility of the instruction and data
flow inside the CPU core by streaming compressed data at a very high rate from the
STM32F401xB/STM32F401xC through a small number of ETM pins to an external
hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using
any high-speed channel available. Real-time instruction and data flow activity can be
recorded and then formatted for display on the host computer that runs the debugger
software. TPA hardware is commercially available from common development tool vendors.
The Embedded Trace Macrocell operates with third party debugger software tools.
Pinouts and pin description STM32F401xB STM32F401xC
32/139 DocID024738 Rev 9
4 Pinouts and pin description
Figure 10. STM32F401xB/STM32F401xC WLCSP49 pinout
1. The above figure shows the package top view.
DocID024738 Rev 9 33/139
STM32F401xB STM32F401xC Pinouts and pin description
53
Figure 11. STM32F401xB/STM32F401xC UFQFPN48 pinout
1. The above figure shows the package top view.
069
966
%227
3%
3%
3%
3%
3%
3$
3$
        
 9''
 966
 3$
8)4)31
 3$
966$95()
 3$
9''$95()
 3$
3$
 3$
3$
 3$
3$

9''
        
3$
3$
3$
3$
3$
3%
3%
3%
966






  
  
3%
9&$3B
3%
3%
3%
3%
9%$7
3&
3&26&B,1
3+26&B,1
1567
3%
3%
9''
3&26&B287
3+26&B287
Pinouts and pin description STM32F401xB STM32F401xC
34/139 DocID024738 Rev 9
Figure 12. STM32F401xB/STM32F401xC LQFP64 pinout
1. The above figure shows the package top view.
DocID024738 Rev 9 35/139
STM32F401xB STM32F401xC Pinouts and pin description
53
Figure 13. STM32F401xB/STM32F401xC LQFP100 pinout
1. The above figure shows the package top view.


































































0%
0%
0%
0%
0%
6"!4
0#/3#?).
0#/3#?/54
633
6$$
0(/3#?).
.234
0#
0#
0#
0#
6$$
633!62%&
6$$!
62%&
0!
0!
0!
6$$
633
6#!0?
0!
0!
0!
0!
0!
0!
0#
0#
0#
0#
0$
0$
0$
0$
0$
0$
0$
0$
0"
0"
0"
0"
0!
633
6$$
0!
0!
0!
0!
0#
0#
0"
0"
0"
0%
0%
0%
0%
0%
0%
0%
0%
0%
0"
6#!0?
633
6$$
6$$
633
0%
0%
0"
0"
"//4
0"
0"
0"
0"
0"
0$
0$
0$
0$
0$
0$
0$
0$
0#
0#
0#
0!
0!

























-36
,1&0
0#
0(/3#?/54
Pinouts and pin description STM32F401xB STM32F401xC
36/139 DocID024738 Rev 9
Figure 14. STM32F401xB/STM32F401xC UFBGA100 pinout
1. This figure shows the package top view
069
$
%
(
'
&
)
*
+
-
.
/
0
3(
26&B,1
3&
26&B287
3&
3&
$17,B7$03
3(
26&B287
3&
966$
95()
95()
9''$
3(
3(
3(
3(
9%$7
966
9''
1567
3&
3&
3$
:.83
3$
3%
3(
3%
966
%<3$66B5(*
3'5B21
3&
3$
3$
3$
%227
3%
9''
3$
3$
3$
3'
3%
3%
3&
3&
3%
3'
3'
3%
3%
3%
3'
3(
3(
3%
3'
3'
3'
3(
3(
3$
3'
3'
3%
3(
3(
3$
3&
3&
3&
3$
3'
3'
3%
3%
3(
3$
3&
9&$3
B
3$
3&
3'
3'
3%
9&$3
B
3(
966
9''
3$
3$
3$
3&
3&
3'
3'
3%
3%
3(
966
9''
 
3+
3+
26&B,1
DocID024738 Rev 9 37/139
STM32F401xB STM32F401xC Pinouts and pin description
53
Table 7. Legend/abbreviations used in the pinout table
Name Abbreviation Definition
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after
reset is the same as the actual pin name
Pin type
S Supply pin
I Input only pin
I/O Input/ output pin
I/O structure
FT 5 V tolerant I/O
B Dedicated BOOT0 pin
NRST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset
Alternate
functions Functions selected through GPIOx_AFR registers
Additional
functions Functions directly selected/enabled through peripheral registers
Table 8. STM32F401xB/STM32F401xC pin definitions
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
- - - 1 B2 PE2 I/O FT - SPI4_SCK, TRACECLK,
EVENTOUT -
- - - 2 A1 PE3 I/O FT - TRACED0, EVENTOUT -
- - - 3 B1 PE4 I/O FT - SPI4_NSS, TRACED1,
EVENTOUT -
- - - 4 C2 PE5 I/O FT - SPI4_MISO, TIM9_CH1,
TRACED2, EVENTOUT -
- - - 5 D2 PE6 I/O FT - SPI4_MOSI, TIM9_CH2,
TRACED3, EVENTOUT -
- - - - D3 VSS S - - - -
----C4 VDD S- - - -
1 B7 1 6 E2 VBAT S - - - -
2 D5 2 7 C1 PC13 I/O FT (2) (3) EVENTOUT, RTC_TAMP1,
RTC_OUT, RTC_TS
Pinouts and pin description STM32F401xB STM32F401xC
38/139 DocID024738 Rev 9
3C73 8 D1
PC14-
OSC32_IN
(PC14)
I/O FT
(2) (3)
(4) EVENTOUT OSC32_IN
4C64 9 E1
PC15-
OSC32_OUT
(PC15)
I/O FT
(2) (3)
(4) EVENTOUT OSC32_OUT
- - - 10 F2 VSS S - - - -
---11G2 VDD S- - - -
5D75 12F1PH0-OSC_IN
(PH0) I/O FT (4) EVENTOUT OSC_IN
6D66 13G1
PH1-
OSC_OUT
(PH1)
I/O FT (4) EVENTOUT OSC_OUT
7 E7 7 14 H2 NRST I/O FT - EVENTOUT -
- - 8 15 H1 PC0 I/O FT - EVENTOUT ADC1_IN10
- - 9 16 J2 PC1 I/O FT - EVENTOUT ADC1_IN11
- - 10 17 J3 PC2 I/O FT - SPI2_MISO, I2S2ext_SD,
EVENTOUT ADC1_IN12
- - 11 18 K2 PC3 I/O FT - SPI2_MOSI/I2S2_SD,
EVENTOUT ADC1_IN13
---19- VDD S- - - -
8 E6 12 20 - VSSA/VREF- S - - - -
- - - - J1 VSSA S - - - -
- - - - K1 VREF- S - - - -
9 - 13 - - VDDA/VREF+ S - - - -
---21L1 VREF+ S- - - -
- F7 - 22 M1 VDDA S - - - -
10 F6 14 23 L2 PA0 I/O FT (5)
USART2_CTS,
TIM2_CH1/TIM2_ETR,
TIM5_CH1, EVENTOUT
ADC1_IN0, WKUP
11 G7 15 24 M2 PA1 I/O FT - USART2_RTS, TIM2_CH2,
TIM5_CH2, EVENTOUT ADC1_IN1
12 E5 16 25 K3 PA2 I/O FT -
USART2_TX, TIM2_CH3,
TIM5_CH3, TIM9_CH1,
EVENTOUT
ADC1_IN2
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
DocID024738 Rev 9 39/139
STM32F401xB STM32F401xC Pinouts and pin description
53
13 E4 17 26 L3 PA3 I/O FT -
USART2_RX, TIM2_CH4,
TIM5_CH4, TIM9_CH2,
EVENTOUT
ADC1_IN3
- - 18 27 - VSS S - - - -
- - 19 28 - VDD S - - - -
----E3BYPASS_
REG IFT - - -
14 G6 20 29 M3 PA4 I/O FT -
SPI1_NSS,
SPI3_NSS/I2S3_WS,
USART2_CK, EVENTOUT
ADC1_IN4
15 F5 21 30 K4 PA5 I/O FT -
SPI1_SCK,
TIM2_CH1/TIM2_ETR,
EVENTOUT
ADC1_IN5
16 F4 22 31 L4 PA6 I/O FT - SPI1_MISO, TIM1_BKIN,
TIM3_CH1, EVENTOUT ADC1_IN6
17 F3 23 32 M4 PA7 I/O FT - SPI1_MOSI, TIM1_CH1N,
TIM3_CH2, EVENTOUT ADC1_IN7
- - 24 33 K5 PC4 I/O FT - EVENTOUT ADC1_IN14
- - 25 34 L5 PC5 I/O FT - EVENTOUT ADC1_IN15
18 G5 26 35 M5 PB0 I/O FT - TIM1_CH2N, TIM3_CH3,
EVENTOUT ADC1_IN8
19 G4 27 36 M6 PB1 I/O FT - TIM1_CH3N, TIM3_CH4,
EVENTOUT ADC1_IN9
20 G3 28 37 L6 PB2 I/O FT - EVENTOUT BOOT1
- - - 38 M7 PE7 I/O FT - TIM1_ETR, EVENTOUT -
- - - 39 L7 PE8 I/O FT - TIM1_CH1N, EVENTOUT -
- - - 40 M8 PE9 I/O FT - TIM1_CH1, EVENTOUT -
- - - 41 L8 PE10 I/O FT - TIM1_CH2N, EVENTOUT -
- - - 42 M9 PE11 I/O FT - SPI4_NSS, TIM1_CH2,
EVENTOUT -
- - - 43 L9 PE12 I/O FT - SPI4_SCK, TIM1_CH3N,
EVENTOUT -
- - - 44 M10 PE13 I/O FT - SPI4_MISO, TIM1_CH3,
EVENTOUT -
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
Pinouts and pin description STM32F401xB STM32F401xC
40/139 DocID024738 Rev 9
- - - 45 M11 PE14 I/O FT - SPI4_MOSI, TIM1_CH4,
EVENTOUT -
- - - 46 M12 PE15 I/O FT - TIM1_BKIN, EVENTOUT -
21 E3 29 47 L10 PB10 I/O FT -
SPI2_SCK/I2S2_CK,
I2C2_SCL, TIM2_CH3,
EVENTOUT
-
- - - - K9 PB11 I/O FT - TIM2_CH4, I2C2_SDA,
EVENTOUT -
22 G2 30 48 L11 VCAP_1 S - - - -
23 D3 31 49 F12 VSS S - - - -
24 F2 32 50 G12 VDD S - - - -
25 E2 33 51 L12 PB12 I/O FT -
SPI2_NSS/I2S2_WS,
I2C2_SMBA, TIM1_BKIN,
EVENTOUT
-
26 G1 34 52 K12 PB13 I/O FT - SPI2_SCK/I2S2_CK,
TIM1_CH1N, EVENTOUT -
27 F1 35 53 K11 PB14 I/O FT - SPI2_MISO, I2S2ext_SD,
TIM1_CH2N, EVENTOUT -
28 E1 36 54 K10 PB15 I/O FT - SPI2_MOSI/I2S2_SD,
TIM1_CH3N, EVENTOUT RTC_REFIN
- - - 55 - PD8 I/O FT - EVENTOUT -
- - - 56 K8 PD9 I/O FT - EVENTOUT -
- - - 57 J12 PD10 I/O FT - EVENTOUT -
- - - 58 J11 PD11 I/O FT - EVENTOUT -
- - - 59 J10 PD12 I/O FT - TIM4_CH1, EVENTOUT -
- - - 60 H12 PD13 I/O FT - TIM4_CH2, EVENTOUT -
- - - 61 H11 PD14 I/O FT - TIM4_CH3, EVENTOUT -
- - - 62 H10 PD15 I/O FT - TIM4_CH4, EVENTOUT -
- - 37 63 E12 PC6 I/O FT -
I2S2_MCK, USART6_TX,
TIM3_CH1, SDIO_D6,
EVENTOUT
-
- - 38 64 E11 PC7 I/O FT -
I2S3_MCK, USART6_RX,
TIM3_CH2, SDIO_D7,
EVENTOUT
-
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
DocID024738 Rev 9 41/139
STM32F401xB STM32F401xC Pinouts and pin description
53
- - 39 65 E10 PC8 I/O FT - USART6_CK, TIM3_CH3,
SDIO_D0, EVENTOUT -
- - 40 66 D12 PC9 I/O FT -
I2S_CKIN, I2C3_SDA,
TIM3_CH4, SDIO_D1,
MCO_2, EVENTOUT
-
29 D1 41 67 D11 PA8 I/O FT -
I2C3_SCL, USART1_CK,
TIM1_CH1, OTG_FS_SOF,
MCO_1, EVENTOUT
-
30 D2 42 68 D10 PA9 I/O FT - I2C3_SMBA, USART1_TX,
TIM1_CH2, EVENTOUT OTG_FS_VBUS
31 C2 43 69 C12 PA10 I/O FT - USART1_RX, TIM1_CH3,
OTG_FS_ID, EVENTOUT -
32 C1 44 70 B12 PA11 I/O FT -
USART1_CTS, USART6_TX,
TIM1_CH4, OTG_FS_DM,
EVENTOUT
-
33 C3 45 71 A12 PA12 I/O FT -
USART1_RTS, USART6_RX,
TIM1_ETR, OTG_FS_DP,
EVENTOUT
-
34 B3 46 72 A11 PA13 (JTMS-
SWDIO) I/O FT - JTMS-SWDIO, EVENTOUT -
- - - 73 C11 VCAP_2 S - - - -
35 B1 47 74 F11 VSS S - - - -
36 - 48 75 G11 VDD S - - - -
-B2- - - VDD S - - - -
37 A1 49 76 A10 PA14 (JTCK-
SWCLK) I/O FT - JTCK-SWCLK, EVENTOUT -
38 A2 50 77 A9 PA15 (JTDI) I/O FT -
JTDI, SPI1_NSS,
SPI3_NSS/I2S3_WS,
TIM2_CH1/TIM2_ETR, JTDI,
EVENTOUT
-
- - 51 78 B11 PC10 I/O FT - SPI3_SCK/I2S3_CK,
SDIO_D2, EVENTOUT -
- - 52 79 C10 PC11 I/O FT - I2S3ext_SD, SPI3_MISO,
SDIO_D3, EVENTOUT -
- - 53 80 B10 PC12 I/O FT - SPI3_MOSI/I2S3_SD,
SDIO_CK, EVENTOUT -
- - - 81 C9 PD0 I/O FT - EVENTOUT -
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
Pinouts and pin description STM32F401xB STM32F401xC
42/139 DocID024738 Rev 9
- - - 82 B9 PD1 I/O FT - EVENTOUT -
- - 54 83 C8 PD2 I/O FT - TIM3_ETR, SDIO_CMD,
EVENTOUT -
- - - 84 B8 PD3 I/O FT - SPI2_SCK/I2S2_CK,
USART2_CTS, EVENTOUT -
- - - 85 B7 PD4 I/O FT - USART2_RTS, EVENTOUT -
- - - 86 A6 PD5 I/O FT - USART2_TX, EVENTOUT -
- - - 87 B6 PD6 I/O FT - SPI3_MOSI/I2S3_SD,
USART2_RX, EVENTOUT -
- - - 88 A5 PD7 I/O FT - USART2_CK, EVENTOUT -
39 A3 55 89 A8 PB3
(JTDO-SWO) I/O FT -
JTDO-SWO, SPI1_SCK,
SPI3_SCK/I2S3_CK,
I2C2_SDA, TIM2_CH2,
EVENTOUT
-
40 A4 56 90 A7 PB4
(NJTRST) I/O FT -
NJTRST, SPI1_MISO,
SPI3_MISO, I2S3ext_SD,
I2C3_SDA, TIM3_CH1,
EVENTOUT
-
41 B4 57 91 C5 PB5 I/O FT -
SPI1_MOSI,
SPI3_MOSI/I2S3_SD,
I2C1_SMBA, TIM3_CH2,
EVENTOUT
-
42 C4 58 92 B5 PB6 I/O FT - I2C1_SCL, USART1_TX,
TIM4_CH1, EVENTOUT -
43 D4 59 93 B4 PB7 I/O FT - I2C1_SDA, USART1_RX,
TIM4_CH2, EVENTOUT -
44 A5 60 94 A4 BOOT0 I B - - VPP
45 B5 61 95 A3 PB8 I/O FT -
I2C1_SCL, TIM4_CH3,
TIM10_CH1, SDIO_D4,
EVENTOUT
-
46 C5 62 96 B3 PB9 I/O FT -
SPI2_NSS/I2S2_WS,
I2C1_SDA, TIM4_CH4,
TIM11_CH1, SDIO_D5,
EVENTOUT
-
- - - 97 C3 PE0 I/O FT - TIM4_ETR, EVENTOUT -
- - - 98 A2 PE1 I/O FT - EVENTOUT -
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
DocID024738 Rev 9 43/139
STM32F401xB STM32F401xC Pinouts and pin description
53
47 A6 63 99 - VSS S - - - -
- B6 - - H3 PDR_ON I FT - - -
48 A7 64 100 - VDD S - - - -
1. Function availability depends on the chosen device.
2. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3
mA), the use of GPIOs PC13 to PC15 in output mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF.
- These I/Os must not be used as a current source (e.g. to drive an LED).
3. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after
reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC
register description sections in the STM32F401xx reference manual.
4. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1).
5. If the device is delivered in an UFBGA100 and the BYPASS_REG pin is set to VDD (Regulator off/internal reset ON mode),
then PA0 is used as an internal Reset (active low)
Table 8. STM32F401xB/STM32F401xC pin definitions (continued)
Pin Number
Pin name
(function
after reset)(1)
Pin type
I/O structure
Notes
Alternate functions Additional
functions
UQFN48
WLCSP49
LQFP64
LQFP100
UFBGA100
Pinouts and pin description STM32F401xB STM32F401xC
44/139 DocID024738 Rev 9
Table 9. Alternate function mapping
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
Port A
PA0 - TIM2_CH1/
TIM2_ETR TIM5_CH1 - - - - USART2_
CTS -- -----
EVENT
OUT
PA1 - TIM2_CH2 TIM5_CH2 - - - - USART2_
RTS -- -----
EVENT
OUT
PA2 - TIM2_CH3 TIM5_CH3 TIM9_CH1 - - - USART2_
TX -- -----
EVENT
OUT
PA3 - TIM2_CH4 TIM5_CH4 TIM9_CH2 - - USART2_
RX -- -----
EVENT
OUT
PA4 - - - - - SPI1_NSS SPI3_NSS/
I2S3_WS
USART2_
CK -- -----
EVENT
OUT
PA5 - TIM2_CH1/
TIM2_ETR ---SPI1_SCK- --------
EVENT
OUT
PA6 - TIM1_BKIN TIM3_CH1 - - SPI1_
MISO ---------
EVENT
OUT
PA7 - TIM1_CH1N TIM3_CH2 - - SPI1_
MOSI ------
- - - EVENT
OUT
PA8 MCO_1 TIM1_CH1 - - I2C3_SCL - - USART1_
CK --
OTG_FS_
SOF -- - - EVENT
OUT
PA9 - TIM1_CH2 - - I2C3_
SMBA --
USART1_
TX --
OTG_FS_
VBUS -----
EVENT
OUT
PA10 - TIM1_CH3 - - - - - USART1_
RX --
OTG_FS_I
D----
EVENT
OUT
PA11 - TIM1_CH4 - - - - - USART1_
CTS
USART6_
TX -OTG_FS_
DM ----
EVENT
OUT
PA12 - TIM1_ETR - - - - - USART1_
RTS
USART6_
RX -OTG_FS_
DP ----
EVENT
OUT
PA13 JTMS_
SWDIO ----- - --------
EVENT
OUT
PA14 JTCK_
SWCLK ----- - --------
EVENT
OUT
PA15 JTDI TIM2_CH1/
TIM2_ETR ---SPI1_NSS
SPI3_NSS/
I2S3_WS --- -----
EVENT
OUT
STM32F401xB STM32F401xC Pinouts and pin description
DocID024738 Rev 9 45/139
Port B
PB0 - TIM1_CH2N TIM3_CH3 - - - - - - - - - - - - EVENT
OUT
PB1 - TIM1_CH3N TIM3_CH4 - - - - - - - - - - - - EVENT
OUT
PB2 - - - - - - - - - - - - - - - EVENT
OUT
PB3 JTDO-
SWO TIM2_CH2 - - - SPI1_SCK SPI3_SCK/
I2S3_CK - - I2C2_SDA - - - - - EVENT
OUT
PB4 JTRST - TIM3_CH1 - - SPI1_
MISO SPI3_MISO I2S3ext_S
D-I2C3_SDA - - - --
EVENT
OUT
PB5 - - TIM3_CH2 - I2C1_
SMBA
SPI1
_MOSI
SPI3_MOSI/
I2S3_SD --- -----
EVENT
OUT
PB6 - - TIM4_CH1 - I2C1_SCL - - USART1_
TX -- -----
EVENT
OUT
PB7 - - TIM4_CH2 - I2C1_SDA - - USART1_
RX -- -----
EVENT
OUT
PB8 - - TIM4_CH3 TIM10_CH1 I2C1_SCL - - - - - - - SDIO_
D4 --
EVENT
OUT
PB9 - - TIM4_CH4 TIM11_CH1 I2C1_SDA SPI2_NSS/I
2S2_WS ------
SDIO_
D5 --
EVENT
OUT
PB10 - TIM2_CH3 - - I2C2_SCL SPI2_SCK/I
2S2_CK ---------
EVENT
OUT
PB11 - TIM2_CH4 - - I2C2_SDA - - - - - - - - - - EVENT
OUT
PB12 - TIM1_BKIN - - I2C2_
SMBA
SPI2_NSS/I
2S2_WS ---------
EVENT
OUT
PB13 - TIM1_CH1N - - - SPI2_SCK/I
2S2_CK ---------
EVENT
OUT
PB14 - TIM1_CH2N - - - SPI2_MISO I2S2ext_SD - - - - - - - - EVENT
OUT
PB15 RTC_
REFN TIM1_CH3N - - - SPI2_MOSI
/I2S2_SD ---------
EVENT
OUT
Table 9. Alternate function mapping (continued)
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
Pinouts and pin description STM32F401xB STM32F401xC
46/139 DocID024738 Rev 9
Port C
PC0 - - - - - - - - - - - - - - - EVENT
OUT
PC1 - - - - - - - - - - - - - - - EVENT
OUT
PC2 - - - - - SPI2_
MISO I2S2ext_SD - - - - - - - - EVENT
OUT
PC3 - - - - - SPI2_MOSI
/I2S2_SD ---------
EVENT
OUT
PC4 - - - - - - - - - - - - - - - EVENT
OUT
PC5 - - - - - - - - - - - - - - - EVENT
OUT
PC6 - -- TIM3_CH1 - - I2S2_MCK - - USART6_
TX ---
SDIO_
D6 --
EVENT
OUT
PC7 - TIM3_CH2 - - - I2S3_MCK - USART6_
RX ---
SDIO_
D7 --
EVENT
OUT
PC8 - - TIM3_CH3 - - - - - USART6_
CK ---
SDIO_
D0 --
EVENT
OUT
PC9 MCO_2 - TIM3_CH4 - I2C3_SDA I2S_CKIN - - - - - - SDIO_
D1 --
EVENT
OUT
PC10 - - - - - - SPI3_SCK/
I2S3_CK --- --
SDIO_
D2 --
EVENT
OUT
PC11 - - - - - I2S3ext_
SD SPI3_MISO - - - - - SDIO_
D3 --
EVENT
OUT
PC12 - - - - - - SPI3_MOSI/
I2S3_SD --- --
SDIO_
CK --
EVENT
OUT
PC13 - - - - - - - - - - - - - - - EVENT
OUT
PC14 - - - - - - - - - - - - - - - EVENT
OUT
PC15 - - - - - - - - - - - - - - - EVENT
OUT
Table 9. Alternate function mapping (continued)
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
STM32F401xB STM32F401xC Pinouts and pin description
DocID024738 Rev 9 47/139
Port D
PD0 - - - - - - - - - - - - - - - EVENT
OUT
PD1 - - - - - - - - - - - - - - - EVENT
OUT
PD2 - - TIM3_ETR - - - - - - - - - SDIO_
CMD --
EVENT
OUT
PD3 - - - - - SPI2_SCK/
I2S2_CK -USART2_
CTS -- - - - - - - EVENT
OUT
PD4 - - - - - - - USART2_
RTS ------
EVENT
OUT
PD5 - - - - - - - USART2_
TX -- -----
EVENT
OUT
PD6 - - - - - SPI3_MOSI
/I2S3_SD -USART2_
RX -- -----
EVENT
OUT
PD7 - - - - - - - USART2_
CK -- -----
EVENT
OUT
PD8 - - - - - - - - - - - - - - - EVENT
OUT
PD9 - - - - - - - - - - - - - - - EVENT
OUT
PD10 - - - - - - - - - - - - - - - EVENT
OUT
PD11 - - - - - - - - - - - - - - - EVENT
OUT
PD12 - - TIM4_CH1 - - - - - - - - - - - - EVENT
OUT
PD13 - - TIM4_CH2 - - - - - - - - - - - - EVENT
OUT
PD14 - - TIM4_CH3 - - - - - - - - - - - - EVENT
OUT
PD15 - - TIM4_CH4 - - - - - - - - - - - - EVENT
OUT
Table 9. Alternate function mapping (continued)
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
Pinouts and pin description STM32F401xB STM32F401xC
48/139 DocID024738 Rev 9
Port E
PE0 - - TIM4_ETR - - - - - - - - - - - - EVENT
OUT
PE1 - TIM1_CH2N - - - - - - - - - - - - - EVENT
OUT
PE2 TRACECL
K----SPI4_SCK- --------
EVENT
OUT
PE3 TRACED0 - - - - - - - - - - - - - - EVENT
OUT
PE4 TRACED1 - - - - SPI4_NSS - - - - - - - - - EVENT
OUT
PE5 TRACED2 - - TIM9_CH1 - SPI4_MISO - - - - - - - - - EVENT
OUT
PE6 TRACED3 - - TIM9_CH2 - SPI4_MOSI - - - - - - - - - EVENT
OUT
PE7 - TIM1_ETR - - - - - - - - - - - - - EVENT
OUT
PE8 - TIM1_CH1N - - - - - - - - - - - - - EVENT
OUT
PE9 - TIM1_CH1 - - - - - - - - - - - - - EVENT
OUT
PE10 - TIM1_CH2N - - - - - - - - - - - - - EVENT
OUT
PE11 - TIM1_CH2 - - - SPI4_NSS - - - - - - - - - EVENT
OUT
PE12 - TIM1_CH3N - - - SPI4_SCK - - - - - - - - - EVENT
OUT
PE13 - TIM1_CH3 - - - SPI4_MISO - - - - - - - - - EVENT
OUT
PE14 - TIM1_CH4 - - - SPI4_MOSI - - - - - - - - - EVENT
OUT
PE15 - TIM1_BKIN - - - - - - - - - - - - - EVENT
OUT
Table 9. Alternate function mapping (continued)
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
STM32F401xB STM32F401xC Pinouts and pin description
DocID024738 Rev 9 49/139
Port H
PH0 - - - - - - - - - - - - - - - EVENT
OUT
PH1 - - - - - - - - - - - - - - - EVENT
OUT
Table 9. Alternate function mapping (continued)
Port
AF00 AF01 AF02 AF03 AF04 AF05 AF06 AF07 AF08 AF09 AF10 AF11 AF12 AF13 AF14 AF15
SYS_AF TIM1/TIM2 TIM3/
TIM4/ TIM5
TIM9/
TIM10/
TIM11
I2C1/I2C2/
I2C3
SPI1/SPI2/
I2S2/SPI3/
I2S3/SPI4
SPI2/I2S2/
SPI3/ I2S3
SPI3/I2S3/
USART1/
USART2
USART6 I2C2/
I2C3 OTG1_FS SDIO
Memory mapping STM32F401xB STM32F401xC
50/139 DocID024738 Rev 9
5 Memory mapping
The memory map is shown in Figure 15.
Figure 15. Memory map
DocID024738 Rev 9 51/139
STM32F401xB STM32F401xC Memory mapping
53
Table 10. STM32F401xB/STM32F401xC
register boundary addresses
Bus Boundary address Peripheral
0xE010 0000 - 0xFFFF FFFF Reserved
Cortex-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals
0x5004 0000 - 0xDFFF FFFF Reserved
AHB2 0x5000 0000 - 0x5003 FFFF USB OTG FS
AHB1
0x4002 6800 - 0x4FFF FFFF Reserved
0x4002 6400 - 0x4002 67FF DMA2
0x4002 6000 - 0x4002 63FF DMA1
0x4002 5000 - 0x4002 4FFF Reserved
0x4002 3C00 - 0x4002 3FFF Flash interface register
0x4002 3800 - 0x4002 3BFF RCC
0x4002 3400 - 0x4002 37FF Reserved
0x4002 3000 - 0x4002 33FF CRC
0x4002 2000 - 0x4002 2FFF Reserved
0x4002 1C00 - 0x4002 1FFF GPIOH
0x4002 1400 - 0x4002 1BFF Reserved
0x4002 1000 - 0x4002 13FF GPIOE
0x4002 0C00 - 0x4002 0FFF GPIOD
0x4002 0800 - 0x4002 0BFF GPIOC
0x4002 0400 - 0x4002 07FF GPIOB
0x4002 0000 - 0x4002 03FF GPIOA
Memory mapping STM32F401xB STM32F401xC
52/139 DocID024738 Rev 9
APB2
0x4001 4C00- 0x4001 FFFF Reserved
0x4001 4800 - 0x4001 4BFF TIM11
0x4001 4400 - 0x4001 47FF TIM10
0x4001 4000 - 0x4001 43FF TIM9
0x4001 3C00 - 0x4001 3FFF EXTI
0x4001 3800 - 0x4001 3BFF SYSCFG
0x4001 3400 - 0x4001 37FF SPI4/I2S4
0x4001 3000 - 0x4001 33FF SPI1
0x4001 2C00 - 0x4001 2FFF SDIO
0x4001 2400 - 0x4001 2BFF Reserved
0x4001 2000 - 0x4001 23FF ADC1
0x4001 1800 - 0x4001 1FFF Reserved
0x4001 1400 - 0x4001 17FF USART6
0x4001 1000 - 0x4001 13FF USART1
0x4001 0800 - 0x4001 0FFF Reserved
0x4001 0400 - 0x4001 07FF TIM8
0x4001 0000 - 0x4001 03FF TIM1
0x4000 7400 - 0x4000 FFFF Reserved
Table 10. STM32F401xB/STM32F401xC
register boundary addresses (continued)
Bus Boundary address Peripheral
DocID024738 Rev 9 53/139
STM32F401xB STM32F401xC Memory mapping
53
APB1
0x4000 7000 - 0x4000 73FF PWR
0x4000 6000 - 0x4000 6FFF Reserved
0x4000 5C00 - 0x4000 5FFF I2C3
0x4000 5800 - 0x4000 5BFF I2C2
0x4000 5400 - 0x4000 57FF I2C1
0x4000 4800 - 0x4000 53FF Reserved
0x4000 4400 - 0x4000 47FF USART2
0x4000 4000 - 0x4000 43FF I2S3ext
0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3
0x4000 3800 - 0x4000 3BFF SPI2 / I2S2
0x4000 3400 - 0x4000 37FF I2S2ext
0x4000 3000 - 0x4000 33FF IWDG
0x4000 2C00 - 0x4000 2FFF WWDG
0x4000 2800 - 0x4000 2BFF RTC & BKP Registers
0x4000 1000 - 0x4000 27FF Reserved
0x4000 0C00 - 0x4000 0FFF TIM5
0x4000 0800 - 0x4000 0BFF TIM4
0x4000 0400 - 0x4000 07FF TIM3
0x4000 0000 - 0x4000 03FF TIM2
Table 10. STM32F401xB/STM32F401xC
register boundary addresses (continued)
Bus Boundary address Peripheral
Electrical characteristics STM32F401xB STM32F401xC
54/139 DocID024738 Rev 9
6 Electrical characteristics
6.1 Parameter conditions
Unless otherwise specified, all voltages are referenced to VSS.
6.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by
the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production. Based on
characterization, the minimum and maximum values refer to sample tests and represent the
mean value plus or minus three times the standard deviation (mean ±3 σ).
6.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the
1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not
tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range, where 95% of the devices have an
error less than or equal to the value indicated (mean ±2 σ).
6.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
6.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 16.
Figure 16. Pin loading conditions
-36
#P&
-#5PIN
DocID024738 Rev 9 55/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 17.
Figure 17. Input voltage measurement
-36
-#5PIN
6).
Electrical characteristics STM32F401xB STM32F401xC
56/139 DocID024738 Rev 9
6.1.6 Power supply scheme
Figure 18. Power supply scheme
1. To connect PDR_ON pin, refer to Section 3.14: Power supply supervisor.
2. The 4.7 µF ceramic capacitor must be connected to one of the VDD pin.
3. VCAP_2 pad is only available on LQFP100 and UFBGA100 packages.
4. VDDA=VDD and VSSA=VSS.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA ...) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure good operation of the
device. It is not recommended to remove filtering capacitors to reduce PCB size or cost.
This might cause incorrect operation of the device.
069
%DFNXSFLUFXLWU\
26&.57&
:DNHXSORJLF
%DFNXSUHJLVWHUV
.HUQHOORJLF
&38GLJLWDO
5$0
$QDORJ
5&V
3//
3RZHU
VZLWFK
9%$7
*3,2V
287
,1
îQ)
î)
9%$7
WR9
9ROWDJH
UHJXODWRU
9''$
$'&
/HYHOVKLIWHU
,2
/RJLF
9''
Q)
)
)ODVKPHPRU\
9&$3B
%<3$66B5(*
3'5B21 5HVHW
FRQWUROOHU
9''

966

9''
95()
95()
966$
95()
Q)
)
9&$3B
î) î)RU
DocID024738 Rev 9 57/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.1.7 Current consumption measurement
Figure 19. Current consumption measurement scheme
6.2 Absolute maximum ratings
Stresses above the absolute maximum ratings listed in Table 11: Voltage characteristics,
Table 12: Current characteristics, and Table 13: Thermal characteristics may cause
permanent damage to the device. These are stress ratings only and functional operation of
the device at these conditions is not implied. Exposure to maximum rating conditions for
extended periods may affect device reliability. Device mission profile (application conditions)
is compliant with JEDEC JESD47 Qualification Standard. Extended mission profiles are
available on demand.
DL
9%$7
9''
9''$
,''B9%$7
,''
Table 11. Voltage characteristics
Symbol Ratings Min Max Unit
VDD–VSS
External main supply voltage (including VDDA, VDD and
VBAT)(1)
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power
supply, in the permitted range.
–0.3 4.0
V
VIN
Input voltage on FT pins(2)
2. VIN maximum value must always be respected. Refer to Table 12 for the values of the maximum allowed
injected current.
VSS–0.3 VDD+4.0
Input voltage on any other pin VSS–0.3 4.0
Input voltage for BOOT0 VSS 9.0
|VDDx| Variations between different VDD power pins - 50
mV
|VSSX VSS|Variations between all the different ground pins
including VREF-
-50
VESD(HBM) Electrostatic discharge voltage (human body model)
see Section 6.3.14:
Absolute maximum
ratings (electrical
sensitivity)
-
Electrical characteristics STM32F401xB STM32F401xC
58/139 DocID024738 Rev 9
Table 12. Current characteristics
Symbol Ratings Max. Unit
ΣIVDD Total current into sum of all VDD_x power lines (source)(1) 160
mA
Σ IVSS Total current out of sum of all VSS_x ground lines (sink)(1) -160
IVDD Maximum current into each VDD_x power line (source)(1) 100
IVSS Maximum current out of each VSS_x ground line (sink)(1) -100
IIO
Output current sunk by any I/O and control pin 25
Output current sourced by any I/O and control pin -25
ΣIIO
Total output current sunk by sum of all I/O and control pins (2) 120
Total output current sourced by sum of all I/Os and control pins(2) -120
IINJ(PIN) (3) Injected current on FT pins (4)
–5/+0
Injected current on NRST and B pins (4)
ΣIINJ(PIN) Total injected current (sum of all I/O and control pins)(5) ±25
1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the
permitted range.
2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be
sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.
3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics.
4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum
value.
5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and
negative injected currents (instantaneous values).
Table 13. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range –65 to +150
°C
TJMaximum junction temperature 130
TLEAD
Maximum lead temperature during
soldering (WLCSP49, LQFP64/100,
UFQFPN48, UFBGA100)
see note (1)
1. Compliant with JEDEC Std J-STD-020D (for small body, Sn-Pb or Pb assembly), the ST ECOPACK®
7191395 specification, and the European directive on Restrictions on Hazardous Substances (ROHS
directive 2011/65/EU, July 2011).
DocID024738 Rev 9 59/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3 Operating conditions
6.3.1 General operating conditions
Table 14. General operating conditions
Symbol Parameter Conditions Min Typ Max Unit
fHCLK Internal AHB clock frequency
Power Scale3: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x01 0-60
MHz
Power Scale2: Regulator ON,
VOS[1:0] bits in PWR_CR register = 0x10 0 - 84
fPCLK1 Internal APB1 clock frequency - 0 - 42
fPCLK2 Internal APB2 clock frequency - 0 - 84
VDD Standard operating voltage - 1.7(1) -3.6V
VDDA
(2)(3)
Analog operating voltage
(ADC limited to 1.2 M samples)
Must be the same potential as VDD(4)
1.7(1) -2.4
V
Analog operating voltage
(ADC limited to 2.4 M samples) 2.4 - 3.6
VBAT Backup operating voltage - 1.65 - 3.6 V
V12
Regulator ON: 1.2 V internal
voltage on VCAP_1/VCAP_2 pins
VOS[1:0] bits in PWR_CR register = 0x01
Max frequency 60 MHz 1.08(5) 1.14 1.20(5)
V
VOS[1:0] bits in PWR_CR register = 0x10
Max frequency 84 MHz 1.20(5) 1.26 1.32(5)
V12
Regulator OFF: 1.2 V external
voltage must be supplied on
VCAP_1/VCAP_2 pins
Max. frequency 60 MHz. 1.1 1.14 1.2
V
Max. frequency 84 MHz. 1.2 1.26 1.32
VIN
Input voltage on RST and FT
pins(6)
2V VDD 3.6 V –0.3 - 5.5
VVDD 2 V –0.3 - 5.2
Input voltage on BOOT0 pin - 0 - 9
PD
Power dissipation at TA = 85 °C
(range 6) or 105 °C (range 7)(7)
UFQFPN48 - - 625
mW
WLCSP49 - - 385
LQFP64 - - 313
LQFP100 - - 465
UFBGA100 - - 323
Power dissipation at TA =
125 °C (range 3)(7)
UFQFPN48 - - 156
WLCSP49 - - 96
LQFP64 - - 100
LQFP100 - - 119
UFBGA100 - - 81
Electrical characteristics STM32F401xB STM32F401xC
60/139 DocID024738 Rev 9
TA
Ambient temperature
for range 6
Maximum power dissipation - 40 - 85
°C
Low power dissipation(8) -40 - 105
Ambient temperature
for range 7
Maximum power dissipation - 40 - 105
Low power dissipation(8) -40 - 125
Ambient temperature
for range 3
Maximum power dissipation - 40 - 110
Low power dissipation(8) - 40 - 130
TJ Junction temperature range
Range 6 - 40 - 105
°CRange 7 - 40 - 125
Range 3 - 40 - 130
1. VDD/VDDA minimum value of 1.7 V with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
2. When the ADC is used, refer to Table 66: ADC characteristics.
3. If VREF+ pin is present, it must respect the following condition: VDDA-VREF+ < 1.2 V.
4. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and
VDDA can be tolerated during power-up and power-down operation.
5. Guaranteed by test in production
6. To sustain a voltage higher than VDD+0.3, the internal Pull-up and Pull-Down resistors must be disabled
7. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax.
8. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax.
Table 14. General operating conditions (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 15. Features depending on the operating power supply range
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
VDD =1.7 to
2.1 V(4)
Conversion
time up to
1.2 Msps
20 MHz(5) 84 MHz with 4
wait states
No I/O
compensation up to 30 MHz
8-bit erase
and program
operations
only
VDD = 2.1 to
2.4 V
Conversion
time up to
1.2 Msps
22 MHz 84 MHz with 3
wait states
No I/O
compensation up to 30 MHz
16-bit erase
and program
operations
DocID024738 Rev 9 61/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3.2 VCAP_1/VCAP_2 external capacitors
Stabilization for the main regulator is achieved by connecting 2 external capacitor CEXT to
the VCAP_1 and VCAP_2 pins. For packages supporting only 1 VCAP pin, the 2 CEXT
capacitors are replaced by a single capacitor.
CEXT is specified in Table 16.
Figure 20. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance.
VDD = 2.4 to
2.7 V
Conversion
time up to
2.4 Msps
24 MHz 84 MHz with 3
wait states
–I/O
compensation
works
up to 48 MHz
16-bit erase
and program
operations
VDD = 2.7 to
3.6 V(6)
Conversion
time up to
2.4 Msps
30 MHz 84 MHz with 2
wait states
–I/O
compensation
works
–up to
84 MHz
when VDD =
3.0 to 3.6 V
–up to
48 MHz
when VDD =
2.7 to 3.0 V
32-bit erase
and program
operations
1. Applicable only when the code is executed from Flash memory. When the code is executed from RAM, no wait state is
required.
2. Thanks to the ART accelerator and the 128-bit Flash memory, the number of wait states given here does not impact the
execution speed from Flash memory since the ART accelerator allows to achieve a performance equivalent to 0 wait state
program execution.
3. Refer to Table 56: I/O AC characteristics for frequencies vs. external load.
4. VDD/VDDA minimum value of 1.7 V, with the use of an external power supply supervisor (refer to Section 3.14.2: Internal
reset OFF).
5. Prefetch is not available. Refer to AN3430 application note for details on how to adjust performance and power.
6. The voltage range for the USB full speed embedded PHY can drop down to 2.7 V. However the electrical characteristics of
D- and D+ pins will be degraded between 2.7 and 3 V.
Table 15. Features depending on the operating power supply range (continued)
Operating
power
supply
range
ADC
operation
Maximum
Flash
memory
access
frequency
with no wait
states
(fFlashmax)
Maximum Flash
memory access
frequency with
wait states (1)(2)
I/O operation
Clock output
frequency on
I/O pins(3)
Possible
Flash
memory
operations
Electrical characteristics STM32F401xB STM32F401xC
62/139 DocID024738 Rev 9
6.3.3 Operating conditions at power-up/power-down (regulator ON)
Subject to general operating conditions for TA.
6.3.4 Operating conditions at power-up / power-down (regulator OFF)
Subject to general operating conditions for TA.
Note: This feature is only available for UFBGA100 package.
Table 16. VCAP_1/VCAP_2 operating conditions(1)
1. When bypassing the voltage regulator, the two 2.2 µF VCAP capacitors are not required and should be
replaced by two 100 nF decoupling capacitors.
Symbol Parameter Conditions
CEXT Capacitance of external capacitor with available
VCAP_1 and VCAP_2 pins 2.2 µF
ESR ESR of external capacitor with available VCAP_1 and
VCAP_2 pins < 2
Table 17. Operating conditions at power-up / power-down (regulator ON)
Symbol Parameter Min Max Unit
tVDD
VDD rise time rate 20
µs/V
VDD fall time rate 20
Table 18. Operating conditions at power-up / power-down (regulator OFF)(1)
1. To reset the internal logic at power-down, a reset must be applied on pin PA0 when VDD reach below
1.08 V.
Symbol Parameter Conditions Min Max Unit
tVDD
VDD rise time rate Power-up 20
µs/V
VDD fall time rate Power-down 20
tVCAP
VCAP_1 and VCAP_2 rise time rate Power-up 20
VCAP_1 and VCAP_2 fall time rate Power-down 20
DocID024738 Rev 9 63/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3.5 Embedded reset and power control block characteristics
The parameters given in Table 19 are derived from tests performed under ambient
temperature and VDD supply voltage @ 3.3V.
Table 19. Embedded reset and power control block characteristics
Symbol Parameter Conditions Min Typ Max Unit
VPVD
Programmable voltage
detector level selection
PLS[2:0]=000 (rising edge) 2.09 2.14 2.19
V
PLS[2:0]=000 (falling edge) 1.98 2.04 2.08
PLS[2:0]=001 (rising edge) 2.23 2.30 2.37
PLS[2:0]=001 (falling edge) 2.13 2.19 2.25
PLS[2:0]=010 (rising edge) 2.39 2.45 2.51
PLS[2:0]=010 (falling edge) 2.29 2.35 2.39
PLS[2:0]=011 (rising edge) 2.54 2.60 2.65
PLS[2:0]=011 (falling edge) 2.44 2.51 2.56
PLS[2:0]=100 (rising edge) 2.70 2.76 2.82
PLS[2:0]=100 (falling edge) 2.59 2.66 2.71
PLS[2:0]=101 (rising edge) 2.86 2.93 2.99
PLS[2:0]=101 (falling edge) 2.65 2.84 2.92
PLS[2:0]=110 (rising edge) 2.96 3.03 3.10
PLS[2:0]=110 (falling edge) 2.85 2.93 2.99
PLS[2:0]=111 (rising edge) 3.07 3.14 3.21
PLS[2:0]=111 (falling edge) 2.95 3.03 3.09
VPVDhyst(2) PVD hysteresis - - 100 - mV
VPOR/PDR
Power-on/power-down
reset threshold
Falling edge 1.60(1) 1.68 1.76
V
Rising edge 1.64 1.72 1.80
VPDRhyst(2) PDR hysteresis - - 40 - mV
VBOR1
Brownout level 1
threshold
Falling edge 2.13 2.19 2.24
V
Rising edge 2.23 2.29 2.33
VBOR2
Brownout level 2
threshold
Falling edge 2.44 2.50 2.56
Rising edge 2.53 2.59 2.63
VBOR3
Brownout level 3
threshold
Falling edge 2.75 2.83 2.88
Rising edge 2.85 2.92 2.97
VBORhyst(2) BOR hysteresis - - 100 - mV
TRSTTEMPO
(2)(3) POR reset timing - 0.5 1.5 3.0 ms
Electrical characteristics STM32F401xB STM32F401xC
64/139 DocID024738 Rev 9
6.3.6 Supply current characteristics
The current consumption is a function of several parameters and factors such as the
operating voltage, ambient temperature, I/O pin loading, device software configuration,
operating frequencies, I/O pin switching rate, program location in memory and executed
binary code.
The current consumption is measured as described in Figure 19: Current consumption
measurement scheme.
All the run-mode current consumption measurements given in this section are performed
with a reduced code that gives a consumption equivalent to CoreMark code.
Typical and maximum current consumption
The MCU is placed under the following conditions:
All I/O pins are in input mode with a static value at VDD or VSS (no load).
All peripherals are disabled except if it is explicitly mentioned.
The Flash memory access time is adjusted to both fHCLK frequency and VDD ranges
(refer to Table 15: Features depending on the operating power supply range).
The voltage scaling is adjusted to fHCLK frequency as follows:
Scale 3 for fHCLK 60 MHz
Scale 2 for 60 MHz < fHCLK 84 MHz
The system clock is HCLK, fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
External clock is 4 MHz and PLL is on when fHCLK is higher than 25 MHz.
The maximum values are obtained for VDD = 3.6 V and a maximum ambient
temperature (TA), and the typical values for TA= 25 °C and VDD = 3.3 V unless
otherwise specified.
IRUSH(2)
InRush current on
voltage regulator power-
on (POR or wakeup from
Standby)
- - 160 200 mA
ERUSH(2)
InRush energy on
voltage regulator power-
on (POR or wakeup from
Standby)
VDD = 1.7 V, TA = 125 °C,
IRUSH = 171 mA for 31 µs --5.4µC
1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value.
2. Guaranteed by design.
3. The reset timing is measured from the power-on (POR reset or wakeup from VBAT) to the instant when first
instruction is fetched by the user application code.
Table 19. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID024738 Rev 9 65/139
STM32F401xB STM32F401xC Electrical characteristics
114
Table 20. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM - VDD =1.8V
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA=
25 °C
TA=
85 °C
TA=
105 °C
TA=
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(2)(3)
84 20.0 21 22 23(4) 24.1
mA
60 14.5 15 16 17 18.1
40 10.4 11 12 13 14.1
20 5.5 6 7 8 9.2
External clock,
all peripherals
disabled(3)
84 10.9 11 13 14(4) 15.1
60 8.0 9 10 11 12.1
40 5.8 6 7 8 9.2
20 3.2 4 5 6 7.2
1. Guaranteed by characterization, unless otherwise specified.
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
4. Guaranteed by test in production.
Table 21. Typical and maximum current consumption, code with data processing (ART
accelerator disabled) running from SRAM
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA=
25 °C
TA=
85 °C
TA=
105 °C
TA=
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(2)(3)
84 20.2 21 22 23 24.1
mA
60 14.7 15 16 18 19.1
40 10.7 11 12 13 14.1
20 5.7 6 7 8 9.2
External clock,
all peripherals
disabled(3)
84 11.2 12 13 14 15.1
60 8.2 9 10 11 12.1
40 6.1 7 8 9 10.1
20 3.4 4 5 6 7.2
1. Guaranteed by characterization, unless otherwise specified.
2. When analog peripheral blocks such as ADC, HSE, LSE, HSI, or LSI are ON, an additional power consumption has to be
considered.
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
Electrical characteristics STM32F401xB STM32F401xC
66/139 DocID024738 Rev 9
Table 22. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.8 V
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply
current in
Run mode
External clock,
all peripherals
enabled(2)(3)
84 22.2 23 24 25 26.1
mA
60 14.5 15 16 17 18.1
40 10.7 11 12 13 14.1
30 8.6 9 10 11 12.1
20 7.0 8 9 10 11.2
External clock,
all peripherals
disabled(3)
84 11.5 12 13 14 15.1
60 7.7 8 9 10 11.1
40 5.6 6 7 8 9.2
30 4.5 5 6 7 8.2
20 3.8 5 6 7 8.2
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 23. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.3 V
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
all peripherals
enabled(2)(3)
84 22.5 23 24 25 26.1
mA
60 14.8 16 17 18 19.1
40 11.0 12 13 14 15.1
30 8.9 10 11 12 13.1
20 7.3 8 9 10 11.2
External clock,
all peripherals disabled(3)
84 11.8 13 14 15 16.1
60 7.9 9 10 11 12.1
40 5.8 7 8 9 10.2
30 4.8 6 7 8 9.2
20 4.0 5 6 7 8.2
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
DocID024738 Rev 9 67/139
STM32F401xB STM32F401xC Electrical characteristics
114
.
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 24. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator disabled) running from Flash memory
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
all peripherals
enabled(2)(3)
84 30.6 32 34 35 36.6
mA
60 21.4 22 24 25 26.1
40 15.6 16 17 18 19.1
30 12.7 13 14 15 16.2
20 10.0 11 12 13 14.1
External clock,
all peripherals disabled(3)
84 19.9 21 23 25 26.1
60 14.6 15 16 17 18.1
40 10.4 11 12 13 14.2
30 8.6 9 10 11 12.2
20 6.7 7 8 9 10.2
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 25. Typical and maximum current consumption in run mode, code with data processing
(ART accelerator enabled with prefetch) running from Flash memory
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Run mode
External clock,
all peripherals
enabled(2)(3)
84 31.8 33 35 36 37.6
mA
60 21.8 22 23 24 25.1
40 16.0 17 18 19 20.1
30 12.9 14 15 16 17.1
20 10.4 11 12 13 14.1
External clock,
all peripherals disabled(3)
84 21.2 22 23 24 25.1
60 15.0 16 17 18 19.1
40 10.9 12 13 14 15.1
30 8.8 10 11 12 13.1
20 7.1 8 9 10 11.2
Electrical characteristics STM32F401xB STM32F401xC
68/139 DocID024738 Rev 9
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2), add an additional power consumption of 1.6mA per ADC for the
analog part.
Table 26. Typical and maximum current consumption in Sleep mode
Symbol Parameter Conditions fHCLK
(MHz) Typ
Max(1)
Unit
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD
Supply current
in Sleep mode
External clock,
all peripherals
enabled(2)(3)
84 16.2 17 18 19 20.1
mA
60 10.7 11 12 13 14.1
40 8.3 9 10 11 12.2
30 6.8 7 8 9 10.2
20 5.9 6 7 8 9.2
External clock,
all peripherals
disabled(3)(4)
84 5.2 6 7 8 9.2
60 3.6 4 5 6 7.2
40 2.9 3 4 5 5.2
30 2.6 3 4 5 5.2
20 2.6 3 4 5 5.2
1. Guaranteed by characterization, unless otherwise specified.
2. Add an additional power consumption of 1.6 mA per ADC for the analog part. In applications, this consumption occurs only
while the ADC is ON (ADON bit is set in the ADC_CR2 register).
3. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6 mA for the
analog part.
4. Same current consumption for fHCLK at 30 MHz and 20 MHz due to VCO running slower at 30 MHz.
Table 27. Typical and maximum current consumptions in Stop mode - VDD =1.8V
Symbol Parameter Conditions
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STOP
Main regulator usage Flash in Stop mode, all
oscillators OFF, no
independent watchdog
109 135 440 650 1220
µA
Low power regulator usage 41 65 310 530(2) 1080
Main regulator usage Flash in Deep power
down mode, all
oscillators OFF, no
independent watchdog
72 95 345 530 1050
Low power regulator usage 12 36 260 510(2) 1010
Low power low voltage regulator
usage 10 27 230 460 900
1. Guaranteed by characterization.
2. Guaranteed by test in production.
DocID024738 Rev 9 69/139
STM32F401xB STM32F401xC Electrical characteristics
114
Table 28. Typical and maximum current consumption in Stop mode - VDD=3.3 V
Symbol Parameter Conditions
Typ Max(1)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STOP
Main regulator usage Flash in Stop mode, all
oscillators OFF, no
independent watchdog
111 140 450 670 1250
µA
Low power regulator usage 42 65 330 560 1100
Main regulator usage Flash in Deep power
down mode, all
oscillators OFF, no
independent watchdog
73 100 360 560 1100
Low power regulator usage 12 36 270 520 1050
Low power low voltage
regulator usage 10 28 230 470 930
1. Guaranteed by characterization.
Table 29. Typical and maximum current consumption in Standby mode - VDD=1.8V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STBY
Supply current
in Standby
mode
Low-speed oscillator (LSE) and RTC
ON 2.4 4.0 12.0 24.0 50
µA
RTC and LSE OFF 1.8 3.0(3) 11.0 23.0(3) 47
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, unless otherwise specified.
3. Guaranteed by test in production.
Table 30. Typical and maximum current consumption in Standby mode - VDD=3.3 V
Symbol Parameter Conditions
Typ(1) Max(2)
Unit
TA =
25 °C
TA =
25 °C
TA =
85 °C
TA =
105 °C
TA =
125 °C
IDD_STBY
Supply current
in Standby
mode
Low-speed oscillator (LSE) and RTC
ON 2.8 5.0 14.0 28.0 58
µA
RTC and LSE OFF 2.1 4.0(3) 13.0 27.0(3) 55
1. When the PDR is OFF (internal reset is OFF), the typical current consumption is reduced by 1.2 µA.
2. Guaranteed by characterization, unless otherwise specified.
3. Guaranteed by test in production.
Electrical characteristics STM32F401xB STM32F401xC
70/139 DocID024738 Rev 9
Figure 21. Typical VBAT current consumption (LSE and RTC ON)
Table 31. Typical and maximum current consumptions in VBAT mode
Symbol Parameter Conditions(1)
Typ Max(2)
Uni
t
TA = 25 °C TA =
85 °C
TA =
105 °C
TA =
125 °C
VBAT
=
1.7 V
VBAT
=
2.4 V
VBAT
=
3.3 V
VBAT = 3.6 V
IDD_VBAT
Backup domain
supply current
Low-speed oscillator (LSE)
and RTC ON 0.66 0.76 0.97 3.0 5.0 10
µA
RTC and LSE OFF 0.1 0.1 0.1 2.0 4.0 8
1. Crystal used: Abracon ABS07-120-32.768 kHz-T with a CL of 6 pF for typical values.
2. Guaranteed by characterization.
-36



# ####
)$$?6"!4!
4EMPERATURE
6
6
6
6
6
6
6
6
6
DocID024738 Rev 9 71/139
STM32F401xB STM32F401xC Electrical characteristics
114
I/O system current consumption
The current consumption of the I/O system has two components: static and dynamic.
I/O static current consumption
All the I/Os used as inputs with pull-up generate current consumption when the pin is
externally held low. The value of this current consumption can be simply computed by using
the pull-up/pull-down resistors values given in Table 54: I/O static characteristics.
For the output pins, any external pull-down or external load must also be considered to
estimate the current consumption.
Additional I/O current consumption is due to I/Os configured as inputs if an intermediate
voltage level is externally applied. This current consumption is caused by the input Schmitt
trigger circuits used to discriminate the input value. Unless this specific configuration is
required by the application, this supply current consumption can be avoided by configuring
these I/Os in analog mode. This is notably the case of ADC input pins which should be
configured as analog inputs.
Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently,
as a result of external electromagnetic noise. To avoid current consumption related to
floating pins, they must either be configured in analog mode, or forced internally to a definite
digital value. This can be done either by using pull-up/down resistors or by configuring the
pins in output mode.
I/O dynamic current consumption
In addition to the internal peripheral current consumption (see Table 33: Peripheral current
consumption), the I/Os used by an application also contribute to the current consumption.
When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O
pin circuitry and to charge/discharge the capacitive load (internal or external) connected to
the pin:
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDD is the MCU supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
ISW VDD fSW C××=
Electrical characteristics STM32F401xB STM32F401xC
72/139 DocID024738 Rev 9
Table 32. Switching output I/O current consumption
Symbol Parameter Conditions(1)
1. CS is the PCB board capacitance including the pad pin. CS = 7 pF (estimated value).
I/O toggling
frequency (fSW)Typ Unit
IDDIO I/O switching
current
VDD = 3.3 V
C = CINT(2)
2. This test is performed by cutting the LQFP100 package pin (pad removal).
2 MHz 0.05
mA
8 MHz 0.15
25 MHz 0.45
50 MHz 0.85
60 MHz 1.00
84 MHz 1.40
VDD = 3.3 V
CEXT = 0 pF
C = CINT + CEXT + CS
2 MHz 0.10
8 MHz 0.35
25 MHz 1.05
50 MHz 2.20
60 MHz 2.40
84 MHz 3.55
VDD = 3.3 V
CEXT =10 pF
C = CINT + CEXT + CS
2 MHz 0.20
8 MHz 0.65
25 MHz 1.85
50 MHz 2.45
60 MHz 4.70
84 MHz 8.80
VDD = 3.3 V
CEXT = 22 pF
C = CINT + CEXT + CS
2 MHz 0.25
8 MHz 1.00
25 MHz 3.45
50 MHz 7.15
60 MHz 11.55
VDD = 3.3 V
CEXT = 33 pF
C = CINT + CEXT + CS
2 MHz 0.32
8 MHz 1.27
25 MHz 3.88
50 MHz 12.34
DocID024738 Rev 9 73/139
STM32F401xB STM32F401xC Electrical characteristics
114
On-chip peripheral current consumption
The MCU is placed under the following conditions:
At startup, all I/O pins are in analog input configuration.
All peripherals are disabled unless otherwise mentioned.
The ART accelerator is ON.
Voltage Scale 2 mode selected, internal digital voltage V12 = 1.26 V.
HCLK is the system clock at 84 MHz. fPCLK1 = fHCLK/2, and fPCLK2 = fHCLK.
The given value is calculated by measuring the difference of current consumption
with all peripherals clocked off
with only one peripheral clocked on
Ambient operating temperature is 25 °C and VDD=3.3 V.
Table 33. Peripheral current consumption
Peripheral IDD (typ) Unit
AHB1
(up to 84MHz)
GPIOA 1.55
µA/MHz
GPIOB 1.55
GPIOC 1.55
GPIOD 1.55
GPIOE 1.55
GPIOH 1.55
CRC 0.36
DMA1 20.24
DMA2 21.07
APB1
(up to 42MHz)
TIM2 11.19
µA/MHz
TIM3 8.57
TIM4 8.33
TIM5 11.19
PWR 0.71
USART2 3.33
I2C1/2/3 3.10
SPI2(1) 2.62
SPI3(1) 2.86
I2S2 1.90
I2S3 1.67
WWDG 0.71
AHB2
(up to 84MHz) OTG_FS 23.93 µA/MHz
Electrical characteristics STM32F401xB STM32F401xC
74/139 DocID024738 Rev 9
6.3.7 Wakeup time from low-power modes
The wakeup times given in Table 34 are measured starting from the wakeup event trigger up
to the first instruction executed by the CPU:
For Stop or Sleep modes: the wakeup event is WFE.
WKUP (PA0) pin is used to wakeup from Standby, Stop and Sleep modes.
All timings are derived from tests performed under ambient temperature and VDD=3.3 V.
APB2
(up to 84MHz)
TIM1 5.71
µA/MHz
TIM9 2.86
TIM10 1.79
TIM11 2.02
ADC1(2) 2.98
SPI1 1.19
USART1 3.10
USART6 2.86
SDIO 5.95
SPI4 1.31
SYSCFG 0.71
1. I2SMOD bit set in SPI_I2SCFGR register, and then the I2SE bit set to enable I2S peripheral.
2. When the ADC is ON (ADON bit set in the ADC_CR2 register), add an additional power consumption of 1.6
mA for the analog part.
Table 33. Peripheral current consumption (continued)
Peripheral IDD (typ) Unit
Table 34. Low-power mode wakeup timings(1)
Symbol Parameter Min(1) Typ(1) Max(1) Unit
tWUSLEEP(2) Wakeup from Sleep mode - 4 6
CPU
clock
cycle
tWUSTOP(2)
Wakeup from Stop mode, usage of main regulator - 13.5 14.5
µs
Wakeup from Stop mode, usage of main regulator, Flash
memory in Deep power down mode -105111
Wakeup from Stop mode, regulator in low power mode - 21 33
Wakeup from Stop mode, regulator in low power mode,
Flash memory in Deep power down mode -113130
tWUSTDBY(2)(3) Wakeup from Standby mode - 314 407 µs
1. Guaranteed by characterization.
2. The wakeup times are measured from the wakeup event to the point in which the application code reads the first instruction.
3. tWUSTDBY maximum value is given at –40 °C.
DocID024738 Rev 9 75/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3.8 External clock source characteristics
High-speed external user clock generated from an external source
In bypass mode the HSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 22.
The characteristics given in Table 35 result from tests performed using an high-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Low-speed external user clock generated from an external source
In bypass mode the LSE oscillator is switched off and the input pin is a standard I/O. The
external clock signal has to respect the Table 54. However, the recommended clock input
waveform is shown in Figure 23.
The characteristics given in Table 36 result from tests performed using an low-speed
external clock source, and under ambient temperature and supply voltage conditions
summarized in Table 14.
Table 35. High-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
External user clock source
frequency(1)
-
1-50MHz
VHSEH OSC_IN input pin high level voltage 0.7VDD -V
DD V
VHSEL OSC_IN input pin low level voltage VSS -0.3V
DD
tw(HSE)
tw(HSE)
OSC_IN high or low time(1)
1. Guaranteed by design.
5--
ns
tr(HSE)
tf(HSE)
OSC_IN rise or fall time(1) --10
Cin(HSE) OSC_IN input capacitance(1) --5-pF
DuCy(HSE) Duty cycle - 45 - 55 %
ILOSC_IN Input leakage current VSS VIN VDD --±1µA
Electrical characteristics STM32F401xB STM32F401xC
76/139 DocID024738 Rev 9
Figure 22. High-speed external clock source AC timing diagram
Table 36. Low-speed external user clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSE_ext
User External clock source
frequency(1)
-
- 32.768 1000 kHz
VLSEH
OSC32_IN input pin high level
voltage 0.7VDD -V
DD V
VLSEL OSC32_IN input pin low level voltage VSS -0.3V
DD
tw(LSE)
tf(LSE)
OSC32_IN high or low time(1) 450 - -
ns
tr(LSE)
tf(LSE)
OSC32_IN rise or fall time(1) --50
Cin(LSE) OSC32_IN input capacitance(1) --5-pF
DuCy(LSE) Duty cycle - 30 - 70 %
ILOSC32_IN Input leakage current VSS VIN VDD --±1µA
1. Guaranteed by design.
AI
/3# ?) .
%XTERNAL
34-&
CLOCKSOURCE
6(3%(
TF(3% T7(3%
),


4(3%
T
TR(3% T7(3%
F(3%?EXT
6(3%,
DocID024738 Rev 9 77/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 23. Low-speed external clock source AC timing diagram
High-speed external clock generated from a crystal/ceramic resonator
The high-speed external (HSE) clock can be supplied with a 4 to 26 MHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 37. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 24). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
Table 37. HSE 4-26 MHz oscillator characteristics(1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
fOSC_IN Oscillator frequency - 4 - 26 MHz
RFFeedback resistor - - 200 - k
IDD HSE current consumption
VDD=3.3 V,
ESR= 30 ,
CL=5 pF @25 MHz
-450-
µA
VDD=3.3 V,
ESR= 30 ,
CL=10 pF @25 MHz
-530-
Gm_crit_max Maximum critical crystal gmStartup - - 1 mA/V
tSU(HSE)(2)
2. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz
oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly
with the crystal manufacturer
Startup time VDD is stabilized - 2 - ms
DL
26&B,1
([WHUQDO
670)
FORFNVRXUFH
9/6(+
WI/6( W:/6(
,/


7/6(
W
WU/6( W:/6(
I/6(BH[W
9/6(/
Electrical characteristics STM32F401xB STM32F401xC
78/139 DocID024738 Rev 9
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Figure 24. Typical application with an 8 MHz crystal
1. REXT value depends on the crystal characteristics.
Low-speed external clock generated from a crystal/ceramic resonator
The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic
resonator oscillator. All the information given in this paragraph are based on
characterization results obtained with typical external components specified in Table 38. In
the application, the resonator and the load capacitors have to be placed as close as
possible to the oscillator pins in order to minimize output distortion and startup stabilization
time. Refer to the crystal resonator manufacturer for more details on the resonator
characteristics (frequency, package, accuracy).
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
Table 38. LSE oscillator characteristics (fLSE = 32.768 kHz) (1)
1. Guaranteed by design.
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor - - 18.4 - M
IDD LSE current consumption - - - 1 µA
Gm_crit_max Maximum critical crystal gmStartup - - 0.56 µA/V
tSU(LSE)(2)
2. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is guaranteed by characterization. It is measured for a
standard crystal resonator and it can vary significantly with the crystal manufacturer.
startup time VDD is stabilized - 2 - s
DL
26&B28 7
26&B,1 I+6(
&/
5)
670)
0+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
5(;7
&/
DocID024738 Rev 9 79/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 25. Typical application with a 32.768 kHz crystal
6.3.9 Internal clock source characteristics
The parameters given in Table 39 and Table 40 are derived from tests performed under
ambient temperature and VDD supply voltage conditions summarized in Table 14.
High-speed internal (HSI) RC oscillator
DL
26&B28 7
26&B,1 I/6(
&/
5)
670)
N+]
UHVRQDWRU
5HVRQDWRUZLWK
LQWHJUDWHGFDSDFLWRUV
%LDV
FRQWUROOHG
JDLQ
&/
Table 39. HSI oscillator characteristics (1)
1. VDD = 3.3 V, TA = –40 to 125 °C unless otherwise specified.
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency - - 16 - MHz
ACCHSI
HSI user trimming step(2)
2. Guaranteed by design.
---1%
Accuracy of the HSI
oscillator
Used-trimmed with the RCC_CR
register(2) --1%
Factory
Calibrated
TA = - 40 to 125 °C(3)
3. Guaranteed by characterization.
-8 - 5.5 %
TA = - 40 to 105 °C(3) -8 - 4.5 %
TA = - 10 to 85 °C(3) -4 - 4 %
TA = 25 °C(4)
4. Factory calibrated, parts not soldered.
-1 - 1 %
tsu(HSI)(2) HSI oscillator startup time - - 2.2 4 µs
IDD(HSI)(2) HSI oscillator power
consumption - - 60 80 µA
Electrical characteristics STM32F401xB STM32F401xC
80/139 DocID024738 Rev 9
Figure 26. ACCHSI versus temperature
1. Guaranteed by characterization.
Low-speed internal (LSI) RC oscillator
Table 40. LSI oscillator characteristics (1)
1. VDD = 3 V, TA = - 40 to 125 °C unless otherwise specified.
Symbol Parameter Min Typ Max Unit
fLSI(2)
2. Guaranteed by characterization.
Frequency 17 32 47 kHz
tsu(LSI)(3)
3. Guaranteed by design.
LSI oscillator startup time - 15 40 µs
IDD(LSI)(3) LSI oscillator power consumption - 0.4 0.6 µA
DocID024738 Rev 9 81/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 27. ACCLSI versus temperature
6.3.10 PLL characteristics
The parameters given in Table 41 and Table 42 are derived from tests performed under
temperature and VDD supply voltage conditions summarized in Table 14.

MAX
AVG
MIN
Table 41. Main PLL characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLL_IN PLL input clock(1) -0.95
(2) 12.10MHz
fPLL_OUT PLL multiplier output clock - 24 - 84 MHz
fPLL48_OUT
48 MHz PLL multiplier output
clock - - 48 75 MHz
fVCO_OUT PLL VCO output - 192 - 432 MHz
tLOCK PLL lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Cycle-to-cycle jitter
System clock
84 MHz
RMS - 25 -
ps
peak
to
peak
-±150 -
Period Jitter
RMS - 15 -
peak
to
peak
-±200 -
Electrical characteristics STM32F401xB STM32F401xC
82/139 DocID024738 Rev 9
IDD(PLL)(4) PLL power consumption on VDD VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75
mA
IDDA(PLL)(4) PLL power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to obtain the specified PLL input clock values. The M factor is shared
between PLL and PLLI2S.
2. Guaranteed by design.
3. The use of 2 PLLs in parallel could degraded the Jitter up to +30%.
4. Guaranteed by characterization.
Table 41. Main PLL characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 42. PLLI2S (audio PLL) characteristics
Symbol Parameter Conditions Min Typ Max Unit
fPLLI2S_IN PLLI2S input clock(1) -0.95
(2) 12.10
MHzfPLLI2S_OUT PLLI2S multiplier output clock - - - 216
fVCO_OUT PLLI2S VCO output - 192 - 432
tLOCK PLLI2S lock time
VCO freq = 192 MHz 75 - 200
µs
VCO freq = 432 MHz 100 - 300
Jitter(3)
Master I2S clock jitter
Cycle to cycle at
12.288 MHz on
48 KHz period,
N=432, R=5
RMS - 90 - -
peak
to
peak
- ±280 -
ps
Average frequency of
12.288 MHz
N = 432, R = 5
on 1000 samples
-90 -
WS I2S clock jitter Cycle to cycle at 48 KHz
on 1000 samples -400 -
IDD(PLLI2S)(4) PLLI2S power consumption on
VDD
VCO freq = 192 MHz
VCO freq = 432 MHz
0.15
0.45 -0.40
0.75
mA
IDDA(PLLI2S)(4) PLLI2S power consumption on
VDDA
VCO freq = 192 MHz
VCO freq = 432 MHz
0.30
0.55 -0.40
0.85
1. Take care of using the appropriate division factor M to have the specified PLL input clock values.
2. Guaranteed by design.
3. Value given with main PLL running.
4. Guaranteed by characterization.
DocID024738 Rev 9 83/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3.11 PLL spread spectrum clock generation (SSCG) characteristics
The spread spectrum clock generation (SSCG) feature allows to reduce electromagnetic
interferences (see Table 49: EMI characteristics for WLCSP49). It is available only on the
main PLL.
Equation 1
The frequency modulation period (MODEPER) is given by the equation below:
fPLL_IN and fMod must be expressed in Hz.
As an example:
If fPLL_IN = 1 MHz, and fMOD = 1 kHz, the modulation depth (MODEPER) is given by
equation 1:
Equation 2
Equation 2 allows to calculate the increment step (INCSTEP):
fVCO_OUT must be expressed in MHz.
With a modulation depth (md) = ±2 % (4 % peak to peak), and PLLN = 240 (in MHz):
An amplitude quantization error may be generated because the linear modulation profile is
obtained by taking the quantized values (rounded to the nearest integer) of MODPER and
INCSTEP. As a result, the achieved modulation depth is quantized. The percentage
quantized modulation depth is given by the following formula:
As a result:
Table 43. SSCG parameters constraint
Symbol Parameter Min Typ Max(1) Unit
fMod Modulation frequency - - 10 KHz
md Peak modulation depth 0.25 - 2 %
MODEPER * INCSTEP - - - 215-1 -
1. Guaranteed by design.
MODEPER round fPLL_IN 4f
Mod
×()[]=
MODEPER round 106410
3
×()[]250==
INCSTEP round 215 1()md PLLN××()100 5×MODEPER×()[]=
INCSTEP round 215 1()2240××()100 5×250×()[]126md(quantitazed)%==
mdquantized% MODEPER INCSTEP×100×5×()215 1()PLLN×()=
mdquantized% 250 126×100×5×()215 1()240×()2.002%(peak)==
Electrical characteristics STM32F401xB STM32F401xC
84/139 DocID024738 Rev 9
Figure 28 and Figure 29 show the main PLL output clock waveforms in center spread and
down spread modes, where:
F0 is fPLL_OUT nominal.
Tmode is the modulation period.
md is the modulation depth.
Figure 28. PLL output clock waveforms in center spread mode
Figure 29. PLL output clock waveforms in down spread mode
6.3.12 Memory characteristics
Flash memory
The characteristics are given at TA = 40 to 125 °C unless otherwise specified.
The devices are shipped to customers with the Flash memory erased.
&REQUENCY0,,?/54
4IME
&
TMODE XTMODE
MD
AI
MD
)UHTXHQF\3//B287
7LPH
)
WPRGH [WPRGH
[PG
DLE
Table 44. Flash memory characteristics
Symbol Parameter Conditions Min Typ Max Unit
IDD Supply current
Write / Erase 8-bit mode, VDD = 1.7 V - 5 -
mAWrite / Erase 16-bit mode, VDD = 2.1 V - 8 -
Write / Erase 32-bit mode, VDD = 3.3 V - 12 -
DocID024738 Rev 9 85/139
STM32F401xB STM32F401xC Electrical characteristics
114
Table 45. Flash memory programming
Symbol Parameter Conditions Min(1) Typ Max(1)
1. Guaranteed by characterization.
Unit
tprog Word programming time Program/erase parallelism
(PSIZE) = x 8/16/32 -16100
(2)
2. The maximum programming time is measured after 100K erase operations.
µs
tERASE16KB Sector (16 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 400 800
ms
Program/erase parallelism
(PSIZE) = x 16 - 300 600
Program/erase parallelism
(PSIZE) = x 32 - 250 500
tERASE64KB Sector (64 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 - 1200 2400
ms
Program/erase parallelism
(PSIZE) = x 16 - 700 1400
Program/erase parallelism
(PSIZE) = x 32 - 550 1100
tERASE128KB Sector (128 KB) erase time
Program/erase parallelism
(PSIZE) = x 8 -24
s
Program/erase parallelism
(PSIZE) = x 16 -1.32.6
Program/erase parallelism
(PSIZE) = x 32 -12
tME Mass erase time
Program/erase parallelism
(PSIZE) = x 8 -48
s
Program/erase parallelism
(PSIZE) = x 16 - 2.75 5.5
Program/erase parallelism
(PSIZE) = x 32 -24
Vprog Programming voltage
32-bit program operation 2.7 - 3.6 V
16-bit program operation 2.1 - 3.6 V
8-bit program operation 1.7 - 3.6 V
Table 46. Flash memory programming with VPP voltage
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
tprog Double word programming
TA = 0 to +40 °C
VDD = 3.3 V
VPP = 8.5 V
-16100
(2) µs
tERASE16KB Sector (16 KB) erase time - 230 -
mstERASE64KB Sector (64 KB) erase time - 490 -
tERASE128KB Sector (128 KB) erase time - 875 -
tME Mass erase time - 1.750 - s
Electrical characteristics STM32F401xB STM32F401xC
86/139 DocID024738 Rev 9
6.3.13 EMC characteristics
Susceptibility tests are performed on a sample basis during device characterization.
Functional EMS (electromagnetic susceptibility)
While a simple application is executed on the device (toggling 2 LEDs through I/O ports).
the device is stressed by two electromagnetic events until a failure occurs. The failure is
indicated by the LEDs:
Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until
a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant
with the IEC 61000-4-4 standard.
A device reset allows normal operations to be resumed.
The test results are given in Table 48. They are based on the EMS levels and classes
defined in application note AN1709.
Vprog Programming voltage - 2.7 - 3.6 V
VPP VPP voltage range - 7 - 9 V
IPP
Minimum current sunk on
the VPP pin -10--mA
tVPP(3) Cumulative time during
which VPP is applied - - - 1 hour
1. Guaranteed by design.
2. The maximum programming time is measured after 100K erase operations.
3. VPP should only be connected during programming/erasing.
Table 47. Flash memory endurance and data retention
Symbol Parameter Conditions
Value Unit
Max(1)
1. Guaranteed by design.
-
NEND Endurance
TA = - 40 to +85 °C (temp. range 6)
TA = - 40 to +105 °C (temp. range 7)
TA = - 40 to +125 °C ((temp. range 3)
10 Kcycles
tRET Data retention
1 kcycle(2) at TA = 85 °C
2. Cycling performed over the whole temperature range.
30
Years
1 kcycle(2) at TA = 105 °C 10
1 kcycle(2) at TA = 125 °C 3
10 kcycles(2) at TA = 55 °C 20
Table 46. Flash memory programming with VPP voltage (continued)
Symbol Parameter Conditions Min(1) Typ Max(1) Unit
DocID024738 Rev 9 87/139
STM32F401xB STM32F401xC Electrical characteristics
114
When the application is exposed to a noisy environment, it is recommended to avoid pin
exposition to disturbances. The pins showing a middle range robustness are: PA0, PA1,
PA2, on LQFP100 packages and PDR_ON on WLCSP49.
As a consequence, it is recommended to add a serial resistor (1 k maximum) located as
close as possible to the MCU to the pins exposed to noise (connected to tracks longer than
50 mm on PCB).
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical Data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 48. EMS characteristics for LQFP100 package
Symbol Parameter Conditions Level/
Class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, LQFP100, WLCSP49,
TA=+2C, f
HCLK = 84 MHz,
conforms to IEC 61000-4-2
2B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD = 3.3 V, LQFP100, WLCSP49,
TA=+2C, f
HCLK = 84 MHz,
conforms to IEC 61000-4-4
4A
Electrical characteristics STM32F401xB STM32F401xC
88/139 DocID024738 Rev 9
Electromagnetic Interference (EMI)
The electromagnetic field emitted by the device are monitored while a simple application,
executing EEMBC code, is running. This emission test is compliant with SAE IEC61967-2
standard which specifies the test board and the pin loading.
6.3.14 Absolute maximum ratings (electrical sensitivity)
Based on three different tests (ESD, LU) using specific measurement methods, the device is
stressed in order to determine its performance in terms of electrical sensitivity.
Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test
conforms to the JESD22-A114/C101 standard.
Table 49. EMI characteristics for WLCSP49
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/84 MHz
SEMI Peak level VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz -6
dBµV30 to 130 MHz -6
130 MHz to 1 GHz -10
SAE EMI Level 1.5 -
Table 50. EMI characteristics for LQFP100
Symbol Parameter Conditions Monitored
frequency band
Max vs.
[fHSE/fCPU]Unit
25/84 MHz
SEMI Peak level VDD = 3.3 V, TA = 25 °C, conforming to
IEC61967-2
0.1 to 30 MHz 18
dBµV30 to 130 MHz 23
130 MHz to 1 GHz 12
SAE EMI Level 3.5 -
DocID024738 Rev 9 89/139
STM32F401xB STM32F401xC Electrical characteristics
114
Static latchup
Two complementary static tests are required on six parts to assess the latchup
performance:
A supply overvoltage is applied to each power supply pin
A current injection is applied to each input, output and configurable I/O pin
These tests are compliant with EIA/JESD 78A IC latchup standard.
6.3.15 I/O current injection characteristics
As a general rule, current injection to the I/O pins, due to external voltage below VSS or
above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product
operation. However, in order to give an indication of the robustness of the microcontroller in
cases when abnormal injection accidentally happens, susceptibility tests are performed on a
sample basis during device characterization.
Functional susceptibilty to I/O current injection
While a simple application is executed on the device, the device is stressed by injecting
current into the I/O pins programmed in floating input mode. While current is injected into
the I/O pin, one at a time, the device is checked for functional failures.
The failure is indicated by an out of range parameter: ADC error above a certain limit (>5
LSB TUE), out of conventional limits of induced leakage current on adjacent pins
(out of –5 µA/+0 µA range), or other functional failure (for example reset, oscillator
frequency deviation).
Negative induced leakage current is caused by negative injection and positive induced
leakage current by positive injection.
The test results are given in Table 53.
Table 51. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1) Unit
VESD(HBM)
Electrostatic discharge
voltage (human body model)
TA = +25 °C conforming to JESD22-
A114 2 2000
V
VESD(CDM)
Electrostatic discharge
voltage (charge device
model)
TA = +25 °C conforming to
ANSI/ESD STM5.3.1 II 500
1. Guaranteed by characterization.
Table 52. Electrical sensitivities
Symbol Parameter Conditions Class
LU Static latch-up class TA = + 125 °C conforming to JESD78A II level A
Electrical characteristics STM32F401xB STM32F401xC
90/139 DocID024738 Rev 9
Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may
potentially inject negative currents.
6.3.16 I/O port characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 5 4 are derived from tests
performed under the conditions summarized in Table 14. All I/Os are CMOS and TTL
compliant.
Table 53. I/O current injection susceptibility(1)
1. NA = not applicable.
Symbol Description
Functional susceptibility
Unit
Negative
injection
Positive
injection
IINJ
Injected current on BOOT0 pin –0 NA
mA
Injected current on NRST pin –0 NA
Injected current on PB3, PB4, PB5, PB6,
PB7, PB8, PB9, PC13, PC14, PC15, PH1,
PDR_ON, PC0, PC1,PC2, PC3, PD1,
PD5, PD6, PD7, PE0, PE2, PE3, PE4,
PE5, PE6
–0 NA
Injected current on any other FT pin –5 NA
Injected current on any other pins –5 +5
Table 54. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL
FT, and NRST I/O input low
level voltage 1.7 VVDD 3.6 V - -
0.35VDD–0.04(1)
V
0.3VDD(2)
BOOT0 I/O input low level
voltage
1.75 VVDD 3.6 V,
-40 °CTA 125 °C --
0.1VDD+0.1
1.7 VVDD 3.6 V,
CTA 125 °C --
VIH
FT and NRST I/O input high
level voltage(5) 1.7 VVDD 3.6 V 0.7VDD(1) --
V
BOOT0 I/O input high level
voltage
1.75 VVDD 3.6 V,
-40 °CTA 125 °C 0.17VDD+0.7(2) --
1.7 VVDD 3.6 V,
CTA 125 °C
DocID024738 Rev 9 91/139
STM32F401xB STM32F401xC Electrical characteristics
114
All I/Os are CMOS and TTL compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements for FT I/Os is shown in Figure 30.
VHYS
FT and NRST I/O input
hysteresis 1.7 VVDD 3.6 V - 10%
VDD(3) -V
BOOT0 I/O input hysteresis
1.75 VVDD 3.6 V,
-40 °CTA 125 °C -100 -mV
1.7 VVDD 3.6 V,
CTA 125 °C
Ilkg
I/O input leakage current (4) VSS VIN VDD -- ±1
µA
I/O FT input leakage current (5) VIN = 5V - - 3
RPU
Weak pull-up
equivalent
resistor(6)
All pins except
for PA10
(OTG_FS_ID) VIN = VSS
30 40 50
k
PA10
(OTG_FS_ID) 710 14
RPD
Weak pull-
down
equivalent
resistor(7)
All pins except
for PA10
(OTG_FS_ID) VIN = VDD
30 40 50
PA10
(OTG_FS_ID) 710 14
CIO(8) I/O pin capacitance - - 5 - pF
1. Guaranteed by design.
2. Guaranteed by test in production.
3. With a minimum of 200 mV.
4. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 53: I/O
current injection susceptibility
5. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be
higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 53: I/O current injection
susceptibility
6. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the
series resistance is minimum (~10% order).
7. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the
series resistance is minimum (~10% order).
8. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization.
Table 54. I/O static characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
Electrical characteristics STM32F401xB STM32F401xC
92/139 DocID024738 Rev 9
Figure 30. FT I/O input characteristics
Output driving current
The GPIOs (general purpose input/outputs) can sink or source up to ±8 mA, and sink or
source up to ±20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can
sink or source up to ±3mA. When using the PC13 to PC15 GPIOs in output mode, the speed
should not exceed 2 MHz with a maximum load of 30 pF.
In the user application, the number of I/O pins which can drive current must be limited to
respect the absolute maximum rating specified in Section 6.2. In particular:
The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run
consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating
ΣIVDD (see Table 12).
The sum of the currents sunk by all the I/Os on VSS plus the maximum Run
consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating
ΣIVSS (see Table 12).
Output voltage levels
Unless otherwise specified, the parameters given in Table 5 5 are derived from tests
performed under ambient temperature and VDD supply voltage conditions summarized in
Table 14. All I/Os are CMOS and TTL compliant.
DocID024738 Rev 9 93/139
STM32F401xB STM32F401xC Electrical characteristics
114
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 31 and
Table 56, respectively.
Unless otherwise specified, the parameters given in Table 5 6 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 1 4.
Table 55. Output voltage characteristics
Symbol Parameter Conditions Min Max Unit
VOL(1)
1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 12.
and the sum of IIO (I/O ports and control pins) must not exceed IVSS.
Output low level voltage for an I/O pin CMOS port(2)
IIO = +8 mA
2.7 V VDD 3.6 V
2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.
-0.4
V
VOH(3)
3. The IIO current sourced by the device must always respect the absolute maximum rating specified in
Table 12 and the sum of IIO (I/O ports and control pins) must not exceed IVDD.
Output high level voltage for an I/O pin VDD–0.4 -
VOL (1) Output low level voltage for an I/O pin TTL port(2)
IIO =+8 mA
2.7 V VDD 3.6 V
-0.4
V
VOH (3) Output high level voltage for an I/O pin 2.4 -
VOL(1) Output low level voltage for an I/O pin IIO = +20 mA
2.7 V VDD 3.6 V
-1.3
(4)
4. Guaranteed by characterization.
V
VOH(3) Output high level voltage for an I/O pin VDD–1.3(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +6 mA
1.8 V VDD 3.6 V
-0.4
(4)
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(4) -
VOL(1) Output low level voltage for an I/O pin IIO = +4 mA
1.7 V VDD 3.6 V
-0.4
(5)
5. Guaranteed by design.
V
VOH(3) Output high level voltage for an I/O pin VDD–0.4(5) -
Table 56. I/O AC characteristics(1)(2)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
00
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 4
MHz
CL = 50 pF, VDD 1.7 V - - 2
CL = 10 pF, VDD 2.70 V - - 8
CL = 10 pF, VDD 1.7 V - - 4
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD = 1.7 V to
3.6 V - - 100 ns
Electrical characteristics STM32F401xB STM32F401xC
94/139 DocID024738 Rev 9
01
fmax(IO)out Maximum frequency(3)
CL = 50 pF, VDD 2.70 V - - 25
MHz
CL = 50 pF, VDD 1.7 V - - 12.5
CL = 10 pF, VDD 2.70 V - - 50
CL = 10 pF, VDD 1.7 V - - 20
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 50 pF, VDD 2.7 V - - 10
ns
CL = 50 pF, VDD 1.7 V - - 20
CL = 10 pF, VDD 2.70 V - - 6
CL = 10 pF, VDD 1.7 V - - 10
10
fmax(IO)out Maximum frequency(3)
CL = 40 pF, VDD 2.70 V - - 50(4)
MHz
CL = 40 pF, VDD 1.7 V - - 25
CL = 10 pF, VDD 2.70 V - - 100(4)
CL = 10 pF, VDD 1.7 V - - 50(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 40 pF, VDD 2.70 V - - 6
ns
CL = 40 pF, VDD 1.7 V - - 10
CL = 10 pF, VDD 2.70 V - - 4
CL = 10 pF, VDD 1.7 V - - 6
11
Fmax(IO)out Maximum frequency(3)
CL = 30 pF, VDD 2.70 V - - 100(4)
MHz
CL = 30 pF, VDD 1.7 V - - 50(4)
CL = 10 pF, VDD 2.70 V - - 180(4)
CL = 10 pF, VDD 1.7 V - - 100(4)
tf(IO)out/
tr(IO)out
Output high to low level fall
time and output low to high
level rise time
CL = 30 pF, VDD 2.70 V - - 4
ns
CL = 30 pF, VDD 1.7 V - - 6
CL = 10 pF, VDD 2.70 V - - 2.5
CL = 10 pF, VDD 1.7 V - - 4
-t
EXTIpw
Pulse width of external
signals detected by the EXTI
controller
-10--ns
1. Guaranteed by characterization.
2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of
the GPIOx_SPEEDR GPIO port output speed register.
3. The maximum frequency is defined in Figure 31.
4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used.
Table 56. I/O AC characteristics(1)(2) (continued)
OSPEEDRy
[1:0] bit
value(1)
Symbol Parameter Conditions Min Typ Max Unit
DocID024738 Rev 9 95/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 31. I/O AC characteristics definition
6.3.17 NRST pin characteristics
The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up
resistor, RPU (see Table 54).
Unless otherwise specified, the parameters given in Table 5 7 are derived from tests
performed under the ambient temperature and VDD supply voltage conditions summarized
in Table 1 4. Refer to Table 54: I/O static characteristics for the values of VIH and VIL for
NRST pin.
Table 57. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
RPU
Weak pull-up equivalent
resistor(1) VIN = VSS 30 40 50 k
VF(NRST)(2) NRST Input filtered pulse - - - 100 ns
VNF(NRST)(2) NRST Input not filtered pulse VDD > 2.7 V 300 - - ns
TNRST_OUT Generated reset pulse duration Internal Reset
source 20 - - µs
1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series
resistance must be minimum (~10% order).
2. Guaranteed by design.
Electrical characteristics STM32F401xB STM32F401xC
96/139 DocID024738 Rev 9
Figure 32. Recommended NRST pin protection
1. The reset network protects the device against parasitic resets.
2. The external capacitor must be placed as close as possible to the device.
3. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in
Table 57. Otherwise the reset is not taken into account by the device.
6.3.18 TIM timer characteristics
The parameters given in Table 58 are guaranteed by design.
Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate
function characteristics (output compare, input capture, external clock, PWM output).
DLF
670)
538
1567

9''
)LOWHU
,QWHUQDO5HVHW
)
([WHUQDO
UHVHWFLUFXLW 
Table 58. TIMx characteristics(1)(2)
Symbol Parameter Conditions(3) Min Max Unit
tres(TIM) Timer resolution time
AHB/APBx prescaler=1
or 2 or 4, fTIMxCLK =
84 MHz
1-t
TIMxCLK
11.9 - ns
AHB/APBx prescaler>4,
fTIMxCLK = 84 MHz
1-t
TIMxCLK
11.9 - ns
fEXT
Timer external clock
frequency on CH1 to CH4 fTIMxCLK = 84 MHz
0f
TIMxCLK/2 MHz
042MHz
ResTIM Timer resolution - 16/32 bit
tCOUNTER
16-bit counter clock period
when internal clock is
selected
fTIMxCLK = 84 MHz 0.0119 780 µs
tMAX_COUNT
Maximum possible count with
32-bit counter
- - 65536 × 65536 tTIMxCLK
fTIMxCLK = 84 MHz - 51.1 S
1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers.
2. Guaranteed by design.
3. The maximum timer frequency on APB1 is 42 MHz and on APB2 is up to 84 MHz, by setting the TIMPRE bit in the
RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx.
DocID024738 Rev 9 97/139
STM32F401xB STM32F401xC Electrical characteristics
114
6.3.19 Communications interfaces
I2C interface characteristics
The I2C interface meets the requirements of the standard I2C communication protocol with
the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-
drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is
disabled, but is still present.
The I2C characteristics are described in Table59. Refer also to Section 6.3.16: I/O port
characteristics for more details on the input/output alternate function characteristics (SDA
and SCL).
The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400
kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the
complete solution, please contact your local ST sales representative.
Table 59. I2C characteristics
Symbol Parameter
Standard mode I2C(1) Fast mode I2C(1)(2)
Unit
Min Max Min Max
tw(SCLL) SCL clock low time 4.7 - 1.3 -
µs
tw(SCLH) SCL clock high time 4.0 - 0.6 -
tsu(SDA) SDA setup time 250 - 100 -
ns
th(SDA) SDA data hold time 0 - 0 900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time - 1000 - 300
tf(SDA)
tf(SCL)
SDA and SCL fall time - 300 - 300
th(STA) Start condition hold time 4.0 - 0.6 -
µs
tsu(STA) Repeated Start condition setup time 4.7 - 0.6 -
tsu(STO) Stop condition setup time 4.0 - 0.6 - µs
tw(STO:STA) Stop to Start condition time (bus free) 4.7 - 1.3 - µs
tSP
Pulse width of the spikes that are
suppressed by the analog filter for
standard fast mode
050
(4) 050
(4) ns
CbCapacitive load for each bus line - 400 - 400 pF
1. Guaranteed by design.
2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode
I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock.
3. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal.
4. The minimum width of the spikes filtered by the analog filter is above tSP (max).
Electrical characteristics STM32F401xB STM32F401xC
98/139 DocID024738 Rev 9
Figure 33. I2C bus AC waveforms and measurement circuit
1. RS = series protection resistor.
2. RP = external pull-up resistor.
3. VDD_I2C is the I2C bus power supply.
Table 60. SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C = 3.3 V)(1)(2)
1. RP = External pull-up resistance, fSCL = I2C speed
2. For speeds around 200 kHz, the tolerance on the achieved speed is of ±5%. For other speed ranges, the
tolerance on the achieved speed is ±2%. These variations depend on the accuracy of the external
components used to design the application.
fSCL (kHz)
I2C_CCR value
RP = 4.7 k
400 0x8019
300 0x8021
200 0x8032
100 0x0096
50 0x012C
20 0x02EE
DocID024738 Rev 9 99/139
STM32F401xB STM32F401xC Electrical characteristics
114
SPI interface characteristics
Unless otherwise specified, the parameters given in Table 6 1 for the SPI interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Table 61. SPI dynamic characteristics(1)
Symbol Parameter Conditions Min Typ Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode, SPI1/4,
2.7 V < VDD <3.6V
--
42
MHz
Slave mode, SPI1/4,
2.7 V < VDD <3.6V 42
Slave transmitter/full-duplex mode,
SPI1/4, 2.7 V < VDD <3.6V 38(2)
Master mode, SPI1/2/3/4,
1.7 V < VDD <3.6V 21
Slave mode, SPI1/2/3/4,
1.7 V < VDD <3.6V 21
Duty(SCK) Duty cycle of SPI clock
frequency Slave mode 30 50 70 %
tw(SCKH)
tw(SCKL)
SCK high and low time Master mode, SPI presc = 2 TPCLK1.5 TPCLK TPCLK+1.5 ns
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4TPCLK --ns
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TPCLK --ns
tsu(MI) Data input setup time
Master mode 0 - - ns
tsu(SI) Slave mode 2.5 - - ns
th(MI) Data input hold time
Master mode 6 - - ns
th(SI) Slave mode 2.5 - - ns
ta(SO) Data output access time Slave mode 9 - 20 ns
tdis(SO) Data output disable time Slave mode 8 - 13 ns
tv(SO) Data output valid time
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V -9.513ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V -9.517ns
th(SO) Data output hold time
Slave mode (after enable edge),
2.7 V < VDD < 3.6 V 5.5 - - ns
Slave mode (after enable edge),
1.7 V < VDD < 3.6 V 3.5 - - ns
Electrical characteristics STM32F401xB STM32F401xC
100/139 DocID024738 Rev 9
Figure 34. SPI timing diagram - slave mode and CPHA = 0
Figure 35. SPI timing diagram - slave mode and CPHA = 1(1)
tv(MO) Data output valid time Master mode (after enable edge) - 3 5 ns
th(MO) Data output hold time Master mode (after enable edge) 2 - - ns
1. Guaranteed by characterization.
2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or
high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master
having tsu(MI) = 0 while Duty(SCK) = 50%
Table 61. SPI dynamic characteristics(1) (continued)
Symbol Parameter Conditions Min Typ Max Unit
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6,
WK6,
WZ6&./
WZ6&.+
WF6&.
WU6&.
WK166
WGLV62
WVX166
WD62 WY62
1H[WELWV,1
/DVWELW287
)LUVWELW,1
)LUVWELW287 1H[WELWV287
WK62 WI6&.
/DVWELW,1
06Y9
166LQSXW
&3+$ 
&32/ 
6&.LQSXW
&3+$ 
&32/ 
0,62RXWSXW
026,LQSXW
WVX6, WK6,
WZ6&./
WZ6&.+
WVX166
WF6&.
WD62 WY62
)LUVWELW287 1H[WELWV287
1H[WELWV,1
/DVWELW287
WK62 WU6&.
WI6&. WK166
WGLV62
)LUVWELW,1 /DVWELW,1
DocID024738 Rev 9 101/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 36. SPI timing diagram - master mode(1)
DLF
6&.2XWSXW
&3+$
026,
287387
0,62
,13 87
&3+$
/6%287
/6%,1
&32/ 
&32/ 
% , 7287
166LQSXW
WF6&.
WZ6&.+
WZ6&./
WU6&.
WI6&.
WK0,
+LJK
6&.2XWSXW
&3+$
&3+$
&32/ 
&32/ 
WVX0,
WY02 WK02
06%,1 %,7,1
06%287
Electrical characteristics STM32F401xB STM32F401xC
102/139 DocID024738 Rev 9
I2S interface characteristics
Unless otherwise specified, the parameters given in Table 6 2 for the I2S interface are
derived from tests performed under the ambient temperature, fPCLKx frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate
function characteristics (CK, SD, WS).
Note: Refer to the I2S section of the reference manual for more details on the sampling frequency
(FS).
fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these
parameters might be slightly impacted by the source clock precision. DCK depends mainly
on the value of ODD bit. The digital contribution leads to a minimum value of
(I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS
maximum value is supported for each mode/condition.
Table 62. I2S dynamic characteristics(1)
Symbol Parameter Conditions Min Max Unit
fMCK I2S Main clock output - 256x8K 256xFs(2) MHz
fCK I2S clock frequency
Master data: 32 bits - 64xFs
MHz
Slave data: 32 bits - 64xFs
DCK I2S clock frequency duty cycle Slave receiver 30 70 %
tv(WS) WS valid time Master mode 0 6
ns
th(WS) WS hold time Master mode 0 -
tsu(WS) WS setup time Slave mode 1 -
th(WS) WS hold time Slave mode 0 -
tsu(SD_MR) Data input setup time
Master receiver 7.5 -
tsu(SD_SR) Slave receiver 2 -
th(SD_MR) Data input hold time
Master receiver 0 -
th(SD_SR) Slave receiver 0 -
tv(SD_ST)
th(SD_ST) Data output valid time
Slave transmitter (after enable edge) - 27
tv(SD_MT) Master transmitter (after enable edge) - 20
th(SD_MT) Data output hold time Master transmitter (after enable edge) 2.5 -
1. Guaranteed by characterization.
2. The maximum value of 256xFs is 42 MHz (APB1 maximum frequency).
DocID024738 Rev 9 103/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 37. I2S slave timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
Figure 38. I2S master timing diagram (Philips protocol)(1)
1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first
byte.
CK Input
CPOL = 0
CPOL = 1
tc(CK)
WS input
SDtransmit
SDreceive
tw(CKH) tw(CKL)
tsu(WS) tv(SD_ST) th(SD_ST)
th(WS)
tsu(SD_SR) th(SD_SR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14881b
LSB receive(2)
LSB transmit(2)
CK output
CPOL = 0
CPOL = 1
tc(CK)
WS output
SDreceive
SDtransmit
tw(CKH)
tw(CKL)
tsu(SD_MR)
tv(SD_MT) th(SD_MT)
th(WS)
th(SD_MR)
MSB receive Bitn receive LSB receive
MSB transmit Bitn transmit LSB transmit
ai14884b
tf(CK) tr(CK)
tv(WS)
LSB receive
(2)
LSB transmit
(2)
Electrical characteristics STM32F401xB STM32F401xC
104/139 DocID024738 Rev 9
USB OTG full speed (FS) characteristics
This interface is present in USB OTG FS controller.
Note: When VBUS sensing feature is enabled, PA9 should be left at their default state (floating
input), not as alternate function. A typical 200 µA current consumption of the embedded
sensing block (current to voltage conversion to determine the different sessions) can be
observed on PA9 when the feature is enabled.
Table 63. USB OTG FS startup time
Symbol Parameter Max Unit
tSTARTUP(1)
1. Guaranteed by design.
USB OTG FS transceiver startup time 1 µs
Table 64. USB OTG FS DC electrical characteristics
Symbol Parameter Conditions Min.(1)
1. All the voltages are measured from the local ground potential.
Typ. Max.(1) Unit
Input
levels
VDD
USB OTG FS operating
voltage -3.0
(2)
2. The USB OTG FS functionality is ensured down to 2.7 V but not the full USB full speed electrical
characteristics which are degraded in the 2.7-to-3.0 V VDD voltage range.
-3.6V
VDI(3)
3. Guaranteed by design.
Differential input sensitivity I(USB_FS_DP/DM) 0.2 - -
V
VCM(3) Differential common mode
range Includes VDI range 0.8 - 2.5
VSE(3) Single ended receiver
threshold - 1.3 - 2.0
Output
levels
VOL Static output level low RL of 1.5 k to 3.6 V(4)
4. RL is the load connected on the USB OTG FS drivers.
--0.3
V
VOH Static output level high RL of 15 k to VSS(4) 2.8 - 3.6
RPD
PA11, PA12
(USB_FS_DM/DP) VIN = VDD
17 21 24
k
PA9 (OTG_FS_VBUS) 0.65 1.1 2.0
RPU
PA11, PA12
(USB_FS_DM/DP) VIN = VSS 1.5 1.8 2.1
PA9 (OTG_FS_VBUS) VIN = VSS 0.25 0.37 0.55
DocID024738 Rev 9 105/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 39. USB OTG FS timings: definition of data signal rise and fall time
6.3.20 12-bit ADC characteristics
Unless otherwise specified, the parameters given in Table 6 6 are derived from tests
performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage
conditions summarized in Table 14.
Table 65. USB OTG FS electrical characteristics(1)
1. Guaranteed by design.
Driver characteristics
Symbol Parameter Conditions Min Max Unit
trRise time(2)
2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB
Specification - Chapter 7 (version 2.0).
CL = 50 pF 420ns
tfFall time(2) CL = 50 pF 4 20 ns
trfm Rise/ fall time matching tr/tf90 110 %
VCRS Output signal crossover voltage - 1.3 2.0 V
DLE
&URVVRYHU
SRLQWV
'LIIHUHQWLDO
GDWDOLQHV
9&56
966
WIWU
Table 66. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
VDDA Power supply
VDDA VREF+ < 1.2 V
1.7(1) -3.6
VVREF+ Positive reference voltage 1.7(1) -V
DDA
VREF- Negative reference voltage - - 0 -
fADC ADC clock frequency
VDDA = 1.7(1) to 2.4 V 0.6 15 18 MHz
VDDA = 2.4 to 3.6 V 0.6 30 36 MHz
fTRIG(2) External trigger frequency
fADC = 30 MHz,
12-bit resolution - - 1764 kHz
---171/f
ADC
VAIN Conversion voltage range(3) -0 (VSSA or VREF-
tied to ground) -V
REF+ V
RAIN(2) External input impedance See Equation 1 for
details --50κΩ
RADC(2)(4) Sampling switch resistance - - - 6 κΩ
Electrical characteristics STM32F401xB STM32F401xC
106/139 DocID024738 Rev 9
CADC(2) Internal sample and hold
capacitor -47pF
tlat(2) Injection trigger conversion
latency
fADC = 30 MHz - - 0.100 µs
---3
(5) 1/fADC
tlatr(2) Regular trigger conversion
latency
fADC = 30 MHz - - 0.067 µs
---2
(5) 1/fADC
tS(2) Sampling time
fADC = 30 MHz 0.100 - 16 µs
- 3 - 480 1/fADC
tSTAB(2) Power-up time - - 2 3 µs
tCONV(2) Total conversion time (including
sampling time)
fADC = 30 MHz
12-bit resolution 0.50 - 16.40 µs
fADC = 30 MHz
10-bit resolution 0.43 - 16.34 µs
fADC = 30 MHz
8-bit resolution 0.37 - 16.27 µs
fADC = 30 MHz
6-bit resolution 0.30 - 16.20 µs
9 to 492 (tS for sampling +n-bit resolution for successive
approximation) 1/fADC
fS(2)
Sampling rate
(fADC = 30 MHz, and
tS = 3 ADC cycles)
12-bit resolution
Single ADC - - 2 Msps
12-bit resolution
Interleave Dual ADC
mode
- - 3.75 Msps
12-bit resolution
Interleave Triple ADC
mode
- - 6 Msps
IVREF+(2)
ADC VREF DC current
consumption in conversion
mode
- - 300 500 µA
IVDDA(2)
ADC VDDA DC current
consumption in conversion
mode
--1.61.8mA
1. VDDA minimum value of 1.7 V is possible with the use of an external power supply supervisor (refer to Section 3.14.2:
Internal reset OFF).
2. Guaranteed by characterization.
3. VREF+ is internally connected to VDDA and VREF- is internally connected to VSSA.
4. RADC maximum value is given for VDD=1.7 V, and minimum value for VDD=3.3 V.
5. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 66.
Table 66. ADC characteristics (continued)
Symbol Parameter Conditions Min Typ Max Unit
DocID024738 Rev 9 107/139
STM32F401xB STM32F401xC Electrical characteristics
114
Equation 1: RAIN max formula
The formula above (Equation 1) is used to determine the maximum external impedance
allowed for an error below 1/4 of LSB. N = 12 (from 12-bit resolution) and k is the number of
sampling periods defined in the ADC_SMPR1 register.
Table 67. ADC accuracy at fADC = 18 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization.
Unit
ET Total unadjusted error
fADC =18 MHz
VDDA = 1.7 to 3.6 V
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±3 ±4
LSB
EO Offset error ±2 ±3
EG Gain error ±1 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±2 ±3
Table 68. ADC accuracy at fADC = 30 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization.
Unit
ET Total unadjusted error
fADC = 30 MHz,
RAIN < 10 k,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V,
VDDA VREF < 1.2 V
±2 ±5
LSB
EO Offset error ±1.5 ±2.5
EG Gain error ±1.5 ±3
ED Differential linearity error ±1 ±2
EL Integral linearity error ±1.5 ±3
Table 69. ADC accuracy at fADC = 36 MHz
Symbol Parameter Test conditions Typ Max(1)
1. Guaranteed by characterization.
Unit
ET Total unadjusted error
fADC =36 MHz,
VDDA = 2.4 to 3.6 V,
VREF = 1.7 to 3.6 V
VDDA VREF < 1.2 V
±4 ±7
LSB
EO Offset error ±2 ±3
EG Gain error ±3 ±6
ED Differential linearity error ±2 ±3
EL Integral linearity error ±3 ±6
RAIN
k0.5()
fADC CADC 2N2+
()ln××
---------------------------------------------------------------- RADC
=
Electrical characteristics STM32F401xB STM32F401xC
108/139 DocID024738 Rev 9
Note: ADC accuracy vs. negative injection current: injecting a negative current on any analog
input pins should be avoided as this significantly reduces the accuracy of the conversion
being performed on another analog input. It is recommended to add a Schottky diode (pin to
ground) to analog pins which may potentially inject negative currents.
Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in
Section 6.3.16 does not affect the ADC accuracy.
Table 70. ADC dynamic accuracy at fADC = 18 MHz - limited test conditions(1)
1. Guaranteed by characterization.
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits
fADC =18 MHz
VDDA = VREF+= 1.7 V
Input Frequency = 20 KHz
Temperature = 25 °C
10.3 10.4 - bits
SINAD Signal-to-noise and distortion
ratio 64 64.2 -
dB
SNR Signal-to-noise ratio 64 65 -
THD Total harmonic distortion -67 -72 -
Table 71. ADC dynamic accuracy at fADC = 36 MHz - limited test conditions(1)
1. Guaranteed by characterization.
Symbol Parameter Test conditions Min Typ Max Unit
ENOB Effective number of bits fADC = 36 MHz
VDDA = VREF+ = 3.3 V
Input Frequency =
20 KHz
Temperature = 25 °C
10.6 10.8 - bits
SINAD Signal-to noise and distortion
ratio 66 67 -
dB
SNR Signal-to noise ratio 64 68 -
THD Total harmonic distortion -70 -72 -
DocID024738 Rev 9 109/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 40. ADC accuracy characteristics
1. See also Table 68.
2. Example of an actual transfer curve.
3. Ideal transfer curve.
4. End point correlation line.
5. ET = Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves.
EO = Offset Error: deviation between the first actual transition and the first ideal one.
EG = Gain Error: deviation between the last ideal transition and the last actual one.
ED = Differential Linearity Error: maximum deviation between actual steps and the ideal one.
EL = Integral Linearity Error: maximum deviation between any actual transition and the end point
correlation line.
Figure 41. Typical connection diagram using the ADC
1. Refer to Table 66 for the values of RAIN, RADC and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (roughly 5 pF). A high Cparasitic value downgrades conversion accuracy. To remedy this,
fADC should be reduced.
AIC
%/
%'
, 3")$%!,



    


%4
%$
%,

6$$!
633!
62%&
 ORDEPENDINGONPACKAGE=
6$$!

;,3" )$%!,

DL
670)
9''
$,1[
,/$
9
97
5$,1
&SDUDVLWLF
9$,1
9
97
5$'&
&$'&
ELW
FRQYHUWHU
6DPSOHDQGKROG$'&
FRQYHUWHU
Electrical characteristics STM32F401xB STM32F401xC
110/139 DocID024738 Rev 9
General PCB design guidelines
Power supply decoupling should be performed as shown in Figure 42 or Figure 43,
depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be
ceramic (good quality). They should be placed them as close as possible to the chip.
Figure 42. Power supply and reference decoupling (VREF+ not connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
670)
)Q)
)Q)
95()
9''$
966$95()

DLE
DocID024738 Rev 9 111/139
STM32F401xB STM32F401xC Electrical characteristics
114
Figure 43. Power supply and reference decoupling (VREF+ connected to VDDA)
1. VREF+ and VREF- inputs are both available on UFBGA100. VREF+ is also available on LQFP100. When
VREF+ and VREF- are not available, they are internally connected to VDDA and VSSA.
6.3.21 Temperature sensor characteristics
670)
)Q)
DLF
95()9''$
95()966$ 

Table 72. Temperature sensor characteristics
Symbol Parameter Min Typ Max Unit
TL(1) VSENSE linearity with temperature - ±1±C
Avg_Slope(1) Average slope - 2.5 - mV/°C
V25(1) Voltage at 25 °C - 0.76 - V
tSTART(2) Startup time - 6 10 µs
TS_temp(2) ADC sampling time when reading the temperature (1 °C accuracy) 10 - - µs
1. Guaranteed by characterization.
2. Guaranteed by design.
Table 73. Temperature sensor calibration values
Symbol Parameter Memory address
TS_CAL1 TS ADC raw data acquired at temperature of 30 °C, VDDA= 3.3 V 0x1FFF 7A2C - 0x1FFF 7A2D
TS_CAL2 TS ADC raw data acquired at temperature of 110 °C, VDDA= 3.3 V 0x1FFF 7A2E - 0x1FFF 7A2F
Electrical characteristics STM32F401xB STM32F401xC
112/139 DocID024738 Rev 9
6.3.22 VBAT monitoring characteristics
6.3.23 Embedded reference voltage
The parameters given in Table 75 are derived from tests performed under ambient
temperature and VDD supply voltage conditions summarized in Table 14.
6.3.24 SD/SDIO MMC card host interface (SDIO) characteristics
Unless otherwise specified, the parameters given in Table 7 7 for the SDIO/MMC interface
are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD
supply voltage conditions summarized in Table 14, with the following configuration:
Output speed is set to OSPEEDRy[1:0] = 10
Capacitive load C = 30 pF
Measurement points are done at CMOS levels: 0.5VDD
Table 74. VBAT monitoring characteristics
Symbol Parameter Min Typ Max Unit
R Resistor bridge for VBAT -50-K
Q Ratio on VBAT measurement - 4 - -
Er(1) Error on Q –1 - +1 %
TS_vbat(2)(2) ADC sampling time when reading the VBAT
1 mV accuracy 5--µs
1. Guaranteed by design.
2. Shortest sampling time can be determined in the application by multiple iterations.
Table 75. Embedded internal reference voltage
Symbol Parameter Conditions Min Typ Max Unit
VREFINT Internal reference voltage –40 °C < TA < + 125 °C 1.18 1.21 1.24 V
TS_vrefint(1) ADC sampling time when reading the
internal reference voltage -10--µs
VRERINT_s(2) Internal reference voltage spread over the
temperature range VDD = 3V ± 10mV - 3 5 mV
TCoeff(2) Temperature coefficient - - 30 50 ppm/°C
tSTART(2) Startup time - - 6 10 µs
1. Shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
Table 76. Internal reference voltage calibration values
Symbol Parameter Memory address
VREFIN_CAL
Raw data acquired at temperature of
30 °C VDDA = 3.3 V 0x1FFF 7A2A - 0x1FFF 7A2B
DocID024738 Rev 9 113/139
STM32F401xB STM32F401xC Electrical characteristics
114
Refer to Section 6.3.16: I/O port characteristics for more details on the input/output
characteristics.
Figure 44. SDIO high-speed mode
Figure 45. SD default mode
CK
D, CMD
(output)
tOVD tOHD
ai14888
Table 77. Dynamic characteristics: SD / MMC characteristics(1)(2)
Symbol Parameter Conditions Min Typ Max Unit
fPP Clock frequency in data transfer mode - 0 - 48 MHz
- SDIO_CK/fPCLK2 frequency ratio - - - 8/3 -
tW(CKL) Clock low time fpp = 48MHz 8.5 9 -
ns
tW(CKH) Clock high time fpp = 48MHz 8.3 10 -
CMD, D inputs (referenced to CK) in MMC and SD HS mode
tISU Input setup time HS fpp = 48MHz 3.5 - -
ns
tIH Input hold time HS fpp = 48MHz 0 - -
CMD, D outputs (referenced to CK) in MMC and SD HS mode
tOV Output valid time HS fpp = 48MHz - 4.5 7
ns
tOH Output hold time HS fpp = 48MHz 3 - -
Electrical characteristics STM32F401xB STM32F401xC
114/139 DocID024738 Rev 9
6.3.25 RTC characteristics
CMD, D inputs (referenced to CK) in SD default mode
tISUD Input setup time SD fpp = 24MHz 1.5 - -
ns
tIHD Input hold time SD fpp = 24MHz 0.5 - -
CMD, D outputs (referenced to CK) in SD default mode
tOVD Output valid default time SD fpp =24MHz - 4.5 6.5
ns
tOHD Output hold default time SD fpp =24MHz 3.5 - -
1. Guaranteed by characterization results.
2. VDD = 2.7 to 3.6 V.
Table 77. Dynamic characteristics: SD / MMC characteristics(1)(2) (continued)
Symbol Parameter Conditions Min Typ Max Unit
Table 78. RTC characteristics
Symbol Parameter Conditions Min Max
-f
PCLK1/RTCCLK frequency ratio Any read/write operation
from/to an RTC register 4-
DocID024738 Rev 9 115/139
STM32F401xB STM32F401xC Package information
132
7 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
7.1 WLCSP49 package information
Figure 46. WLCSP49 - 49-ball, 2.965 x 2.965 mm, 0.4 mm pitch wafer level chip scale
package outline
1. Drawing is not to scale.
!ORIENTATION
REFERENCE
7AFERBACKSIDE
%
$
$ETAIL!
ROTATED
3EATINGPLANE
.OTE
!
"UMP
B
3IDEVIEW
!
!
$ETAIL!
E
&
'
E
E
!BALLLOCATION
E %
!
"UMPSIDE
EEE :
.OTE
&RONTVIEW
!6!?-%?6
'
!
Package information STM32F401xB STM32F401xC
116/139 DocID024738 Rev 9
Figure 47. WLCSP49 - 49-ball, 2.999 mm, 0.4 mm pitch wafer level chip scale
recommended footprint
Table 79. WLCSP49 - 49-ball, 2.965 x 2.965 mm, 0.4 mm pitch wafer level chip scale
package mechanical data
Symbol
millimeters inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Min Typ Max Min Typ Max
A 0.525 0.555 0.585 0.0207 0.0219 0.0230
A1 - 0.175 - - 0.0069 -
A2 - 0.380 - - 0.0150 -
A3(2)
2. Back side coating.
- 0.025 - - 0.0010 -
b(3)
3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.
0.220 0.250 0.280 0.0087 0.0098 0.0110
D 2.930 2.965 3.000 0.1154 0.1167 0.1181
E 2.930 2.965 3.000 0.1154 0.1167 0.1181
e - 0.400 - - 0.0157 -
e1 - 2.400 - - 0.0945 -
e2 - 2.400 - - 0.0945 -
F - 0.2825 - - 0.0111 -
G - 0.2825 - - 0.0111 -
aaa - 0.100 - - 0.0039 -
bbb - 0.100 - - 0.0039 -
ccc - 0.100 - - 0.0039 -
ddd - 0.050 - - 0.0020 -
eee - 0.050 - - 0.0020 -
069
'VP
'SDG
DocID024738 Rev 9 117/139
STM32F401xB STM32F401xC Package information
132
Device marking for WLCSP49
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 48. WLCSP49 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
Table 80. WLCSP49 recommended PCB design rules (0.4 mm pitch)
Dimension Recommended values
Pitch 0.4 mm
Dpad 260 µm max. (circular)
220 µm recommended
Dsm 300 µm min. (for 260 µm diameter pad)
PCB pad design Non-solder mask defined via underbump allowed
Package information STM32F401xB STM32F401xC
118/139 DocID024738 Rev 9
7.2 UFQFPN48 package information
Figure 49. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package outline
1. Drawing is not to scale.
2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and
solder this back-side pad to PCB ground.
$%B0(B9
'
3LQLGHQWLILHU
ODVHUPDUNLQJDUHD
((
'<
'
(
([SRVHGSDG
DUHD
=

'HWDLO=
5W\S

/
&[
SLQFRUQHU
$
6HDWLQJ
SODQH
$
E
H
GGG
'HWDLO<
7
Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A 0.500 0.550 0.600 0.0197 0.0217 0.0236
A1 0.000 0.020 0.050 0.0000 0.0008 0.0020
D 6.900 7.000 7.100 0.2717 0.2756 0.2795
E 6.900 7.000 7.100 0.2717 0.2756 0.2795
D2 5.500 5.600 5.700 0.2165 0.2205 0.2244
DocID024738 Rev 9 119/139
STM32F401xB STM32F401xC Package information
132
Figure 50. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat recommended footprint
1. Dimensions are in millimeters.
E2 5.500 5.600 5.700 0.2165 0.2205 0.2244
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
T - 0.152 - - 0.0060 -
b 0.200 0.250 0.300 0.0079 0.0098 0.0118
e - 0.500 - - 0.0197 -
ddd - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 81. UFQFPN48 - 48-lead, 7 x 7 mm, 0.5 mm pitch, ultra thin fine pitch
quad flat package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.




 







!"?&0?6


 



Package information STM32F401xB STM32F401xC
120/139 DocID024738 Rev 9
Device marking for UFQFPN48
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 51. UFQFPN48 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
DocID024738 Rev 9 121/139
STM32F401xB STM32F401xC Package information
132
7.3 LQFP64 package information
Figure 52. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
1. Drawing is not to scale.
Table 82. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
Package information STM32F401xB STM32F401xC
122/139 DocID024738 Rev 9
Figure 53. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
recommended footprint
1. Dimensions are expressed in millimeters.
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0°3.5°7° 0°3.5°7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 82. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data (continued)
Symbol
millimeters inches(1)
Min Typ Max Min Typ Max



 










AIC
DocID024738 Rev 9 123/139
STM32F401xB STM32F401xC Package information
132
Device marking for LQFP64
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 54. LQFP64 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
5HYLVLRQFRGH
670)
5%7
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
<::
3LQ
LQGHQWLILHU
5
Package information STM32F401xB STM32F401xC
124/139 DocID024738 Rev 9
7.4 LQFP100 package information
Figure 55. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
package outline
1. Drawing is not to scale.
DocID024738 Rev 9 125/139
STM32F401xB STM32F401xC Package information
132
Table 83. LQPF100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 1.60 - - 0.063
A1 0.050 - 0.150 0.002 - 0.0059
A2 1.350 1.40 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.622 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.622 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 - 12.000 - - 0.4724 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
K 0.0° 3.5° 7.0° 0.0° 3.5° 7.0°
ccc 0.080 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Package information STM32F401xB STM32F401xC
126/139 DocID024738 Rev 9
Figure 56. LQFP100 - 100-pin, 14 x 14 mm, 100-pin low-profile quad flat
recommended footprint
1. Dimensions are in millimeters.
 
 

 
 




AIC
DocID024738 Rev 9 127/139
STM32F401xB STM32F401xC Package information
132
Device marking for LQFP100
The following figure gives an example of topside marking orientation versus pin 1 identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 57. LQPF100 marking example (package top view)
1. Parts marked Parts marked as ES or E or accompanied by an Engineering Sample notification letter are
not yet qualified and therefore not approved for use in production. ST is not responsible for any
consequences resulting from such use. In no event will ST be liable for the customer using any of these
engineering samples in production. ST’s Quality department must be contacted prior to any decision to use
these engineering samples to run a qualification activity.
06Y9
(6)
9%75
5HYLVLRQFRGH
3URGXFWLGHQWLILFDWLRQ
'DWHFRGH
3LQ
LQGHQWLILHU
<::
Package information STM32F401xB STM32F401xC
128/139 DocID024738 Rev 9
7.5 UFBGA100 package information
Figure 58. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch
ball grid array package outline
1. Drawing is not to scale.
Table 84. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 0.0094
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
DocID024738 Rev 9 129/139
STM32F401xB STM32F401xC Package information
132
Figure 59. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint
ddd - - 0.080 - - 0.0031
eee - - 0.150 - - 0.0059
fff - - 0.050 - - 0.0020
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Table 85. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5
Dpad 0.280 mm
Dsm 0.370 mm typ. (depends on the solder mask
registration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Table 84. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
package mechanical data (continued)
Symbol
millimeters inches(1)
Min. Typ. Max. Min. Typ. Max.
Package information STM32F401xB STM32F401xC
130/139 DocID024738 Rev 9
Device marking for UFBGA100
The following figure gives an example of topside marking orientation versus ball A1 identifier
location.
Other optional marking or inset/upset marks, which depend on supply chain operations, are
not indicated below.
Figure 60. UFBGA100 marking example (package top view)
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
06Y9
670)
9%+
< ::
3URGXFWLGHQWLILFDWLRQ
5HYLVLRQFRGH
5
'DWHFRGH
%DOO
LQGHQWLILHU
DocID024738 Rev 9 131/139
STM32F401xB STM32F401xC Package information
132
7.6 Thermal characteristics
The maximum chip junction temperature (TJmax) must never exceed the values given in
Table 14: General operating conditions on page 59.
The maximum chip-junction temperature, TJ max., in degrees Celsius, may be calculated
using the following equation:
TJ max = TA max + (PD max x Θ
JA)
Where:
TA max is the maximum ambient temperature in °C,
•Θ
JA is the package junction-to-ambient thermal resistance, in °C/W,
PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax),
PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/O max represents the maximum power dissipation on output pins where:
PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH),
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the
application.
7.6.1 Reference document
JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural
Convection (Still Air). Available from www.jedec.org.
Table 86. Package thermal characteristics
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
UFQFPN48 32
°C/W
Thermal resistance junction-ambient
WLCSP49 52
Thermal resistance junction-ambient
LQFP64 50
Thermal resistance junction-ambient
LQFP100 42
Thermal resistance junction-ambient
UFBGA100 62
Ordering information STM32F401xB STM32F401xC
132/139 DocID024738 Rev 9
8 Ordering information
Table 87. Ordering information scheme
Example: STM32 F 401 C C T 6 xxx
Device family
STM32 = ARM-based 32-bit microcontroller
Product type
F = General-purpose
Device subfamily
401: 401 family
Pin count
C = 48/49 pins
R = 64 pins
V = 100 pins
Flash memory size
B = 128 Kbytes of Flash memory
C = 256 Kbytes of Flash memory
Package
H = UFBGA
T = LQFP
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, - 40 to 85 °C
7 = Industrial temperature range, - 40 to 105 °C
3 = Industrial temperature range, - 40 to 125 °C
Packing
TR = tape and reel
TT = tape and reel for WLCSP as per PCN9547(1)
1. To get this document, please contact your nearest ST Sales Office.
No character = tray or tube
DocID024738 Rev 9 133/139
STM32F401xB STM32F401xC Revision history
138
9 Revision history
Table 88. Document revision history
Date Revision Changes
23-Jul-2013 1 Initial release.
06-Sep-2013 2
Updated product status to production data
Added I2C 1 MBit/s in Features
Updated Figure 1: Compatible board design for LQFP100 package
Added notes and revised the main function after reset columnn
Table 8: STM32F401xB/STM32F401xC pin definitions.
Replaced ‘I2S2_CKIN’ signal name with ‘I2S_CKIN’ and added
EVENTOUT alternate function in Table 8:
STM32F401xB/STM32F401xC pin definitions and Table 9: Alternate
function mapping
Updated Section 3.28: Analog-to-digital converter (ADC)
Updated the reference of VESD(CDM) in Table 51: ESD absolute
maximum ratings
Updated Section 3.20: Inter-integrated circuit interface (I2C), including
Table 5: Comparison of I2C analog and digital filters
Removed first sentence (“Unless otherwise specified...”) in I2C
interface characteristics
Changed the order of the tables in Section 6.3.6: Supply current
characteristics
Modified the “SDA and SCL rise time” fast mode I2C minimum value in
Table 59: I2C characteristics
Updated Figure 33: I2C bus AC waveforms and measurement circuit
and Table 60: SCL frequency (fPCLK1= 42 MHz, VDD = VDD_I2C =
3.3 V)
Replaced “Marking of engineering samples” sections with “Marking of
samples” sections, and added Device marking for UFBGA100 section
for package UFGBA100 in Section 7: Package information
08-Nov-2013 3
Updated UFBGA100 in Table 86: Package thermal characteristics.
Changed WLCSP49 package measurements to 3 x 3 mm in
Section 7.1.
Revision history STM32F401xB STM32F401xC
134/139 DocID024738 Rev 9
16-May-2014 4
Change VDD/VDDA minimum value to 1.7 V.
Changed number of EXTI lines in Section 3.10: External interrupt/event
controller (EXTI).
Updated Figure 18: Power supply scheme.
Updated Table 11: Voltage characteristics, Table 12: Current
characteristics andTable 14: General operating conditions.
Added note 4. in Table 26: Typical and maximum current consumption
in Sleep mode. Updated typical values at TA = 25 °C in Table 27:
Typical and maximum current consumptions in Stop mode -
VDD = 1.8 V.
Updated SDIO current consumption in Table 33: Peripheral current
consumption.
Updated Table 54: I/O static characteristics, Table 56: I/O AC
characteristics and added Figure 30: FT I/O input characteristics.
Updated Table 55: Output voltage characteristics. Updated Table 53:
I/O current injection susceptibility and Table 57: NRST pin
characteristics.
Updated Table 61: SPI dynamic characteristics.
Updated package dimensions in Section 7.1 title. Added note below
engineering sample marking schematics. Updated UFBGA100
Thermal resistance in Table 86: Package thermal characteristics.
Table 88. Document revision history (continued)
Date Revision Changes
DocID024738 Rev 9 135/139
STM32F401xB STM32F401xC Revision history
138
06-Aug-2015 5
Changed current consumption to 128 µA/MHz on cover page.
Updated Table 3: Regulator ON/OFF and internal power supply
supervisor availability for UFQFPN48.
Updated Figure 10: STM32F401xB/STM32F401xC WLCSP49 pinout
to show top view instead of bump view.
Renamed VCAP1/2 into VCAP_1/_2 in Figure 10:
STM32F401xB/STM32F401xC WLCSP49 pinout, Figure 11:
STM32F401xB/STM32F401xC UFQFPN48 pinout, Figure 13:
STM32F401xB/STM32F401xC LQFP100 pinout and Figure 14:
STM32F401xB/STM32F401xC UFBGA100 pinout.
In whole Section 6: Electrical characteristics, modified notes related to
characteristics guaranteed by design and by tests during
characterization.
Updated PLS[2:0]=101 (falling edge) in Table 19: Embedded reset and
power control block characteristics.
Updated Table 39: HSI oscillator characteristics.
Updated VHYS in Table 56: I/O AC characteristics.
Added tSP in Table 59: I2C characteristics.
Removed note 1 in Table 67: ADC accuracy at fADC = 18 MHz,
Table 68: ADC accuracy at fADC = 30 MHz and Table 69: ADC
accuracy at fADC = 36 MHz.
Added WLCSP49 Figure 47: WLCSP49 - 49-ball, 2.999 mm, 0.4 mm
pitch wafer level chip scale recommended footprint and Table 80:
WLCSP49 recommended PCB design rules (0.4 mm pitch). Added
Section : Device marking for WLCSP49.
Updated Section : Device marking for UFQFPN48.
Updated Table 82: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
package mechanical data and Section : Device marking for LQFP64.
Updated Section : Device marking for LQFP64 and Section : Device
marking for LQFP100
Updated Table 84: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch,
ultra fine pitch ball grid array package mechanical data, Figure 59:
UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball
grid array package recommended footprint. Added Ta ble 114:
UFBGA100 recommended PCB design rules (0.5 mm pitch BGA).
updated Section : Device marking for UFBGA100.
Added Temperature range 7 in Table 87: Ordering information scheme.
Table 88. Document revision history (continued)
Date Revision Changes
Revision history STM32F401xB STM32F401xC
136/139 DocID024738 Rev 9
07-Sep-2016 6
Features: added dynamic efficiency, OTP memory and ECOPACK®2
compliance, updated clock/reset and supply management features.
Updated signal corresponding to pin 21 in Figure 13:
STM32F401xB/STM32F401xC LQFP100 pinout.
Updated PB11 alternate functions in Table 8:
STM32F401xB/STM32F401xC pin definitions and Table 9: Alternate
function mapping.
Added reference to VREF- for |VSSX VSS| in Table 11: Voltage
characteristics.
Updated Figure 26: ACCHSI versus temperature.
Updated VIL minimum value and note related to VIH minimum value in
Table 54: I/O static characteristics.
Added note related to external capacitor below Figure 32:
Recommended NRST pin protection.
Updated th(NSS) in Figure 34: SPI timing diagram - slave mode and
CPHA = 0 and Figure 35: SPI timing diagram - slave mode and CPHA
= 1(1).
Added VREF- in Table 66: ADC characteristics.
Section 7: Package information:
added note related to optional marking and inset/upset marks in all
package marking sections.
updated b dimension in Table 84: UFBGA100 - 100-ball, 7 x 7 mm,
0.50 mm pitch, ultra fine pitch ball grid array package mechanical
data.
Added new TT packing in Section 8: Ordering information.
Table 88. Document revision history (continued)
Date Revision Changes
DocID024738 Rev 9 137/139
STM32F401xB STM32F401xC Revision history
138
28-Apr-2017 7
Updated:
Features
Section 2: Description
Table 2: STM32F401xB/C features and peripheral counts
Table 13: Thermal characteristics
Table 14: General operating conditions
Table 19: Embedded reset and power control block characteristics
Table 20: Typical and maximum current consumption, code with data
processing (ART accelerator disabled) running from SRAM - VDD
=1.8V
Table 21: Typical and maximum current consumption, code with data
processing (ART accelerator disabled) running from SRAM
Table 22: Typical and maximum current consumption in run mode,
code with data processing (ART accelerator enabled except
prefetch) running from Flash memory- VDD = 1.8 V
Table 24: Typical and maximum current consumption in run mode,
code with data processing (ART accelerator disabled) running from
Flash memory
Table 25: Typical and maximum current consumption in run mode,
code with data processing (ART accelerator enabled with prefetch)
running from Flash memory
Table 26: Typical and maximum current consumption in Sleep mode
Table 27: Typical and maximum current consumptions in Stop mode
- VDD = 1.8 V
Table 28: Typical and maximum current consumption in Stop mode -
VDD=3.3 V
Table 29: Typical and maximum current consumption in Standby
mode - VDD= 1.8 V
Table 30: Typical and maximum current consumption in Standby
mode - VDD=3.3 V
Table 31: Typical and maximum current consumptions in VBAT mode
Table 39: HSI oscillator characteristics
Table 47: Flash memory endurance and data retention
Table 54: I/O static characteristics
Figure 32: Recommended NRST pin protection
Figure 58: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine
pitch ball grid array package outline
Table 84: UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine
pitch ball grid array package mechanical data
Table 87: Ordering information scheme
Table 88. Document revision history (continued)
Date Revision Changes
Revision history STM32F401xB STM32F401xC
138/139 DocID024738 Rev 9
09-May-2017 8
Updated:
–Note 1. in Figure 48: WLCSP49 marking example (package top
view)
–Note 1. in Figure 51: UFQFPN48 marking example (package top
view)
–Note 1. in Figure 54: LQFP64 marking example (package top view)
–Note 1. in Figure 57: LQPF100 marking example (package top view)
–Note 1. in Figure 60: UFBGA100 marking example (package top
view)
Table 87: Ordering information scheme
30-Aug-2017 9
Updated:
Table 82: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package
mechanical data
Table 88. Document revision history (continued)
Date Revision Changes
DocID024738 Rev 9 139/139
STM32F401xB STM32F401xC
139
IMPORTANT NOTICE – PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics – All rights reserved