07/23/10
www.irf.com 1
HEXFET® Power MOSFET
VDSS = 55V
RDS(on) = 8.0m
ID = 75A
S
D
G
Description
l
Designed to support Linear Gate Drive
Applications
l
175°C Operating Temperature
l
Low Thermal Resistance Junction - Case
l
Rugged Process Technology and Design
l
Fully Avalanche Rated
l
Lead-Free
Features
TO-220AB
IRF3305PbF
Absolute Maximum Ratings
Parameter Units
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited)
ID @ TC = 10C Continuous Drain Current, VGS @ 10V A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Package Limited)
IDM Pulsed Drain Current
c
PD @TC = 25°C Power Dissipation W
Linear Derating Factor W/°C
VGS Gate-to-Source Voltage V
EAS (Thermally limited) Single Pulse Avalanche Energy
d
mJ
EAS (Tested ) Single Pulse Avalanche Energy Tested Value
h
IAR Avalanche Current
c
A
EAR Repetitive Avalanche Energy
g
mJ
TJ Operating Junction and
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 seconds
Mounting Torque, 6-32 or M3 screw
Thermal Resistance
Parameter Typ. Max. Units
RθJC Junction-to-Case
i
––– 0.45
RθCS Case-to-Sink, Flat, Greased Surface 0.50 ––– °C/W
RθJA Junction-to-Ambient
i
––– 62
-55 to + 175
300 (1.6mm from case )
10 lbf
y
in (1.1N
y
m)
330
2.2
± 20
Max.
140
99
560
75
860
470
See Fig.12a, 12b, 15, 16
This HEXFET Power MOSFET utilizes a rugged
planar process technology and device design,
which greatly improves the Safe Operating Area
(SOA) of the device. These features, coupled
with 175°C junction operating temperature and
"low thermal resistance of 0.45C/W"
PD - 95758A
IRF3305PbF
2www.irf.com
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11).
Limited by TJmax, starting TJ = 25°C, L = 0.17mH
RG = 25, IAS = 75A, VGS =10V. Part not
recommended for use above this value.
Pulse width 1.0ms; duty cycle 2%.
Coss eff. is a fixed capacitance that gives the
same charging time as Coss while VDS is rising
from 0 to 80% VDSS .
Notes:
Coss eff. is a fixed capacitance that gives the same charging time
as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive
avalanche performance.
This value determined from sample failure population. 100%
tested to this value in production.
Rθ is measured at TJ of approximately 90°C.
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
V(BR)DSS Drain-to-Source Breakdown Voltage 55 ––– ––– V
V(BR)DSS/TJ Breakdown Voltage Temp. Coefficient ––– 0.055 ––– V/°C
RDS(on) Static Drain-to-Source On-Resistance ––– ––– 8.0 m
VGS(th) Gate Threshold Voltage 2.0 ––– 4.0 V
gfs Forward Transconductance 41 –– ––– S
IDSS Drain-to-Source Leakage Current ––– ––– 25 µA
––– –– 250
IGSS Gate-to-Source Forward Leakage ––– ––– 200 nA
Gate-to-Source Reverse Leakage ––– ––– -200
QgTotal Gate Charge ––– 100 150
Qgs Gate-to-Source Charge ––– 21 –– nC
Qgd Gate-to-Drain ("Miller") Charge ––– 45 –––
td(on) Turn-On Delay Time ––– 16 –––
trRise Time ––– 88 –––
td(off) Turn-Off Delay Time –– 43 ––– ns
tfFall Time –– 34 –––
LDInternal Drain Inductance ––– 4.5 ––– Between lead,
nH 6mm (0.25in.)
LSInternal Source Inductance ––– 7.5 ––– from package
and center of die contact
Ciss Input Capacitance ––– 3650 ––
Coss Output Capacitance ––– 1230 ––
Crss Reverse Transfer Capacitance ––– 450 ––– pF
Coss Output Capacitance ––– 4720 ––
Coss Output Capacitance ––– 930 –––
Coss eff. Effective Output Capacitance ––– 1490 ––
Source-Drain Ratin
g
s and Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 75
(Body Diode) A
ISM Pulsed Source Current ––– ––– 560
(Body Diode)
c
VSD Diode Forward Volta
g
e–1.3V
trr Reverse Recover
y
Time 5786ns
Qrr Reverse Recover
y
Char
g
e ––– 130 190 nC
ton Forward Turn-On Time Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
VDS = 25V, ID = 75A
ID = 75A
VDS = 44V
Conditions
VGS = 10V
e
VGS = 0V
VDS = 25V
ƒ = 1.0MHz
VGS = 20V
VGS = -20V
MOSFET symbol
showing the
integral reverse
p-n junction diode.
TJ = 25°C, IS = 75A, VGS = 0V
e
TJ = 25°C, IF = 75A, VDD = 28V
di/dt = 100As
e
Conditions
VGS = 0V, ID = 25A
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 75A
e
VDS = VGS, ID = 250µA
VDS = 55V, VGS = 0V
VDS = 55V, VGS = 0V, TJ = 125°C
VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz
VGS = 0V, VDS = 44V, ƒ = 1.0MHz
VGS = 0V, VDS = 0V to 44V
f
VGS = 10V
e
VDD = 28V
ID = 75A
RG = 2.6
IRF3305PbF
www.irf.com 3
Fig 2. Typical Output CharacteristicsFig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics Fig 4. Typical Forward Transconductance
Vs. Drain Current
0 20 40 60 80 100 120 140
ID, Drain-to-Source Current (A)
0
20
40
60
80
Gfs, Forward Transconductance (S)
TJ = 25°C
TJ = 175°C
VDS = 10V
380µs PULSE WIDTH
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 25°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
ID, Drain-to-Source Current (A)
60µs PULSE WIDTH
Tj = 175°C
4.5V
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
2.0 3.0 4.0 5.0 6.0 7.0 8.0
VGS, Gate-to-Source Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ID, Drain-to-Source Current
(Α)
VDS = 25V
60µs PULSE WIDTH
TJ = 25°C
TJ = 175°C
IRF3305PbF
4www.irf.com
Fig 8. Maximum Safe Operating Area
Fig 6. Typical Gate Charge Vs.
Gate-to-Source Voltage
Fig 5. Typical Capacitance Vs.
Drain-to-Source Voltage
Fig 7. Typical Source-Drain Diode
Forward Voltage
110 100
VDS, Drain-to-Source Voltage (V)
0
1000
2000
3000
4000
5000
6000
7000
C, Capacitance (pF)
Coss
Crss
Ciss
VGS = 0V, f = 1 MHZ
Ciss = Cgs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
0 40 80 120 160
QG Total Gate Charge (nC)
0
4
8
12
16
20
VGS, Gate-to-Source Voltage (V)
VDS= 44V
VDS= 28V
ID= 75A
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
0.1
1.0
10.0
100.0
1000.0
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
1 10 100 1000
VDS , Drain-toSource Voltage (V)
0.1
1
10
100
1000
10000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100µsec
DC
IRF3305PbF
www.irf.com 5
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig 9. Maximum Drain Current Vs.
Case Temperature
Fig 10. Normalized On-Resistance
Vs. Temperature
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
ID , Drain Current (A)
LIMITED BY PACKAGE
-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
2.5
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 75A
VGS = 10V
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z
thJC )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Ri (°C/W) τi (sec)
0.1758 0.00045
0.228 0.004565
0.0457 0.01858
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
τ
τC
Ci i/Ri
Ci= τi/Ri
IRF3305PbF
6www.irf.com
Q
G
Q
GS
Q
GD
V
G
Charge
10 V
Fig 13b. Gate Charge Test Circuit
Fig 13a. Basic Gate Charge Waveform
Fig 12c. Maximum Avalanche Energy
Vs. Drain Current
Fig 12b. Unclamped Inductive Waveforms
Fig 12a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
Fig 14. Threshold Voltage Vs. Temperature
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
25 50 75 100 125 150 175
Starting TJ, Junction Temperature (°C)
0
400
800
1200
1600
2000
EAS, Single Pulse Avalanche Energy (mJ)
I D
TOP 18A
26A
BOTTOM 75A
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
VGS(th) Gate threshold Voltage (V)
ID = 5.0A
ID = 1.0A
ID = 250µA
1K
VCC
DUT
0
L
IRF3305PbF
www.irf.com 7
Fig 15. Typical Avalanche Current Vs.Pulsewidth
Fig 16. Maximum Avalanche Energy
Vs. Temperature
Notes on Repetitive Avalanche Curves , Figures 15, 16:
(For further info, see AN-1005 at www.irf.com)
1. Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for
every part type.
2. Safe operation in Avalanche is allowed as long asTjmax is
not exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 12a, 12b.
4. PD (ave) = Average power dissipation per single
avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for
voltage increase during avalanche).
6. Iav = Allowable avalanche current.
7. T = Allowable rise in junction temperature, not to exceed
Tjmax (assumed as 25°C in Figure 15, 16).
tav = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
ZthJC(D, tav) = Transient thermal resistance, see figure 11)
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC
Iav = 2DT/ [1.3·BV·Zth]
EAS (AR) = PD (ave)·tav
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
1
10
100
1000
10000
Avalanche Current (A)
0.05
Duty Cycle = Single Pulse
0.10
Allowed avalanche Current vs
avalanche pulsewidth, tav
assuming Tj = 25°C due to
avalanche losses. Note: In no
case should Tj be allowed to
exceed Tjmax
0.01
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1% Duty Cycle
ID = 75A
IRF3305PbF
8www.irf.com
Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
VGS=10V
VDD
ISD
Driver Gate Drive
D.U.T. ISD Waveform
D.U.T. VDS Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
VDS
90%
10%
VGS
t
d(on)
t
r
t
d(off)
t
f
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
10V
+
-
VDD
Fig 18a. Switching Time Test Circuit
Fig 18b. Switching Time Waveforms
IRF3305PbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/2010
Notes:
1. For an Automotive Qualified version of this part please seehttp://www.irf.com/product-info/auto/
2. For the most current drawing please refer to IR website at http://www.irf.com/package/
TO-220AB package is not recommended for Surface Mount Application
TO-220AB Part Marking Information
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
INTERNATIONAL PART NUMBER
RECT IFIE R
LOT CODE
AS S E MB L Y
LOGO
YEAR 0 = 2000
DAT E CODE
WEEK 19
LINE C
LOT CODE 1789
EXAMPLE : T HIS IS AN IRF 1010
Note: "P" in assembly line position
i ndi cates "L ead - F ree"
IN THE ASSEMBLY LINE "C"
ASS EMBL ED ON WW 19, 2000