Panasonic Corporation Electromechanical Control Business Division
industrial.panasonic.com/ac/e/ Panasonic Corporation 2019
c
GUIDELINES FOR MICROWAVE DEVICES USAGE
Precautions for Coil Input
For cautions for use, please read “GUIDELINES FOR RELAY USAGE”.
https://industrial.panasonic.com/ac/e/control/relay/cautions_use/index.jsp
Long term current carrying
A circuit that will be carrying a current continuously for long periods
without relay or microwave device switching operation. (circuits for
emergency lamps, alarm devices and error inspection that, for
example, revert only during malfunction and output warnings with form
B contacts) Continuous, long-term current to the coil will facilitate
deterioration of coil insulation and characteristics due to heating of the
coil itself.
For circuits such as these, please use a magnetic-hold type latching
relay. If you need to use a single stable relay, use a sealed type relay
that is not easily aected by ambient conditions and make a failsafe
circuit design that considers the possibility of contact failure or
disconnection.
DC Coil operating power
Steady state DC current should be applied to the coil. The wave form
should be rectangular. If it includes ripple, the ripple factor should be
less than 5%.
However, please check with the actual circuit since the electrical
characteristics may vary. The rated coil voltage should be applied to
the coil and the set/reset pulse time of latching type relay diers for
each relays, please refer to the relay's individual specications.
Coil connection
When connecting coils of polarized relays, please check coil polarity
(+,-) at the internal connection diagram (Schematic). If any wrong
connection is made, it may cause unexpected malfunction, like
abnormal heat, re and so on, and circuit do not work. Avoid
impressing voltages to the set coil and reset coil at the same time.
Maximum allowable voltage and temperature rise
Proper usage requires that the rated coil voltage be impressed on the
coil. Note, however, that if a voltage greater than or equal to the
maximum continuous voltage is impressed on the coil, the coil may
burn or its layers short due to the temperature rise. Furthermore, do
not exceed the usable ambient temperature range listed in the catalog.
Maximum allowable voltage for coil
In addition to being a requirement for relay operation stability, the
maximum continuous impressed coil voltage is an important constraint
for the prevention of such problems as thermal deterioration or
deformity of the insulation material, or the occurrence of re hazards.
Temperature rise due to pulse voltage
When a pulse voltage with ON time of less than 2 minutes is used, the
coil temperature rise bares no relationship to the ON time. This varies
with the ratio of ON time to OFF time, and compared with continuous
current passage, it is rather small. The various relays are essentially
the same in this respect.
Operate voltage change due to coil temperature rise
(Hot start)
In DC relays, after continuous passage of current in the coil, if the
current is turned OFF, then immediately turned ON again, due to the
temperature rise in the coil, the pick-up voltage will become somewhat
higher. Also, it will be the same as using it in a higher temperature
atmosphere. The resistance/temperature relationship for copper wire
is about 0.4% for 1°C, and with this ratio the coil resistance increases.
That is, in order to operate of the relay, it is necessary that the voltage
be higher than the pick-up voltage and the pick-up voltage rises in
accordance with the increase in the resistance value. However, for
some polarized relays, this rate of change is considerably smaller.
Current passage time (%)
For continuousu passage Tempereture rise value is
100
%
ON : OFF =
3
:
1
About
80
%
ON : OFF =
1
:
1
About
50
%
ON : OFF =
1
:
3
About
35
%
ON : OFF = 1 : 1
Voltage
Time
Ambient Environment
Dew condensation
Condensation occurs when the ambient temperature drops suddenly
from a high temperature and humidity, or the relay and microwave
device is suddenly transferred from a low ambient temperature to a
high temperature and humidity. Condensation causes the failures like
insulation deterioration, wire disconnection and rust etc.
Panasonic Corporation does not guarantee the failures caused by
condensation.
The heat conduction by the equipment may accelerate the cooling of
device itself, and the condensation may occur.
Please conduct product evaluations in the worst condition of the actual
usage. (Special attention should be paid when high temperature
heating parts are close to the device. Also please consider the
condensation may occur inside of the device.)
Icing
Condensation or other moisture may freeze on relays when the
temperature become lower than 0°C.This icing causes the sticking of
movable portion, the operation delay and the contact conduction failure
etc. Panasonic Corporation does not guarantee the failures caused by
the icing.
The heat conduction by the equipment may accelerate the cooling of
relay itself and the icing may occur. Please conduct product
evaluations in the worst condition of the actual usage.
Low temperature and low humidity
The plastic becomes brittle if the switch is exposed to a low
temperature, low humidity environment for long periods of time.
High temperature and high humidity
Storage for extended periods of time (including transportation periods)
at high temperature or high humidity levels or in atmospheres with
organic gases or sulde gases may cause a sulde lm or oxide lm to
form on the surfaces of the contacts and/or it may interfere with the
functions. Check out the atmosphere in which the units are to be
stored and transported.
Package
In terms of the packing format used, make every eort to keep the
eects of moisture, organic gases and sulde gases to the absolute
minimum.
ASCTB403E 201905