STM32L073x8 STM32L073xB STM32L073xZ Ultra-low-power 32-bit MCU ARM(R)-based Cortex(R)-M0+, up to 192KB Flash, 20KB SRAM, 6KB EEPROM, LCD, USB, ADC, DACs Datasheet - production data Features * * * * * * * * * Ultra-low-power platform - 1.65 V to 3.6 V power supply - -40 to 125 C temperature range - 0.29 A Standby mode (3 wakeup pins) - 0.43 A Stop mode (16 wakeup lines) - 0.86 A Stop mode + RTC + 20 KB RAM retention - Down to 93 A/MHz in Run mode - 5 s wakeup time (from Flash memory) - 41 A 12-bit ADC (conversion at 10ksps) Core: ARM(R) 32-bit Cortex(R)-M0+ with MPU - From 32 kHz up to 32 MHz max. - 0.95 DMIPS/MHz Reset and supply management - Ultra-safe, low-power BOR (brownout reset) with 5 selectable thresholds - Ultra-low-power POR/PDR - Programmable voltage detector (PVD) Clock sources - 1 to 25 MHz crystal oscillator - 32 kHz oscillator for RTC with calibration - High speed internal 16 MHz factory-trimmed RC (+/- 1%) - Internal low-power 37 kHz RC - Internal multispeed low-power 65 kHz to 4.2 MHz RC - Internal self calibration of 48 MHz RC for USB - PLL for CPU clock Pre-programmed bootloader - USB, USART supported Development support - Serial wire debug supported Up to 84 fast I/Os (78 I/Os 5V tolerant) Memories - Up to 192 KB Flash memory with ECC (2 banks with read-while-write capability) - 20KB RAM - 6 KB of data EEPROM with ECC - 20-byte backup register - Sector protection against R/W operation LCD driver for up to 4x52 or 8x48 segments October 2015 This is information on a product in full production. )%*$ UFBGA100 7x7 mm * * * * * * * * * * * * )%*$ LQFP48 7 x 7 mm LQFP64 10x10 mm LQFP100 14x14 mm TFBGA64 5x5 mm - Support contrast adjustment - Support blinking mode - Step-up converted on board Rich Analog peripherals - 12-bit ADC 1.14 Msps up to 16 channels (down to 1.65 V) - 2 x 12-bit channel DACs with output buffers - 2x ultra-low-power comparators (window mode and wake up capability, down to 1.8 V) Up to 24 capacitive sensing channels supporting touchkey, linear and rotary touch sensors 7-channel DMA controller, supporting ADC, SPI, I2C, USART, DAC, Timers 11x peripheral communication interfaces 1x USB 2.0 crystal-less, battery charging detection and LPM 4x USART (2 with ISO 7816, IrDA), 1x UART (low power) 2x SPI 16 Mbits/s 3x I2C (2 with SMBus/PMBus) 11x timers: 2x 16-bit with up to 4 channels, 2x 16-bit with up to 2 channels, 1x 16-bit ultra-low-power timer, 1x SysTick, 1x RTC, 2x 16-bit basic for DAC, and 2x watchdogs (independent/window) CRC calculation unit, 96-bit unique ID True RNG and firewall protection All packages are ECOPACK(R)2 Table 1. Device summary Reference Part number STM32L073x8 STM32L073V8 STM32L073xB STM32L073VB, STM32L073RB, STM32L073CB STM32L073xZ STM32L073VZ, STM32L073RZ, STM32L073CZ DocID027096 Rev 2 1/137 www.st.com Contents STM32L073xx Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 2/137 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 2.2 Ultra-low-power device continuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.3 ARM(R) Cortex(R)-M0+ core with MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.4 Reset and supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.4.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5 Clock management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.6 Low-power real-time clock and backup registers . . . . . . . . . . . . . . . . . . . 25 3.7 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.8 Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.9 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.10 Direct memory access (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.11 Liquid crystal display (LCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.12 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.13 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13.1 Internal voltage reference (VREFINT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.13.2 VLCD voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.14 Digital-to-analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.15 Ultra-low-power comparators and reference voltage . . . . . . . . . . . . . . . . 29 3.16 Touch sensing controller (TSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.17.1 General-purpose timers (TIM2, TIM3, TIM21 and TIM22) . . . . . . . . . . . 31 3.17.2 Low-power Timer (LPTIM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.17.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID027096 Rev 2 STM32L073xx 3.18 Contents 3.17.4 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.17.5 Independent watchdog (IWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.17.6 Window watchdog (WWDG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.18.1 I2C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 3.18.2 Universal synchronous/asynchronous receiver transmitter (USART) . . 34 3.18.3 Low-power universal asynchronous receiver transmitter (LPUART) . . . 34 3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) . . . . . . . . 35 3.18.5 Universal serial bus (USB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.19 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.20 Cyclic redundancy check (CRC) calculation unit . . . . . . . . . . . . . . . . . . . 36 3.21 Serial wire debug port (SW-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4 Pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 6.1.7 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.1.8 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 6.3.2 Embedded reset and power control block characteristics . . . . . . . . . . . 64 6.3.3 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.4 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 6.3.5 Wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 DocID027096 Rev 2 3/137 4 Contents 7 STM32L073xx 6.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.10 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.3.11 Electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.3.12 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3.13 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.3.14 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.3.15 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.3.16 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.3.17 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.18 Comparators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.3.19 Timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.20 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.21 LCD controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.1 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 7.2 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4 TFBGA64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 7.5 LQFP48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7.6 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.6.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 8 Part numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 4/137 DocID027096 Rev 2 STM32L073xx List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Ultra-low-power STM32L073xxx device features and peripheral counts . . . . . . . . . . . . . . 11 Functionalities depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . 16 CPU frequency range depending on dynamic voltage scaling . . . . . . . . . . . . . . . . . . . . . . 16 Functionalities depending on the working mode (from Run/active down to standby) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32L0xx peripherals interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Internal voltage reference measured values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Capacitive sensing GPIOs available on STM32L073xx devices . . . . . . . . . . . . . . . . . . . . 30 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 STM32L073xx I2C implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 USART implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 SPI/I2S implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32L073xx pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Alternate functions port A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Alternate functions port B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 Alternate functions port C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Alternate functions port D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Alternate functions port E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Alternate functions port H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 64 Embedded internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Current consumption in Run mode, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Current consumption in Run mode vs code type, code with data processing running from Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Current consumption in Run mode, code with data processing running from RAM . . . . . . 69 Current consumption in Run mode vs code type, code with data processing running from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Current consumption in Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Current consumption in Low-power run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 Current consumption in Low-power sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Typical and maximum current consumptions in Stop mode . . . . . . . . . . . . . . . . . . . . . . . . 73 Typical and maximum current consumptions in Standby mode . . . . . . . . . . . . . . . . . . . . . 74 Average current consumption during Wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Peripheral current consumption in Run or Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 Peripheral current consumption in Stop and Standby mode . . . . . . . . . . . . . . . . . . . . . . . 78 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 DocID027096 Rev 2 5/137 6 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. Table 91. 6/137 STM32L073xx HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 LSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 16 MHz HSI16 oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 RAM and hardware registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Flash memory and data EEPROM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Flash memory and data EEPROM endurance and retention . . . . . . . . . . . . . . . . . . . . . . . 88 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 RAIN max for fADC = 14 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 Comparator 1 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 Comparator 2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 I2C analog filter characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 SPI characteristics in voltage Range 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 SPI characteristics in voltage Range 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 SPI characteristics in voltage Range 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 I2S characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 USB startup time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 USB DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 USB: full speed electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LCD controller characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 122 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 TFBGA64 - 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 TFBGA64 recommended PCB design rules (0.5 mm pitch BGA). . . . . . . . . . . . . . . . . . . 128 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data. . . . . . . . . . . 131 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 STM32L073xx ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 DocID027096 Rev 2 STM32L073xx List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. STM32L073xx block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 STM32L073xx LQFP100 pinout - 14 x 14 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 STM32L073xx UFBGA100 ballout - 7x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 STM32L073xx LQFP64 pinout - 10 x 10 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 STM32L073xx TFBGA64 ballout - 5x 5 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 STM32L073xx LQFP48 pinout - 7 x 7 mm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Optional LCD power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 IDD vs VDD, at TA= 25/55/85/105 C, Run mode, code running from Flash memory, Range 2, HSE, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IDD vs VDD, at TA= 25/55/85/105 C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 IDD vs VDD, at TA= 25 C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 IDD vs VDD, at TA= 25/55/ 85/105/125 C, Stop mode with RTC enabled and running on LSE Low drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 IDD vs VDD, at TA= 25/55/85/105/125 C, Stop mode with RTC disabled, all clocks off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 HSI16 minimum and maximum value versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . 84 VIH/VIL versus VDD (CMOS I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 VIH/VIL versus VDD (TTL I/Os) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 102 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 102 12-bit buffered/non-buffered DAC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 SPI timing diagram - slave mode and CPHA = 1(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 SPI timing diagram - master mode(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 I2S slave timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 I2S master timing diagram (Philips protocol)(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 USB timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . . . . . . . . 116 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 118 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball DocID027096 Rev 2 7/137 8 List of figures Figure 43. Figure 44. Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. 8/137 STM32L073xx grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 124 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat recommended footprint . . . . . . . . . . 125 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 TFBGA64 - 64-ball, 5 x 5 mm, 0.5 mm pitch thin profile fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 TFBGA64 - 64-ball, 5 x 5 mm, 0.5 mm pitch, thin profile fine pitch ball ,grid array recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 TFBGA64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . . . 130 LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat recommended footprint . . . . . . . . . . . . 132 LQFP48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Thermal resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 DocID027096 Rev 2 STM32L073xx 1 Introduction Introduction The ultra-low-power STM32L073xx are offered in 5 different package types from 48 to 100 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the ultra-low-power STM32L073xx microcontrollers suitable for a wide range of applications: * Gas/water meters and industrial sensors * Healthcare and fitness equipment * Remote control and user interface * PC peripherals, gaming, GPS equipment * Alarm system, wired and wireless sensors, video intercom This STM32L073xx datasheet should be read in conjunction with the STM32L0x3xx reference manual (RM0367). For information on the ARM(R) Cortex(R)-M0+ core please refer to the Cortex(R)-M0+ Technical Reference Manual, available from the www.arm.com website. Figure 1 shows the general block diagram of the device family. DocID027096 Rev 2 9/137 36 Description 2 STM32L073xx Description The ultra-low-power STM32L073xx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM(R) Cortex(R)M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (up to 192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM) plus an extensive range of enhanced I/Os and peripherals. The STM32L073xx devices provide high power efficiency for a wide range of performance. It is achieved with a large choice of internal and external clock sources, an internal voltage adaptation and several low-power modes. The STM32L073xx device offer several analog features, one 12-bit ADC with hardware oversampling, two DACs, two ultra-low-power comparators, several timers, one low-power timer (LPTIM), four general-purpose 16-bit timers and two basic timer, one RTC and one SysTick which can be used as timebases. They also feature two watchdogs, one watchdog with independent clock and window capability and one window watchdog based on bus clock. Moreover, the STM32L073xx devices embed standard and advanced communication interfaces: up to three I2Cs, two SPIs, one I2S, four USARTs, a low-power UART (LPUART), and a crystal-less USB. The devices offer up to 24 capacitive sensing channels to simply add touch sensing functionality to any application. The STM32L073xx also include a real-time clock and a set of backup registers that remain powered in Standby mode. Finally, their integrated LCD controller has a built-in LCD voltage generator that allows to drive up to 8 multiplexed LCDs with contrast independent of the supply voltage. The ultra-low-power STM32L073xx devices operate from a 1.8 to 3.6 V power supply (down to 1.65 V at power down) with BOR and from a 1.65 to 3.6 V power supply without BOR option. They are available in the -40 to +125 C temperature range. A comprehensive set of power-saving modes allows the design of low-power applications. 10/137 DocID027096 Rev 2 STM32L073xx 2.1 Description Device overview Table 2. Ultra-low-power STM32L073xxx device features and peripheral counts Peripheral STM32L073 STM32L073 STM32L073 STM32L073 STM32L073 STM32L073 STM32L073 V8 CB VB RB CZ VZ RZ Flash (Kbytes) 64 Kbytes Data EEPROM (Kbytes) 3 Kbytes 128 Kbytes 6 Kbytes RAM (Kbytes) Timers 192 Kbytes 20 Kbytes Generalpurpose 4 Basic 2 LPTIMER 1 RTC/SYSTICK/IWDG/WWDG 1/1/1/1 SPI/(I2S) 2/(1) I2 C 3 Communicat USART ion interfaces LPUART 4 1 USB/ (VDD_USB) GPIOs 1/(1) 84 37 51(1) 84 Clocks: HSE/LSE/HSI/MSI/LSI 12-bit synchronized ADC Number of channels 1 16 1 10 1 16(1) 1 4x52 or 8x48 1 4x18 1 4x32 or 8x28(1) 1 4x52 or 8x48 24 17 24(1) 24 1 4x18 1 4x52 or 8x48 1 4x32 or 8x28(1) 17 24 24(1) 32 MHz 1.8 V to 3.6 V (down to 1.65 V at power-down) with BOR option 1.65 to 3.6 V without BOR option Ambient temperature: -40 to +125 C Junction temperature: -40 to +130 C Operating temperatures Packages 1 16(1) 2 Max. CPU frequency Operating voltage 1 10 2 2 Comparators Capacitive sensing channels 51(1) 84 1/1/1/1/1 12-bit DAC Number of channels LCD COM x SEG 37 LQFP100 UFBGA100 LQFP48 LQFP100 UFBGA100 LQFP64, TFBGA64 LQFP48 LQFP100 UFBGA100 LQFP64, TFBGA64 1. TFBGA64 has one GPIO, one ADC input, one capacitive sensing channel and one COMxSEG (4x31 or 8x27) less than LQFP64. DocID027096 Rev 2 11/137 36 Description STM32L073xx Figure 1. STM32L073xx block diagram 7HPS VHQVRU 6:' 6:' )/$6+ ((3520 %227 ),5(:$// &257(;0&38 )PD[0+] 5$0 038 '%* '0$ 19,& (;7, $ 3 % $'& $,1[ 63, 0,62026, 6&.166 86$57 5;7;576 &76&. 7,0 FK 7,0 FK %5,'*( 3$>@ *3,23257$ 3%>@ *3,23257% 3&>@ 3(>@ 3+>@>@ ,13,10287 &203 ,13,10287 %5,'*( /37,0 ,1,1 (75287 5$0. 86%)6 7,0 '$& 287 7,0 '$& 287 ,& 6&/6'$ 60%$ ,& 6&/6'$ ,& 6&/6'$ 60%$ &5& *3,23257& 51* *3,23257' $+%)PD[0+] 3'>@ &203 76& *3,23257( *3,23257+ ::'* $ 3 % 26&B,1 26&B287 +6( +6,0 +6,0 /6, 06, 5;7;576 &76&. 86$57 5;7;576 &76&. ,:'* 7,0 5;7;576 &76&. 5;7;576 &76 0,620&. 026,6' 6&.&.166 :6 FK 7,0 FK /&' &20[6(*[ /&'B9/&'[ 86$57 57& /38$57 %&.35(* 63,,6 5(6(7 &/. :.83[ 26&B,1 26&B287 86$57 &56 3// /6( 39'B,1 95()B287 308 '3'02( &56B6<1& 9''B86% 1567 9''$ 9'' 5(*8/$725 06Y9 12/137 DocID027096 Rev 2 STM32L073xx 2.2 Description Ultra-low-power device continuum The ultra-low-power family offers a large choice of core and features, from 8-bit proprietary core up to ARM(R) Cortex(R)-M4, including ARM(R) Cortex(R)-M3 and ARM(R) Cortex(R)-M0+. The STM32Lx series are the best choice to answer your needs in terms of ultra-low-power features. The STM32 ultra-low-power series are the best solution for applications such as gaz/water meter, keyboard/mouse or fitness and healthcare application. Several built-in features like LCD drivers, dual-bank memory, low-power run mode, operational amplifiers, 128-bit AES, DAC, crystal-less USB and many other definitely help you building a highly cost optimized application by reducing BOM cost. STMicroelectronics, as a reliable and long-term manufacturer, ensures as much as possible pin-to-pin compatibility between all STM8Lx and STM32Lx on one hand, and between all STM32Lx and STM32Fx on the other hand. Thanks to this unprecedented scalability, your legacy application can be upgraded to respond to the latest market feature and efficiency requirements. DocID027096 Rev 2 13/137 36 Functional overview STM32L073xx 3 Functional overview 3.1 Low-power modes The ultra-low-power STM32L073xx support dynamic voltage scaling to optimize its power consumption in Run mode. The voltage from the internal low-drop regulator that supplies the logic can be adjusted according to the system's maximum operating frequency and the external voltage supply. There are three power consumption ranges: * Range 1 (VDD range limited to 1.71-3.6 V), with the CPU running at up to 32 MHz * Range 2 (full VDD range), with a maximum CPU frequency of 16 MHz * Range 3 (full VDD range), with a maximum CPU frequency limited to 4.2 MHz Seven low-power modes are provided to achieve the best compromise between low-power consumption, short startup time and available wakeup sources: * Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. Sleep mode power consumption at 16 MHz is about 1 mA with all peripherals off. * Low-power run mode This mode is achieved with the multispeed internal (MSI) RC oscillator set to the lowspeed clock (max 131 kHz), execution from SRAM or Flash memory, and internal regulator in low-power mode to minimize the regulator's operating current. In Lowpower run mode, the clock frequency and the number of enabled peripherals are both limited. * Low-power sleep mode This mode is achieved by entering Sleep mode with the internal voltage regulator in low-power mode to minimize the regulator's operating current. In Low-power sleep mode, both the clock frequency and the number of enabled peripherals are limited; a typical example would be to have a timer running at 32 kHz. When wakeup is triggered by an event or an interrupt, the system reverts to the Run mode with the regulator on. Stop mode with RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents and real time clock. All clocks in the VCORE domain are stopped, the PLL, MSI RC, HSE crystal and HSI RC oscillators are disabled. The LSE or LSI is still running. The voltage regulator is in the low-power mode. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on), it can be the RTC alarm/tamper/timestamp/wakeup events, the USB/USART/I2C/LPUART/LPTIMER wakeup events. 14/137 DocID027096 Rev 2 STM32L073xx * Functional overview Stop mode without RTC The Stop mode achieves the lowest power consumption while retaining the RAM and register contents. All clocks are stopped, the PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are disabled. Some peripherals featuring wakeup capability can enable the HSI RC during Stop mode to detect their wakeup condition. The voltage regulator is in the low-power mode. The device can be woken up from Stop mode by any of the EXTI line, in 3.5 s, the processor can serve the interrupt or resume the code. The EXTI line source can be any GPIO. It can be the PVD output, the comparator 1 event or comparator 2 event (if internal reference voltage is on). It can also be wakened by the USB/USART/I2C/LPUART/LPTIMER wakeup events. * Standby mode with RTC The Standby mode is used to achieve the lowest power consumption and real time clock. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSE crystal and HSI RC oscillators are also switched off. The LSE or LSI is still running. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 s when an external reset (NRST pin), an IWDG reset, a rising edge on one of the three WKUP pins, RTC alarm (Alarm A or Alarm B), RTC tamper event, RTC timestamp event or RTC Wakeup event occurs. * Standby mode without RTC The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire VCORE domain is powered off. The PLL, MSI RC, HSI and LSI RC, HSE and LSE crystal oscillators are also switched off. After entering Standby mode, the RAM and register contents are lost except for registers in the Standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE Crystal 32 KHz oscillator, RCC_CSR register). The device exits Standby mode in 60 s when an external reset (NRST pin) or a rising edge on one of the three WKUP pin occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped automatically by entering Stop or Standby mode. The LCD is not stopped automatically by entering Stop mode. DocID027096 Rev 2 15/137 36 Functional overview STM32L073xx Table 3. Functionalities depending on the operating power supply range Functionalities depending on the operating power supply range Operating power supply range DAC and ADC operation Dynamic voltage scaling range I/O operation USB VDD = 1.65 to 1.71 V ADC only, conversion time up to 570 ksps Range 2 or range 3 Degraded speed performance Not functional VDD = 1.71 to 1.8 V(1) ADC only, Range 1, range 2 conversion time or range 3 up to 1.14 Msps Degraded speed performance Functional(2) VDD = 1.8 to 2.0 V(1) Conversion time Range1, range 2 up to 1.14 Msps or range 3 Degraded speed performance Functional(2) VDD = 2.0 to 2.4 V Conversion time Range 1, range 2 up to or range 3 1.14 Msps Full speed operation Functional(2) VDD = 2.4 to 3.6 V Conversion time Range 1, range 2 up to or range 3 1.14 Msps Full speed operation Functional(2) 1. CPU frequency changes from initial to final must respect "fcpu initial <4*fcpu final". It must also respect 5 s delay between two changes. For example to switch from 4.2 MHz to 32 MHz, you can switch from 4.2 MHz to 16 MHz, wait 5 s, then switch from 16 MHz to 32 MHz. 2. To be USB compliant from the I/O voltage standpoint, the minimum VDD_USB is 3.0 V. Table 4. CPU frequency range depending on dynamic voltage scaling 16/137 CPU frequency range Dynamic voltage scaling range 16 MHz to 32 MHz (1ws) 32 kHz to 16 MHz (0ws) Range 1 8 MHz to 16 MHz (1ws) 32 kHz to 8 MHz (0ws) Range 2 32 kHz to 4.2 MHz (0ws) Range 3 DocID027096 Rev 2 STM32L073xx Functional overview Table 5. Functionalities depending on the working mode (from Run/active down to standby) (1)(2) Standby Run/Active Sleep CPU Y -- Y -- -- -- Flash memory O O O O -- -- RAM Y Y Y Y Y -- Backup registers Y Y Y Y Y Y EEPROM O O O O -- -- Brown-out reset (BOR) O O O O O DMA O O O O -- Programmable Voltage Detector (PVD) O O O O O O - Power-on/down reset (POR/PDR) Y Y Y Y Y Y Y High Speed Internal (HSI) O O -- -- (3) -- High Speed External (HSE) O O O O -- -- Low Speed Internal (LSI) O O O O O O Low Speed External (LSE) O O O O O O Multi-Speed Internal (MSI) O O Y Y -- -- Inter-Connect Controller Y Y Y Y Y -- RTC O O O O O O O RTC Tamper O O O O O O O O Auto WakeUp (AWU) O O O O O O O O LCD O O O O O USB O O -- -- -- O -- O O (4) O -- O (4) O -- IPs USART O O O Lowpower sleep Stop Lowpower run Wakeup capability LPUART O O O O SPI O O O O -- I2C O O O O O(5) ADC O O -- -- -- DocID027096 Rev 2 O Wakeup capability O O -- Y -- -O --- 17/137 36 Functional overview STM32L073xx Table 5. Functionalities depending on the working mode (from Run/active down to standby) (continued)(1)(2) Standby Run/Active Sleep DAC O O O O O -- Temperature sensor O O O O O -- Comparators O O O O O 16-bit timers O O O O -- LPTIMER O O O O O O IWDG O O O O O O WWDG O O O O -- -- Touch sensing controller (TSC) O O -- -- -- -- SysTick Timer O O O O GPIOs O O O O 0 s 0.36 s 3 s 32 s IPs Wakeup time to Run mode Lowpower sleep Stop Lowpower run Wakeup capability O Wakeup capability --- O O -O O 3.5 s 2 pins 50 s 0.28 A (No 0.4 A (No RTC) VDD=1.8 V RTC) VDD=1.8 V Consumption VDD=1.8 to 3.6 V (Typ) Down to 140 A/MHz (from Flash memory) Down to 37 A/MHz (from Flash memory) Down to 8 A 0.65 A (with 0.8 A (with =1.8 V RTC) VDD=1.8 V RTC) V DD Down to 4.5 A 0.29 A (No 0.4 A (No RTC) VDD=3.0 V RTC) VDD=3.0 V 1 A (with RTC) 0.85 A (with VDD=3.0 V RTC) VDD=3.0 V 1. Legend: "Y" = Yes (enable). "O" = Optional can be enabled/disabled by software) "-" = Not available 2. The consumption values given in this table are preliminary data given for indication. They are subject to slight changes. 3. Some peripherals with wakeup from Stop capability can request HSI to be enabled. In this case, HSI is woken up by the peripheral, and only feeds the peripheral which requested it. HSI is automatically put off when the peripheral does not need it anymore. 4. UART and LPUART reception is functional in Stop mode. It generates a wakeup interrupt on Start. To generate a wakeup on address match or received frame event, the LPUART can run on LSE clock while the UART has to wake up or keep running the HSI clock. 5. I2C address detection is functional in Stop mode. It generates a wakeup interrupt in case of address match. It will wake up the HSI during reception. 18/137 DocID027096 Rev 2 STM32L073xx 3.2 Functional overview Interconnect matrix Several peripherals are directly interconnected. This allows autonomous communication between peripherals, thus saving CPU resources and power consumption. In addition, these hardware connections allow fast and predictable latency. Depending on peripherals, these interconnections can operate in Run, Sleep, Low-power run, Low-power sleep and Stop modes. Table 6. STM32L0xx peripherals interconnect matrix Interconnect source Lowpower sleep Stop Y Y - Y Y Y Y Y Y Y Y - Timer triggered by Auto wake-up Y Y Y Y - LPTIM Timer triggered by RTC event Y Y Y Y Y TIMx Clock source used as input channel for RC measurement and trimming Y Y Y Y - CRS/HSI48 the clock recovery system trims the HSI48 based on USB SOF Y Y - - - TIM3 USB_SOF is channel input for calibration Y Y - - - TIMx Timer input channel and trigger Y Y Y Y - LPTIM Timer input channel and trigger Y Y Y Y Y ADC,DAC Conversion trigger Y Y Y Y - Interconnect action Run TIM2,TIM21, TIM22 Timer input channel, trigger from analog signals comparison Y Y LPTIM Timer input channel, trigger from analog signals comparison Y TIMx Timer triggered by other timer TIM21 COMPx TIMx RTC All clock source USB GPIO LowSleep power run Interconnect destination DocID027096 Rev 2 19/137 36 Functional overview 3.3 STM32L073xx ARM(R) Cortex(R)-M0+ core with MPU The Cortex-M0+ processor is an entry-level 32-bit ARM Cortex processor designed for a broad range of embedded applications. It offers significant benefits to developers, including: * a simple architecture that is easy to learn and program * ultra-low power, energy-efficient operation * excellent code density * deterministic, high-performance interrupt handling * upward compatibility with Cortex-M processor family * platform security robustness, with integrated Memory Protection Unit (MPU). The Cortex-M0+ processor is built on a highly area and power optimized 32-bit processor core, with a 2-stage pipeline Von Neumann architecture. The processor delivers exceptional energy efficiency through a small but powerful instruction set and extensively optimized design, providing high-end processing hardware including a single-cycle multiplier. The Cortex-M0+ processor provides the exceptional performance expected of a modern 32bit architecture, with a higher code density than other 8-bit and 16-bit microcontrollers. Owing to its embedded ARM core, the STM32L073xx are compatible with all ARM tools and software. Nested vectored interrupt controller (NVIC) The ultra-low-power STM32L073xx embed a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels and 4 priority levels. The Cortex-M0+ processor closely integrates a configurable Nested Vectored Interrupt Controller (NVIC), to deliver industry-leading interrupt performance. The NVIC: * includes a Non-Maskable Interrupt (NMI) * provides zero jitter interrupt option * provides four interrupt priority levels The tight integration of the processor core and NVIC provides fast execution of Interrupt Service Routines (ISRs), dramatically reducing the interrupt latency. This is achieved through the hardware stacking of registers, and the ability to abandon and restart loadmultiple and store-multiple operations. Interrupt handlers do not require any assembler wrapper code, removing any code overhead from the ISRs. Tail-chaining optimization also significantly reduces the overhead when switching from one ISR to another. To optimize low-power designs, the NVIC integrates with the sleep modes, that include a deep sleep function that enables the entire device to enter rapidly stop or standby mode. This hardware block provides flexible interrupt management features with minimal interrupt latency. 20/137 DocID027096 Rev 2 STM32L073xx Functional overview 3.4 Reset and supply management 3.4.1 Power supply schemes 3.4.2 * VDD = 1.65 to 3.6 V: external power supply for I/Os and the internal regulator. Provided externally through VDD pins. * VSSA, VDDA = 1.65 to 3.6 V: external analog power supplies for ADC reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively. * VDD_USB = 1.65 to 3.6V: external power supply for USB transceiver, USB_DM (PA11) and USB_DP (PA12). To guarantee a correct voltage level for USB communication VDD_USB must be above 3.0V. If USB is not used this pin must be tied to VDD. Power supply supervisor The devices have an integrated ZEROPOWER power-on reset (POR)/power-down reset (PDR) that can be coupled with a brownout reset (BOR) circuitry. Two versions are available: * The version with BOR activated at power-on operates between 1.8 V and 3.6 V. * The other version without BOR operates between 1.65 V and 3.6 V. After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is active or not at power-on), the option byte loading process starts, either to confirm or modify default thresholds, or to disable the BOR permanently: in this case, the VDD min value becomes 1.65 V (whatever the version, BOR active or not, at power-on). When BOR is active at power-on, it ensures proper operation starting from 1.8 V whatever the power ramp-up phase before it reaches 1.8 V. When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is reached on VDD at least 1 ms after it exits the POR area. Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To reduce the power consumption in Stop mode, it is possible to automatically switch off the internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for any external reset circuit. Note: The start-up time at power-on is typically 3.3 ms when BOR is active at power-up, the startup time at power-on can be decreased down to 1 ms typically for devices with BOR inactive at power-up. The devices feature an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. This PVD offers 7 different levels between 1.85 V and 3.05 V, chosen by software, with a step around 200 mV. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. DocID027096 Rev 2 21/137 36 Functional overview 3.4.3 STM32L073xx Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. 3.5 * MR is used in Run mode (nominal regulation) * LPR is used in the Low-power run, Low-power sleep and Stop modes * Power down is used in Standby mode. The regulator output is high impedance, the kernel circuitry is powered down, inducing zero consumption but the contents of the registers and RAM are lost except for the standby circuitry (wakeup logic, IWDG, RTC, LSI, LSE crystal 32 KHz oscillator, RCC_CSR). Clock management The clock controller distributes the clocks coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness. It features: * Clock prescaler To get the best trade-off between speed and current consumption, the clock frequency to the CPU and peripherals can be adjusted by a programmable prescaler. * Safe clock switching Clock sources can be changed safely on the fly in Run mode through a configuration register. * Clock management To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory. * System clock source Three different clock sources can be used to drive the master clock SYSCLK: * - 1-25 MHz high-speed external crystal (HSE), that can supply a PLL - 16 MHz high-speed internal RC oscillator (HSI), trimmable by software, that can supply a PLLMultispeed internal RC oscillator (MSI), trimmable by software, able to generate 7 frequencies (65 kHz, 131 kHz, 262 kHz, 524 kHz, 1.05 MHz, 2.1 MHz, 4.2 MHz). When a 32.768 kHz clock source is available in the system (LSE), the MSI frequency can be trimmed by software down to a 0.5% accuracy. Auxiliary clock source Two ultra-low-power clock sources that can be used to drive the LCD controller and the real-time clock: * - 32.768 kHz low-speed external crystal (LSE) - 37 kHz low-speed internal RC (LSI), also used to drive the independent watchdog. The LSI clock can be measured using the high-speed internal RC oscillator for greater precision. RTC and LCD clock source The LSI, LSE or HSE sources can be chosen to clock the RTC and the LCD, whatever the system clock. * USB clock source A 48 MHz clock trimmed through the USB SOF or LSE supplies the USB interface. 22/137 DocID027096 Rev 2 STM32L073xx * Functional overview Startup clock After reset, the microcontroller restarts by default with an internal 2.1 MHz clock (MSI). The prescaler ratio and clock source can be changed by the application program as soon as the code execution starts. * Clock security system (CSS) This feature can be enabled by software. If an HSE clock failure occurs, the master clock is automatically switched to HSI and a software interrupt is generated if enabled. Another clock security system can be enabled, in case of failure of the LSE it provides an interrupt or wakeup event which is generated if enabled. * Clock-out capability (MCO: microcontroller clock output) It outputs one of the internal clocks for external use by the application. Several prescalers allow the configuration of the AHB frequency, each APB (APB1 and APB2) domains. The maximum frequency of the AHB and the APB domains is 32 MHz. See Figure 2 for details on the clock tree. DocID027096 Rev 2 23/137 36 Functional overview STM32L073xx Figure 2. Clock tree #9 (QDEOH:DWFKGRJ /6,5& /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +LJKVSHHGLQWHUQDOFORFNVLJQDO /6, /RZVSHHGLQWHUQDOFORFNVLJQDO /6( /RZVSHHGH[WHUQDOFORFNVLJQDO 06, 0XOWLVSHHGLQWHUQDOFORFNVLJQDO :DWFKGRJ/6 /6,WHPSR 57&6(/ 57&HQDEOH /6(26& 57& /6(WHPSR /&'HQDEOH /68 /6' /6' /6' 0+] #9 /&'&/. #9 06,5& /6, /6( 06, /HYHOVKLIWHUV #9 0&26(/ $'&HQDEOH $'&&/. 0&2 QRWGHHSVOHHS #9 +6,5& /HYHOVKLIWHUV #9 FNBUFKV +6, 6\VWHP &ORFN 06, +6, +6( #9 +6(26& /HYHOVKLIWHUV #9 3//65& /68 #9 0+]&ORFN 'HWHFWRU 3//&/. +&/. $3% 35(6& ; +6,06(/ QRW VOHHSRU GHHSVOHHS FNBSOOLQ 3// 'HGLFDWHG0+]3//RXWSXW )&/. 6\V7LFN 7LPHU $+% 35(6& #9 /HYHOVKLIWHUV #9''&25( +6(SUHVHQWRUQRW QRW VOHHSRU GHHSVOHHS 0+] PD[ 3&/.WR$3% SHULSKHUDOV 3HULSKHUDO FORFNHQDEOH WR7,0[ ,I $3%SUHVF [ HOVH[ /6' &ORFN 6RXUFH &RQWURO $3% 35(6& 3HULSKHUDO FORFNHQDEOH 3&/.WR$3% 0+] SHULSKHUDOV PD[ 3HULSKHUDO FORFNHQDEOH ,I $3%SUHVF [ HOVH[ #9 5&0+] &.B3:5 QRWGHHSVOHHS +6, /HYHOVKLIWHUV #9 /6, 6<6&/. &ORFN 5HFRYHU\ 6\VWHP WR7,0[ 3HULSKHUDO FORFNHQDEOH /6( +6, 3HULSKHUDO FORFNHQDEOH 3&/. 3HULSKHUDO FORFNHQDEOH /37,0&/. /38$57 8$57&/. ,&&/. XVEBHQ UQJBHQ 0+] 86%&/. 0+]51* 06Y9 24/137 DocID027096 Rev 2 STM32L073xx 3.6 Functional overview Low-power real-time clock and backup registers The real time clock (RTC) and the 5 backup registers are supplied in all modes including standby mode. The backup registers are five 32-bit registers used to store 20 bytes of user application data. They are not reset by a system reset, or when the device wakes up from Standby mode. The RTC is an independent BCD timer/counter. Its main features are the following: * * * * * * * * * Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format Automatically correction for 28, 29 (leap year), 30, and 31 day of the month Two programmable alarms with wake up from Stop and Standby mode capability Periodic wakeup from Stop and Standby with programmable resolution and period On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock. Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy 2 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection. Timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection. The RTC clock sources can be: * * * * 3.7 A 32.768 kHz external crystal A resonator or oscillator The internal low-power RC oscillator (typical frequency of 37 kHz) The high-speed external clock General-purpose inputs/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions, and can be individually remapped using dedicated alternate function registers. All GPIOs are high current capable. Each GPIO output, speed can be slowed (40 MHz, 10 MHz, 2 MHz, 400 kHz). The alternate function configuration of I/Os can be locked if needed following a specific sequence in order to avoid spurious writing to the I/O registers. The I/O controller is connected to a dedicated IO bus with a toggling speed of up to 32 MHz. Extended interrupt/event controller (EXTI) The extended interrupt/event controller consists of 29 edge detector lines used to generate interrupt/event requests. Each line can be individually configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 84 GPIOs can be connected to the 16 configurable interrupt/event lines. The 13 other lines are connected to PVD, RTC, USB, USARTs, I2C, LPUART, LPTIMER or comparator events. DocID027096 Rev 2 25/137 36 Functional overview 3.8 STM32L073xx Memories The STM32L073xx devices have the following features: * 20 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. With the enhanced bus matrix, operating the RAM does not lead to any performance penalty during accesses to the system bus (AHB and APB buses). * The non-volatile memory is divided into three arrays: - 64, 128 or 192 Kbytes of embedded Flash program memory - 6 Kbytes of data EEPROM - Information block containing 32 user and factory options bytes plus 8 Kbytes of system memory Flash program and data EEPROM are divided into two banks. This allows writing in one bank while running code or reading data from the other bank. The user options bytes are used to write-protect or read-out protect the memory (with 4 Kbyte granularity) and/or readout-protect the whole memory with the following options: * Level 0: no protection * Level 1: memory readout protected. The Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected * Level 2: chip readout protected, debug features (Cortex-M0+ serial wire) and boot in RAM selection disabled (debugline fuse) The firewall protects parts of code/data from access by the rest of the code that is executed outside of the protected area. The granularity of the protected code segment or the nonvolatile data segment is 256 bytes (Flash memory or EEPROM) against 64 bytes for the volatile data segment (RAM). The whole non-volatile memory embeds the error correction code (ECC) feature. 3.9 Boot modes At startup, BOOT0 pin and nBOOT1 option bit are used to select one of three boot options: * Boot from Flash memory * Boot from System memory * Boot from embedded RAM The boot loader is located in System memory. It is used to reprogram the Flash memory by using USB (PA11, PA12), USART1(PA9, PA10) or USART2(PA2, PA3). See STM32TM microcontroller system memory boot mode AN2606 for details. 26/137 DocID027096 Rev 2 STM32L073xx 3.10 Functional overview Direct memory access (DMA) The flexible 7-channel, general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supports circular buffer management, avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with software trigger support for each channel. Configuration is done by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, I2C, USART, LPUART, general-purpose timers, DAC, and ADC. 3.11 Liquid crystal display (LCD) The LCD drives up to 8 common terminals and 48 segment terminals to drive up to 384 pixels. 3.12 * Internal step-up converter to guarantee functionality and contrast control irrespective of VDD. This converter can be deactivated, in which case the VLCD pin is used to provide the voltage to the LCD * Supports static, 1/2, 1/3, 1/4 and 1/8 duty * Supports static, 1/2, 1/3 and 1/4 bias * Phase inversion to reduce power consumption and EMI * Up to 8 pixels can be programmed to blink * Unneeded segments and common pins can be used as general I/O pins * LCD RAM can be updated at any time owing to a double-buffer * The LCD controller can operate in Stop mode * VLCD rails decoupling capability Analog-to-digital converter (ADC) A native 12-bit, extended to 16-bit through hardware oversampling, analog-to-digital converter is embedded into STM32L073xx device. It has up to 16 external channels and 3 internal channels (temperature sensor, voltage reference, VLCD voltage measurement). It performs conversions in single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC frequency is independent from the CPU frequency, allowing maximum sampling rate of 1.14 MSPS even with a low CPU speed. The ADC consumption is low at all frequencies (~25 A at 10 kSPS, ~240 A at 1MSPS). An auto-shutdown function guarantees that the ADC is powered off except during the active conversion phase. The ADC can be served by the DMA controller. It can operate from a supply voltage down to 1.65 V. The ADC features a hardware oversampler up to 256 samples, this improves the resolution to 16 bits (see AN2668). DocID027096 Rev 2 27/137 36 Functional overview STM32L073xx An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all scanned channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. The events generated by the general-purpose timers (TIMx) can be internally connected to the ADC start triggers, to allow the application to synchronize A/D conversions and timers. 3.13 Temperature sensor The temperature sensor (TSENSE) generates a voltage VSENSE that varies linearly with temperature. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. Table 7. Temperature sensor calibration values Calibration value name 3.13.1 Description Memory address TSENSE_CAL1 TS ADC raw data acquired at temperature of 30 C, VDDA= 3 V 0x1FF8 007A - 0x1FF8 007B TSENSE_CAL2 TS ADC raw data acquired at temperature of 130 C VDDA= 3 V 0x1FF8 007E - 0x1FF8 007F Internal voltage reference (VREFINT) The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. It enables accurate monitoring of the VDD value (when no external voltage, VREF+, is available for ADC). The precise voltage of VREFINT is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode. Table 8. Internal voltage reference measured values Calibration value name VREFINT_CAL 28/137 Description Raw data acquired at temperature of 25 C VDDA = 3 V DocID027096 Rev 2 Memory address 0x1FF8 0078 - 0x1FF8 0079 STM32L073xx 3.13.2 Functional overview VLCD voltage monitoring This embedded hardware feature allows the application to measure the VLCD supply voltage using the internal ADC channel ADC_IN16. As the VLCD voltage may be higher than VDDA, and thus outside the ADC input range, the ADC input is connected to LCD_VLCD2 (which provides 1/3VLCD when the LCD is configured 1/3Bias and 1/4VLCD when the LCD is configured 1/4Bias or 1/2Bias). 3.14 Digital-to-analog converter (DAC) Two 12-bit buffered DACs can be used to convert digital signal into analog voltage signal output. An optional amplifier can be used to reduce the output signal impedance. This digital Interface supports the following features: * One data holding register (for each channel) * Left or right data alignment in 12-bit mode * Synchronized update capability * Noise-wave generation * Triangular-wave generation * Dual DAC channels with independent or simultaneous conversions * DMA capability (including the underrun interrupt) * External triggers for conversion * Input reference voltage VREF+ Six DAC trigger inputs are used in the STM32L073xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.15 Ultra-low-power comparators and reference voltage The STM32L073xx embed two comparators sharing the same current bias and reference voltage. The reference voltage can be internal or external (coming from an I/O). * One comparator with ultra low consumption * One comparator with rail-to-rail inputs, fast or slow mode. * The threshold can be one of the following: - DAC output - External I/O pins - Internal reference voltage (VREFINT) - submultiple of Internal reference voltage(1/4, 1/2, 3/4) for the rail to rail comparator. Both comparators can wake up the devices from Stop mode, and be combined into a window comparator. The internal reference voltage is available externally via a low-power / low-current output buffer (driving current capability of 1 A typical). DocID027096 Rev 2 29/137 36 Functional overview 3.16 STM32L073xx Touch sensing controller (TSC) The STM32L073xx provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 24 capacitive sensing channels distributed over 8 analog I/O groups. Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (such as glass, plastic). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate. The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. Table 9. Capacitive sensing GPIOs available on STM32L073xx devices Group 1 2 3 4 30/137 Capacitive sensing signal name Pin name Capacitive sensing signal name Pin name TSC_G1_IO1 PA0 TSC_G5_IO1 PB3 TSC_G1_IO2 PA1 TSC_G5_IO2 PB4 TSC_G1_IO3 PA2 TSC_G5_IO3 PB6 TSC_G1_IO4 PA3 TSC_G5_IO4 PB7 TSC_G2_IO1 PA4 TSC_G6_IO1 PB11 TSC_G2_IO2 PA5 TSC_G6_IO2 PB12 TSC_G2_IO3 PA6 TSC_G6_IO3 PB13 TSC_G2_IO4 PA7 TSC_G6_IO4 PB14 TSC_G3_IO1 PC5 TSC_G7_IO1 PC0 TSC_G3_IO2 PB0 TSC_G7_IO2 PC1 TSC_G3_IO3 PB1 TSC_G7_IO3 PC2 TSC_G3_IO4 PB2 TSC_G7_IO4 PC3 TSC_G4_IO1 PA9 TSC_G8_IO1 PC6 TSC_G4_IO2 PA10 TSC_G8_IO2 PC7 TSC_G4_IO3 PA11 TSC_G8_IO3 PC8 TSC_G4_IO4 PA12 TSC_G8_IO4 PC9 DocID027096 Rev 2 Group 5 6 7 8 STM32L073xx 3.17 Functional overview Timers and watchdogs The ultra-low-power STM32L073xx devices include three general-purpose timers, one lowpower timer (LPTIM), one basic timer, two watchdog timers and the SysTick timer. Table 10 compares the features of the general-purpose and basic timers. Table 10. Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request generation TIM2, TIM3 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM21, TIM22 16-bit Up, down, up/down Any integer between 1 and 65536 No 2 No TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 3.17.1 Capture/compare Complementary channels outputs General-purpose timers (TIM2, TIM3, TIM21 and TIM22) There are four synchronizable general-purpose timers embedded in the STM32L073xx device (see Table 10 for differences). TIM2, TIM3 TIM2 and TIM3 are based on 16-bit auto-reload up/down counter. It includes a 16-bit prescaler. It features four independent channels each for input capture/output compare, PWM or one-pulse mode output. The TIM2/TIM3 general-purpose timers can work together or with the TIM21 and TIM22 general-purpose timers via the Timer Link feature for synchronization or event chaining. Their counter can be frozen in debug mode. Any of the general-purpose timers can be used to generate PWM outputs. TIM2/TIM3 have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. TIM21 and TIM22 TIM21 and TIM22 are based on a 16-bit auto-reload up/down counter. They include a 16-bit prescaler. They have two independent channels for input capture/output compare, PWM or one-pulse mode output. They can work together and be synchronized with the TIM2/TIM3, full-featured general-purpose timers. They can also be used as simple time bases and be clocked by the LSE clock source (32.768 kHz) to provide time bases independent from the main CPU clock. DocID027096 Rev 2 31/137 36 Functional overview 3.17.2 STM32L073xx Low-power Timer (LPTIM) The low-power timer has an independent clock and is running also in Stop mode if it is clocked by LSE, LSI or an external clock. It is able to wakeup the devices from Stop mode. This low-power timer supports the following features: 3.17.3 * 16-bit up counter with 16-bit autoreload register * 16-bit compare register * Configurable output: pulse, PWM * Continuous / one shot mode * Selectable software / hardware input trigger * Selectable clock source - Internal clock source: LSE, LSI, HSI or APB clock - External clock source over LPTIM input (working even with no internal clock source running, used by the Pulse Counter Application) * Programmable digital glitch filter * Encoder mode Basic timer (TIM6, TIM7) These timers can be used as a generic 16-bit timebase. 3.17.4 SysTick timer This timer is dedicated to the OS, but could also be used as a standard downcounter. It is based on a 24-bit downcounter with autoreload capability and a programmable clock source. It features a maskable system interrupt generation when the counter reaches `0'. 3.17.5 Independent watchdog (IWDG) The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 37 kHz internal RC and, as it operates independently of the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. The counter can be frozen in debug mode. 3.17.6 Window watchdog (WWDG) The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 32/137 DocID027096 Rev 2 STM32L073xx Functional overview 3.18 Communication interfaces 3.18.1 I2C bus Up to three I2C interfaces (I2C1 and I2C3) can operate in multimaster or slave modes. Each I2C interface can support Standard mode (Sm, up to 100 kbit/s), Fast mode (Fm, up to 400 kbit/s) and Fast Mode Plus (Fm+, up to 1 Mbit/s) with 20 mA output drive on some I/Os. 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask) are also supported as well as programmable analog and digital noise filters. Table 11. Comparison of I2C analog and digital filters Analog filter Digital filter Pulse width of suppressed spikes 50 ns Programmable length from 1 to 15 I2C peripheral clocks Benefits Available in Stop mode 1. Extra filtering capability vs. standard requirements. 2. Stable length Drawbacks Variations depending on temperature, voltage, process Wakeup from Stop on address match is not available when digital filter is enabled. In addition, I2C1 and I2C3 provide hardware support for SMBus 2.0 and PMBus 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1/I2C3 also have a clock domain independent from the CPU clock, allowing the I2C1/I2C3 to wake up the MCU from Stop mode on address match. Each I2C interface can be served by the DMA controller. Refer to Table 12 for an overview of I2C interface features. Table 12. STM32L073xx I2C implementation I2C features(1) I2C1 I2C2 I2C3 7-bit addressing mode X X X 10-bit addressing mode X X X Standard mode (up to 100 kbit/s) X X X Fast mode (up to 400 kbit/s) X X X Fast Mode Plus with 20 mA output drive I/Os (up to 1 Mbit/s) X X(2) X Independent clock X - X SMBus X - X Wakeup from STOP X - X 1. X = supported. 2. See Table 16: STM32L073xx pin definition on page 42 for the list of I/Os that feature Fast Mode Plus capability DocID027096 Rev 2 33/137 36 Functional overview 3.18.2 STM32L073xx Universal synchronous/asynchronous receiver transmitter (USART) The four USART interfaces (USART1, USART2, USART4 and USART5) are able to communicate at speeds of up to 4 Mbit/s. They provide hardware management of the CTS, RTS and RS485 driver enable (DE) signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 and USART2 also support SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability, auto baud rate feature and has a clock domain independent from the CPU clock, allowing to wake up the MCU from Stop mode. All USART interfaces can be served by the DMA controller. Table 13 for the supported modes and features of USART interfaces. Table 13. USART implementation USART modes/features(1) USART1 and USART2 USART4 and USART5 Hardware flow control for modem X X Continuous communication using DMA X X Multiprocessor communication X X Synchronous mode X X Smartcard mode X - Single-wire half-duplex communication X X IrDA SIR ENDEC block X - LIN mode X - Dual clock domain and wakeup from Stop mode X - Receiver timeout interrupt X - Modbus communication X - Auto baud rate detection (4 modes) X - Driver Enable X X 1. X = supported. 3.18.3 Low-power universal asynchronous receiver transmitter (LPUART) The devices embed one Low-power UART. The LPUART supports asynchronous serial communication with minimum power consumption. It supports half duplex single wire communication and modem operations (CTS/RTS). It allows multiprocessor communication. The LPUART has a clock domain independent from the CPU clock, and can wake up the system from Stop mode. The Wakeup events from Stop mode are programmable and can be: 34/137 * Start bit detection * Or any received data frame * Or a specific programmed data frame DocID027096 Rev 2 STM32L073xx Functional overview Only a 32.768 kHz clock (LSE) is needed to allow LPUART communication up to 9600 baud. Therefore, even in Stop mode, the LPUART can wait for an incoming frame while having an extremely low energy consumption. Higher speed clock can be used to reach higher baudrates. LPUART interface can be served by the DMA controller. 3.18.4 Serial peripheral interface (SPI)/Inter-integrated sound (I2S) Up to two SPIs are able to communicate at up to 16 Mbits/s in slave and master modes in full-duplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. One standard I2S interfaces (multiplexed with SPI2) is available. It can operate in master or slave mode, and can be configured to operate with a 16-/32-bit resolution as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When the I2S interfaces is configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. The SPIs can be served by the DMA controller. Refer to Table 14 for the differences between SPI1 and SPI2. Table 14. SPI/I2S implementation SPI features(1) SPI1 SPI2 Hardware CRC calculation X X I2S mode - X TI mode X X 1. X = supported. 3.18.5 Universal serial bus (USB) The STM32L073xx embeds a full-speed USB device peripheral compliant with the USB specification version 2.0. The internal USB PHY supports USB FS signaling, embedded DP pull-up and also battery charging detection according to Battery Charging Specification Revision 1.2. The USB interface implements a full-speed (12 Mbit/s) function interface with added support for USB 2.0 Link Power Management. It has software-configurable endpoint setting with packet memory up to 1 KB and suspend/resume support. It requires a precise 48 MHz clock which can be generated from the internal main PLL (the clock source must use a HSE crystal oscillator) or by the internal 48 MHz oscillator in automatic trimming mode. The synchronization for this oscillator can be taken from the USB data stream itself (SOF signalization) which allows crystal-less operation. DocID027096 Rev 2 35/137 36 Functional overview 3.19 STM32L073xx Clock recovery system (CRS) The STM32L073xx embeds a special block which allows automatic trimming of the internal 48 MHz oscillator to guarantee its optimal accuracy over the whole device operational range. This automatic trimming is based on the external synchronization signal, which could be either derived from USB SOF signalization, from LSE oscillator, from an external signal on CRS_SYNC pin or generated by user software. For faster lock-in during startup it is also possible to combine automatic trimming with manual trimming action. 3.20 Cyclic redundancy check (CRC) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 3.21 Serial wire debug port (SW-DP) An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU. 36/137 DocID027096 Rev 2 STM32L073xx Pin descriptions s s^^ W W W W KK7 3% 3% W W W W W W W W W W W W W W W W Figure 3. STM32L073xx LQFP100 pinout - 14 x 14 mm >Y&W 9'' sB86% s^^ 9'' W W W W W 3$ W W W W W W W W W W W W W W W W W W W W W s/&' W W26&B,1 W26&B287 3+ 3+ W,26&B,1 W,26&B287 EZ67 W W W W s^^ sZ& 95() 9''$ 3$ 3$ 3$ 3$ s^^ s W W 3$ 3$ W W W W W W W W W W W W W W W W 966 s 4 Pin descriptions 06Y9 1. The above figure shows the package top view. 2. I/O pin supplied by VDD_USB. DocID027096 Rev 2 37/137 55 Pin descriptions STM32L073xx Figure 4. STM32L073xx UFBGA100 ballout - 7x 7 mm 3( 3( 3( W 3% 3% 3% 3& 3( 3( 9'' 3% & ' , 3% %227 3' 3' 3% 3% 3$ 3$ 3$ 3$ 3' 3' 3' 3' 3& 3& 3$ 3' 3' 3& 9'' 3$ 3$ 3$ 3& 3& 3& 3& 966 966 9''B 86% 9'' 3& 26& 3( 966 B,1 3& 26& 9/&' 966 B287 3+ 3+ 26&B,1 3+ 26&B 3+ 287 3& 1567 9'' 3' 3' 3' 3' 3' 3' 3% 3% 3% : 966$ 3& 3& < 95() 3& 3$ 3$ 3& > 95() 3$ 3$ 3$ 3& 3% 3( 3( 3( 3% 3% D 9''$ 3$ 3$ 3% 3% 3( 3( 3( 3( 3( 3$ 3' 3' 3% 3( 06Y9 1. The above figure shows the package top view. 2. I/O pin supplied by VDD_USB. 38/137 DocID027096 Rev 2 STM32L073xx Pin descriptions 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ Figure 5. STM32L073xx LQFP64 pinout - 10 x 10 mm /4)3 9''B86% 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 3% 966 9'' 9/&' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. 2. I/O pin supplied by VDD_USB. DocID027096 Rev 2 39/137 55 Pin descriptions STM32L073xx Figure 6. STM32L073xx TFBGA64 ballout - 5x 5 mm $ 3& 26& B,1 3& 3% 3% 3% % 3& 26& B287 9/&' 3% %227 3+ 26&B,1 966 3% ' 3+ 26&B 287 9'' ( 1567 ) 966$ & 3$ 3$ 3$ 3' 3& 3& 3$ 3% 3& 3$ 3$ 3$ 3% 966 966 966 3$ 3& 3& 3& 9'' 9'' 9''B 86% 3& 3& 3& 3$ 3$ 3% 3& 3% 3% * 95() 3$ 3$ 3$ 3% 3% 3% 3% + 9''$ 3$ 3$ 3$ 3& 3& 3% 3% 06Y9 1. The above figure shows the package top view. 2. I/O pin supplied by VDD_USB. 40/137 DocID027096 Rev 2 STM32L073xx Pin descriptions 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ Figure 7. STM32L073xx LQFP48 pinout - 7 x 7 mm /4)3 9''B86% 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3% 966 9'' 9/&' 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 966$ 9''$ 3$ 3$ 3$ 069 1. The above figure shows the package top view. 2. I/O pin supplied by VDD_USB. Table 15. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Abbreviation Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input / output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, FM+ capable TC Standard 3.3V I/O B RST Notes Definition Dedicated BOOT0 pin Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset. DocID027096 Rev 2 41/137 55 Pin descriptions STM32L073xx Table 15. Legend/abbreviations used in the pinout table (continued) Name Pin functions Abbreviation Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 16. STM32L073xx pin definition LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions - - - 1 B2 PE2 I/O FT - LCD_SEG38, TIM3_ETR - - - - 2 A1 PE3 I/O FT - TIM22_CH1, LCD_SEG39, TIM3_CH1 - - - - 3 B1 PE4 I/O FT - TIM22_CH2, TIM3_CH2 - - - - 4 C2 PE5 I/O FT - TIM21_CH1, TIM3_CH3 - - - - 5 D2 PE6 I/O FT - TIM21_CH2, TIM3_CH4 RTC_TAMP3/WKUP3 1 1 B2 6 E2 VLCD S - - 2 2 A2 7 C1 PC13 I/O FT - - RTC_TAMP1/RTC_TS/ RTC_OUT/WKUP2 3 3 A1 8 D1 PC14OSC32_IN (PC14) I/O FT - - OSC32_IN 4 4 B1 9 E1 PC15OSC32_OUT (PC15) I/O TC - - OSC32_OUT - - - 10 F2 PH9 I/O FT - - - - - - 11 G2 PH10 I/O FT - - - 5 5 C1 12 F1 PH0-OSC_IN (PH0) I/O TC - USB_CRS_SYNC OSC_IN 6 6 D1 13 G1 PH1OSC_OUT (PH1) I/O TC - - OSC_OUT 7 7 E1 14 H2 NRST I/O - - - - 42/137 DocID027096 Rev 2 Additional functions STM32L073xx Pin descriptions Table 16. STM32L073xx pin definition (continued) - - - 8 9 10 E3 E2 F2 15 16 17 H1 J2 J3 PC0 PC1 PC2 I/O I/O I/O Note I/O structure Pin name (function after reset) Pin type UFBGA100 LQFP100 TFBGA64 LQFP64 LQFP48 Pin number Alternate functions Additional functions FTf LPTIM1_IN1, LCD_SEG18, EVENTOUT, TSC_G7_IO1, LPUART1_RX, I2C3_SCL ADC_IN10 FTf LPTIM1_OUT, LCD_SEG19, EVENTOUT, TSC_G7_IO2, LPUART1_TX, I2C3_SDA ADC_IN11 FTf - LPTIM1_IN2, LCD_SEG20, SPI2_MISO/I2S2_MCK, TSC_G7_IO3 ADC_IN12 ADC_IN13 - 11 - 18 K2 PC3 I/O FT - LPTIM1_ETR, LCD_SEG21, SPI2_MOSI/I2S2_SD, TSC_G7_IO4 8 12 F1 19 J1 VSSA S - - - - - - - 20 K1 VREF- S - - - - - - G1 21 L1 VREF+ S - - - - 9 13 H1 22 M1 VDDA S - - - - 10 11 12 13 14 15 16 17 G2 H2 F3 G3 23 24 25 26 L2 M2 K3 L3 PA0 PA1 PA2 PA3 I/O I/O I/O I/O TC FT FT FT - TIM2_CH1, TSC_G1_IO1, USART2_CTS, COMP1_INM, ADC_IN0, TIM2_ETR, USART4_TX, RTC_TAMP2/WKUP1 COMP1_OUT - EVENTOUT, LCD_SEG0, TIM2_CH2, TSC_G1_IO2, COMP1_INP, ADC_IN1 USART2_RTS_DE, TIM21_ETR, USART4_RX - TIM21_CH1, LCD_SEG1, TIM2_CH3, TSC_G1_IO3, USART2_TX, COMP2_INM, ADC_IN2 LPUART1_TX, COMP2_OUT - TIM21_CH2, LCD_SEG2, TIM2_CH4, TSC_G1_IO4, COMP2_INP, ADC_IN3 USART2_RX, LPUART1_RX DocID027096 Rev 2 43/137 55 Pin descriptions STM32L073xx Table 16. STM32L073xx pin definition (continued) LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions - 18 C2 27 E3 VSS S - - - - - 19 D2 28 H3 VDD S - - - - 14 20 H3 29 M3 PA4 I/O TC (1) COMP1_INM, SPI1_NSS, TSC_G2_IO1, COMP2_INM, ADC_IN4, USART2_CK, TIM22_ETR DAC_OUT1 15 21 F4 30 K4 PA5 I/O TC - COMP1_INM, SPI1_SCK, TIM2_ETR, COMP2_INM, ADC_IN5, TSC_G2_IO2, TIM2_CH1 DAC_OUT2 - SPI1_MISO, LCD_SEG3, TIM3_CH1, TSC_G2_IO3, LPUART1_CTS, TIM22_CH1, EVENTOUT, COMP1_OUT ADC_IN6 ADC_IN7 16 22 G4 31 L4 PA6 I/O FT Additional functions 17 23 H4 32 M4 PA7 I/O FT - SPI1_MOSI, LCD_SEG4, TIM3_CH2, TSC_G2_IO4, TIM22_CH2, EVENTOUT, COMP2_OUT - 24 H5 33 K5 PC4 I/O FT - EVENTOUT, LCD_SEG22, LPUART1_TX ADC_IN14 - 25 H6 34 L5 PC5 I/O FT - LCD_SEG23, LPUART1_RX, TSC_G3_IO1 ADC_IN15 18 26 F5 35 M5 PB0 I/O FT - EVENTOUT, LCD_SEG5, LCD_VLCD3, ADC_IN8, TIM3_CH3, TSC_G3_IO2 VREF_OUT 19 27 G5 36 M6 PB1 I/O FT - LCD_SEG6, TIM3_CH4, TSC_G3_IO3, LPUART1_RTS_DE ADC_IN9, VREF_OUT 20 28 G6 37 L6 PB2 I/O FT - LPTIM1_OUT, TSC_G3_IO4, I2C3_SMBA LCD_VLCD1 - - - 38 M7 PE7 I/O FT - LCD_SEG45, USART5_CK/USART5_ RTS - - - - 39 L7 PE8 I/O FT - LCD_SEG46, USART4_TX - - - 40 M8 PE9 I/O FT - 44/137 TIM2_CH1, LCD_SEG47, TIM2_ETR, USART4_RX DocID027096 Rev 2 - STM32L073xx Pin descriptions Table 16. STM32L073xx pin definition (continued) LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions - - - 41 L8 PE10 I/O FT - TIM2_CH2, LCD_SEG40, USART5_TX - - - - 42 M9 PE11 I/O FT - TIM2_CH3, USART5_RX LCD_VLCD2 - - - 43 L9 PE12 I/O FT - TIM2_CH4, SPI1_NSS LCD_VLCD3 - - - 44 M10 PE13 I/O FT - LCD_SEG41, SPI1_SCK - - - - 45 M11 PE14 I/O FT - LCD_SEG42, SPI1_MISO - - - - 46 M12 PE15 I/O FT - LCD_SEG43, SPI1_MOSI - FT LCD_SEG10, TIM2_CH3, TSC_SYNC, LPUART1_TX, SPI2_SCK, I2C2_SCL, LPUART1_RX - FT EVENTOUT, LCD_SEG11, TIM2_CH4, TSC_G6_IO1, LPUART1_RX, I2C2_SDA, LPUART1_TX - 21 29 G7 47 L10 PB10 I/O Additional functions 22 30 H7 48 L11 PB11 I/O 23 31 D6 49 F12 VSS S - - - 24 32 E5 50 G12 VDD S - - - - SPI2_NSS/I2S2_WS, LCD_SEG12, LPUART1_RTS_DE, TSC_G6_IO2, I2C2_SMBA, EVENTOUT LCD_VLCD2 - SPI2_SCK/I2S2_CK, LCD_SEG13, MCO, TSC_G6_IO3, LPUART1_CTS, I2C2_SCL, TIM21_CH1 - - 25 26 33 34 H8 G8 51 52 L12 K12 PB12 PB13 I/O I/O FT FTf 27 35 F8 53 K11 PB14 I/O FTf - SPI2_MISO/I2S2_MCK, LCD_SEG14, RTC_OUT, TSC_G6_IO4, LPUART1_RTS_DE, I2C2_SDA, TIM21_CH2 28 36 F7 54 K10 PB15 I/O FT - SPI2_MOSI/I2S2_SD, LCD_SEG15, RTC_REFIN - - - - 55 K9 PD8 I/O FT - LPUART1_TX, LCD_SEG28 - DocID027096 Rev 2 45/137 55 Pin descriptions STM32L073xx Table 16. STM32L073xx pin definition (continued) LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions - - - 56 K8 PD9 I/O FT - LPUART1_RX, LCD_SEG29 - - - - 57 J12 PD10 I/O FT - LCD_SEG30 - - - - 58 J11 PD11 I/O FT - LPUART1_CTS, LCD_SEG31 - - - - 59 J10 PD12 I/O FT - LPUART1_RTS_DE, LCD_SEG32 - - - - 60 H12 PD13 I/O FT - LCD_SEG33 - - - - 61 H11 PD14 I/O FT - LCD_SEG34 - - - - 62 H10 PD15 I/O FT - USB_CRS_SYNC, LCD_SEG35 - - 37 F6 63 E12 PC6 I/O FT - TIM22_CH1, LCD_SEG24, TIM3_CH1, TSC_G8_IO1 - - 38 E7 64 E11 PC7 I/O FT - TIM22_CH2, LCD_SEG25, TIM3_CH2, TSC_G8_IO2 - - 39 E8 65 E10 PC8 I/O FT - TIM22_ETR, LCD_SEG26, TIM3_CH3, TSC_G8_IO3 - - 40 D8 66 D12 PC9 I/O FTf - TIM21_ETR, LCD_SEG27, USB_OE/TIM3_CH4, TSC_G8_IO4, I2C3_SDA - FTf MCO, LCD_COM0, USB_CRS_SYNC, EVENTOUT, USART1_CK, I2C3_SCL - - 29 41 D7 67 D11 PA8 I/O Additional functions 30 42 C7 68 D10 PA9 I/O FTf - MCO, LCD_COM1, TSC_G4_IO1, USART1_TX, I2C1_SCL, I2C3_SMBA 31 43 C6 69 C12 PA10 I/O FTf - LCD_COM2, TSC_G4_IO2, USART1_RX, I2C1_SDA - FT (2) SPI1_MISO, EVENTOUT, TSC_G4_IO3, USART1_CTS, COMP1_OUT USB_DM 32 46/137 44 C8 70 B12 PA11 I/O DocID027096 Rev 2 STM32L073xx Pin descriptions Table 16. STM32L073xx pin definition (continued) Note PA12 I/O FT 34 46 A8 72 A11 PA13 I/O FT - - - 73 C11 VDD 35 47 D5 74 F11 36 48 E6 75 37 49 A7 76 Pin name (function after reset) Pin type A12 UFBGA100 71 LQFP100 B8 TFBGA64 45 LQFP64 33 SPI1_MOSI, EVENTOUT, TSC_G4_IO4, (2) USART1_RTS_DE, COMP2_OUT LQFP48 I/O structure Pin number Alternate functions Additional functions USB_DP - SWDIO, USB_OE, LPUART1_RX - S - - - VSS S - - - G11 VDD_USB S - - - A10 PA14 I/O - SWCLK, USART2_TX, LPUART1_TX - - FT 38 50 A6 77 A9 PA15 I/O FT - SPI1_NSS, LCD_SEG17, TIM2_ETR, EVENTOUT, USART2_RX, TIM2_CH1, USART4_RTS_DE - 51 B7 78 B11 PC10 I/O FT - LPUART1_TX, LCD_COM4/LCD_SEG28/ LCD_SEG48, USART4_TX - - LPUART1_RX, LCD_COM5/LCD_SEG29/ LCD_SEG49, USART4_RX - - - 52 B6 79 C10 PC11 I/O FT - 53 C5 80 B10 PC12 I/O FT - LCD_COM6/LCD_SEG30/ LCD_SEG50, USART5_TX, USART4_CK - - - 81 C9 PD0 I/O FT - TIM21_CH1, SPI2_NSS/I2S2_WS - - - - 82 B9 PD1 I/O FT - SPI2_SCK/I2S2_CK - - - - 54 B5 83 C8 PD2 I/O FT - LPUART1_RTS_DE, LCD_COM7/LCD_SEG31/ LCD_SEG51, TIM3_ETR, USART5_RX - - - 84 B8 PD3 I/O FT - USART2_CTS, LCD_SEG44, SPI2_MISO/I2S2_MCK DocID027096 Rev 2 47/137 55 Pin descriptions STM32L073xx Table 16. STM32L073xx pin definition (continued) LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions - - - 85 B7 PD4 I/O FT - USART2_RTS_DE, SPI2_MOSI/I2S2_SD - - - - 86 A6 PD5 I/O FT - USART2_TX - - - - 87 B6 PD6 I/O FT - USART2_RX - - - - 88 A5 PD7 I/O FT - USART2_CK, TIM21_CH2 - - SPI1_SCK, LCD_SEG7, TIM2_CH2, TSC_G5_IO1, EVENTOUT, USART1_RTS_DE, USART5_TX COMP2_INM FTf - SPI1_MISO, LCD_SEG8, TIM3_CH1, TSC_G5_IO2, TIM22_CH1, USART1_CTS, USART5_RX, I2C3_SDA COMP2_INP COMP2_INP 39 40 55 56 A5 A4 89 90 A8 A7 PB3 PB4 I/O I/O FT Additional functions 41 57 C4 91 C5 PB5 I/O FT SPI1_MOSI, LCD_SEG9, LPTIM1_IN1, I2C1_SMBA, TIM3_CH2/TIM22_CH2, USART1_CK, USART5_CK/USART5_ RTS 42 58 D3 92 B5 PB6 I/O FTf - USART1_TX, I2C1_SCL, LPTIM1_ETR, TSC_G5_IO3 COMP2_INP - USART1_RX, I2C1_SDA, LPTIM1_IN2, TSC_G5_IO4, USART4_CTS COMP2_INP, PVD_IN - - - 43 59 C3 93 B4 PB7 I/O 44 60 B4 94 A4 BOOT0 I 45 61 B3 95 A3 PB8 I/O FTf - LCD_SEG16, TSC_SYNC, I2C1_SCL - 46 62 A3 96 B3 PB9 I/O FTf - LCD_COM3, EVENTOUT, I2C1_SDA, SPI2_NSS/I2S2_WS - - - - 97 C3 PE0 I/O FT - LCD_SEG36, EVENTOUT - - - - 98 A2 PE1 I/O FT - LCD_SEG37, EVENTOUT - 48/137 FTf DocID027096 Rev 2 STM32L073xx Pin descriptions Table 16. STM32L073xx pin definition (continued) LQFP48 LQFP64 TFBGA64 LQFP100 UFBGA100 Pin name (function after reset) Pin type I/O structure Note Pin number Alternate functions 47 63 D4 99 D3 VSS S - - - - 48 64 E4 100 C4 VDD S - - - - Additional functions 1. PA4 offers a reduced touch sensing sensitivity. It is thus recommended to use it as sampling capacitor I/O. 2. These pins are powered by VDD_USB. For all characteristics that refer to VDD, VDD_USB must be used instead. DocID027096 Rev 2 49/137 55 AF0 DocID027096 Rev 2 Port A Port AF1 AF2 SPI1/SPI2/I2S2/U SPI1/SPI2/I2S2/L SART1/2/ PUART1/ LPUART1/USB/L SPI1/SPI2/I2S2/I2 USART5/USB/LP C1/LCD/ PTIM1/TSC/ TIM1/TIM2/3/EVE TIM2/21 TIM2/21/22/ NTOUT/ EVENTOUT/ SYS_AF SYS_AF AF3 AF4 I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT AF5 AF6 AF7 I2C1/2/ I2C3/LPUART1/C LPUART1/ SPI2/I2S2/I2C2/U OMP1/2/ USART4/ SART1/ TIM3 UASRT5/TIM21/E TIM2/21/22 VENTOUT - - TIM2_CH1 TSC_G1_IO1 USART2_CTS TIM2_ETR USART4_TX COMP1_OUT PA1 EVENTOUT LCD_SEG0 TIM2_CH2 TSC_G1_IO2 USART2_RTS_D E TIM21_ETR USART4_RX - PA2 TIM21_CH1 LCD_SEG1 TIM2_CH3 TSC_G1_IO3 USART2_TX - LPUART1_TX COMP2_OUT PA3 TIM21_CH2 LCD_SEG2 TIM2_CH4 TSC_G1_IO4 USART2_RX - LPUART1_RX - PA4 SPI1_NSS - - TSC_G2_IO1 USART2_CK TIM22_ETR - - PA5 SPI1_SCK - TIM2_ETR TSC_G2_IO2 TIM2_CH1 - - PA6 SPI1_MISO LCD_SEG3 TIM3_CH1 TSC_G2_IO3 LPUART1_CTS TIM22_CH1 EVENTOUT COMP1_OUT PA7 SPI1_MOSI LCD_SEG4 TIM3_CH2 TSC_G2_IO4 - TIM22_CH2 EVENTOUT COMP2_OUT PA8 MCO LCD_COM0 USB_CRS_ SYNC EVENTOUT USART1_CK - - I2C3_SCL PA9 MCO LCD_COM1 - TSC_G4_IO1 USART1_TX - I2C1_SCL I2C3_SMBA PA10 - LCD_COM2 - TSC_G4_IO2 USART1_RX - I2C1_SDA - PA11 SPI1_MISO - EVENTOUT TSC_G4_IO3 USART1_CTS - - COMP1_OUT PA12 SPI1_MOSI - EVENTOUT TSC_G4_IO4 USART1_RTS_ DE - - COMP2_OUT PA13 SWDIO - USB_OE - - - LPUART1_RX - PA14 SWCLK - - - USART2_TX - LPUART1_TX - PA15 SPI1_NSS LCD_SEG17 TIM2_ETR EVENTOUT USART2_RX TIM2_CH1 USART4_RTS_D E - STM32L073xx PA0 Pin descriptions 50/137 Table 17. Alternate functions port A AF0 AF1 AF2 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2/I 2C1/LCD/ TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/L PTIM1/TIM2/3/E VENTOUT/ SYS_AF I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2/I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT I2C3/LPUART1/ COMP1/2/ TIM3 PB0 EVENTOUT LCD_SEG5 TIM3_CH3 TSC_G3_IO2 - - - - PB1 - LCD_SEG6 TIM3_CH4 TSC_G3_IO3 LPUART1_RTS_DE - - - PB2 - - LPTIM1_OUT TSC_G3_IO4 - - - I2C3_SMBA PB3 SPI1_SCK LCD_SEG7 TIM2_CH2 TSC_G5_IO1 EVENTOUT USART1_RTS_DE USART5_TX - PB4 SPI1_MISO LCD_SEG8 TIM3_CH1 TSC_G5_IO2 TIM22_CH1 USART1_CTS USART5_RX I2C3_SDA PB5 SPI1_MOSI LCD_SEG9 LPTIM1_IN1 I2C1_SMBA TIM3_CH2/ TIM22_CH2 USART1_CK USART5_CK/ USART5_RTS_D E - PB6 USART1_TX I2C1_SCL LPTIM1_ETR TSC_G5_IO3 - - - - PB7 USART1_RX I2C1_SDA LPTIM1_IN2 TSC_G5_IO4 - - USART4_CTS - PB8 - LCD_SEG16 - TSC_SYNC I2C1_SCL - - - PB9 - LCD_COM3 EVENTOUT - I2C1_SDA SPI2_NSS/ I2S2_WS - - PB10 - LCD_SEG10 TIM2_CH3 TSC_SYNC LPUART1_TX SPI2_SCK I2C2_SCL LPUART1_RX PB11 EVENTOUT LCD_SEG11 TIM2_CH4 TSC_G6_IO1 LPUART1_RX - I2C2_SDA LPUART1_TX PB12 SPI2_NSS/I2S2_WS LCD_SEG12 LPUART1_RTS_ DE TSC_G6_IO2 I2C2_SMBA EVENTOUT - PB13 SPI2_SCK/I2S2_CK LCD_SEG13 MCO TSC_G6_IO3 LPUART1_CTS I2C2_SCL TIM21_CH1 - PB14 SPI2_MISO/ I2S2_MCK LCD_SEG14 RTC_OUT TSC_G6_IO4 LPUART1_RTS_DE I2C2_SDA TIM21_CH2 - PB15 SPI2_MOSI/ I2S2_SD LCD_SEG15 RTC_REFIN - - - - - Port Port B DocID027096 Rev 2 51/137 Pin descriptions AF3 STM32L073xx Table 18. Alternate functions port B AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2/I2C1/ LCD/ TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/SYS_AF I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT I2C3/LPUART1/ COMP1/2/ TIM3 PC0 LPTIM1_IN1 LCD_SEG18 EVENTOUT TSC_G7_IO1 LPUART1_RX I2C3_SCL PC1 LPTIM1_OUT LCD_SEG19 EVENTOUT TSC_G7_IO2 LPUART1_TX I2C3_SDA PC2 LPTIM1_IN2 LCD_SEG20 SPI2_MISO/ I2S2_MCK TSC_G7_IO3 PC3 LPTIM1_ETR LCD_SEG21 SPI2_MOSI/ I2S2_SD TSC_G7_IO4 PC4 EVENTOUT LCD_SEG22 LPUART1_TX LCD_SEG23 LPUART1_RX TSC_G3_IO1 Port Port C DocID027096 Rev 2 PC5 PC6 TIM22_CH1 LCD_SEG24 TIM3_CH1 TSC_G8_IO1 PC7 TIM22_CH2 LCD_SEG25 TIM3_CH2 TSC_G8_IO2 PC8 TIM22_ETR LCD_SEG26 TIM3_CH3 TSC_G8_IO3 PC9 TIM21_ETR LCD_SEG27 USB_OE/TIM3_CH4 TSC_G8_IO4 PC10 LPUART1_TX LCD_COM4/LCD_SEG 28/LCD_SEG48 USART4_TX PC11 LPUART1_RX LCD_COM5/LCD_SEG 29/LCD_SEG49 USART4_RX PC12 LCD_COM6/LCD_SEG 30/LCD_SEG50 USART5_TX Pin descriptions 52/137 Table 19. Alternate functions port C I2C3_SDA USART4_CK PC13 PC15 STM32L073xx PC14 AF0 AF1 AF2 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2/I2C1/ LCD/TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/E VENTOUT I2C3/LPUART1/ COMP1/2/TIM3 PD0 TIM21_CH1 SPI2_NSS/I2S2_WS - - - - - - PD1 - SPI2_SCK/I2S2_CK - - - - - - PD2 LPUART1_RTS_ DE LCD_COM7/ LCD_SEG31/ LCD_SEG51 TIM3_ETR - - - USART5_RX - PD3 USART2_CTS LCD_SEG44 SPI2_MISO/ I2S2_MCK - - - - - PD4 USART2_RTS_D E SPI2_MOSI/I2S2_SD - - - - - - PD5 USART2_TX - - - - - - - PD6 USART2_RX - - - - - - - PD7 USART2_CK TIM21_CH2 - - - - - - PD8 LPUART1_TX LCD_SEG28 - - - - - - PD9 LPUART1_RX LCD_SEG29 - - - - - - PD10 - LCD_SEG30 - - - - - - PD11 LPUART1_CTS LCD_SEG31 - - - - - - PD12 LPUART1_RTS_ DE LCD_SEG32 - - - - - - PD13 - LCD_SEG33 - - - - - - PD14 - LCD_SEG34 - - - - - - PD15 USB_CRS_SYNC LCD_SEG35 - - - - - - DocID027096 Rev 2 Port D Port 53/137 Pin descriptions AF3 STM32L073xx Table 20. Alternate functions port D AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/SPI2/I2S2/ USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2/I2C1 /LCD/TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3 /EVENTOUT/ SYS_AF I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2 /I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT I2C3/LPUART1/ COMP1/2/TIM3 PE0 - LCD_SEG36 EVENTOUT - - - - - PE1 - LCD_SEG37 EVENTOUT - - - - - PE2 - LCD_SEG38 TIM3_ETR - - - - - PE3 TIM22_CH1 LCD_SEG39 TIM3_CH1 - - - - - PE4 TIM22_CH2 - TIM3_CH2 - - - - - PE5 TIM21_CH1 - TIM3_CH3 - - - - - PE6 TIM21_CH2 - TIM3_CH4 - - - - - PE7 - LCD_SEG45 - - - - USART5_CK/U SART5_RTS_D E - PE8 - LCD_SEG46 - - - - USART4_TX - PE9 TIM2_CH1 LCD_SEG47 TIM2_ETR - - - USART4_RX - PE10 TIM2_CH2 LCD_SEG40 - - - - USART5_TX - PE11 TIM2_CH3 - - - - - USART5_RX - PE12 TIM2_CH4 - SPI1_NSS - - - - - PE13 - LCD_SEG41 SPI1_SCK - - - - - PE14 - LCD_SEG42 SPI1_MISO - - - - - PE15 - LCD_SEG43 SPI1_MOSI - - - - - DocID027096 Rev 2 Port E Port Pin descriptions 54/137 Table 21. Alternate functions port E STM32L073xx AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 SPI1/SPI2/ I2S2/USART1/2/ LPUART1/USB/ LPTIM1/TSC/ TIM2/21/22/ EVENTOUT/ SYS_AF SPI1/SPI2/I2S2 /I2C1/LCD/TIM2/21 SPI1/SPI2/I2S2/ LPUART1/ USART5/USB/ LPTIM1/TIM2/3/ EVENTOUT/ SYS_AF I2C1/TSC/ EVENTOUT I2C1/USART1/2/ LPUART1/ TIM3/22/ EVENTOUT SPI2/I2S2/I2C2/ USART1/ TIM2/21/22 I2C1/2/ LPUART1/ USART4/ UASRT5/TIM21/ EVENTOUT I2C3/ LPUART1/ COMP1/2/ TIM3 PH0 USB_CRS_SYNC - - - - - - - PH1 - - - - - - - - PH9 - - - - - - - - PH10 - - - - - - - - Port H Port STM32L073xx Table 22. Alternate functions port H DocID027096 Rev 2 Pin descriptions 55/137 Memory mapping 5 STM32L073xx Memory mapping Figure 8. Memory map [)))))))) [( [( [))) &RUWH[0 SHULSKHUDOV )/0/24 [ RESERVED [& [)) !(" [ RESERVED [$ [ [))))))) 2SWLRQE\WHV !0" [ [ 6\VWHP PHPRU\ !0" [ [ RESERVED [ 3HULSKHUDOV [ RESERVED [ 65$0 [ 'DWD((3520EDQN 'DWD((3520EDQN )ODVKSURJUDPEDQN )ODVKSURJUDPEDQN RESERVED &2'( &LASH SYSTEM MEMORY OR 32!- DEPENDING ON "//4 CONFIGURATION [ [ 5HVHUYHG 06Y9 1. Refer to the STM32L073xx reference manual for details on the Flash memory organization for each memory size. 56/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean3). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.6 V (for the 1.65 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean2). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 9. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 10. Figure 9. Pin loading conditions Figure 10. Pin input voltage 0&8SLQ 0&8SLQ & S) 9,1 DLF DocID027096 Rev 2 DLF 57/137 117 Electrical characteristics 6.1.6 STM32L073xx Power supply scheme Figure 11. Power supply scheme 287 *3,2V ,1 9'' 9'' /HYHOVKLIWHU 6WDQGE\SRZHUFLUFXLWU\ 26&57&:DNHXS ORJLF57&EDFNXS UHJLVWHUV ,2 /RJLF .HUQHOORJLF &38 'LJLWDO 0HPRULHV 5HJXODWRU 1iQ) i) 966 9''$ 9''$ 95() Q) ) Q) ) 95() 95() $'& '$& $QDORJ 5&3//&203 966$ 9/&' 966 966 9''B86% /&' 86% WUDQVFHLYHU 06Y9 58/137 DocID027096 Rev 2 STM32L073xx 6.1.7 Electrical characteristics Optional LCD power supply scheme Figure 12. Optional LCD power supply scheme 96(/ 9'' 1[Q) [) 2SWLRQ 9'' 6WHSXS &RQYHUWHU 9/&' Q) /&' 9/&' 2SWLRQ &(;7 966 06Y9 1. Option 1: LCD power supply is provided by a dedicated VLCD supply source, VSEL switch is open. 2. Option 2: LCD power supply is provided by the internal step-up converter, VSEL switch is closed, an external capacitance is needed for correct behavior of this converter. 6.1.8 Current consumption measurement Figure 13. Current consumption measurement scheme 9''$ ,'' 1[9'' 1iQ) i) 1[966 06Y9 DocID027096 Rev 2 59/137 117 Electrical characteristics 6.2 STM32L073xx Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 23: Voltage characteristics, Table 24: Current characteristics, and Table 25: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 23. Voltage characteristics Symbol VDD-VSS VIN(2) Definition Min Max -0.3 4.0 Input voltage on FT and FTf pins VSS - 0.3 VDD+4.0 Input voltage on TC pins VSS - 0.3 4.0 Input voltage on BOOT0 VSS VDD + 4.0 VSS - 0.3 4.0 External main supply voltage (including VDDA, VDD_USB, VDD)(1) Input voltage on any other pin |VDD| Variations between different VDDx power pins - 50 |VDDA-VDDx| Variations between any VDDx and VDDA power pins(3) - 300 Variations between all different ground pins including VREF- pin - 50 - 0.4 |VSS| VREF+ -VDDA Allowed voltage difference for VREF+ > VDDA VESD(HBM) Electrostatic discharge voltage (human body model) Unit V mV V see Section 6.3.11 1. All main power (VDD,VDD_USB, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 24 for maximum allowed injected current values. 3. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and device operation. VDD_USB is independent from VDD and VDDA: its value does not need to respect this rule. 60/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Table 24. Current characteristics Symbol Ratings Max. IVDD(2) Total current into sum of all VDD power lines (source)(1) 105 IVSS(2) (1) Total current out of sum of all VSS ground lines (sink) 105 Total current into VDD_USB power lines (source) 25 IVDD_USB IVDD(PIN) IVSS(PIN) IIO IIO(PIN) IINJ(PIN) IINJ(PIN) Maximum current into each VDD power pin (source)(1) 100 (1) Maximum current out of each VSS ground pin (sink) 100 Output current sunk by any I/O and control pin except FTf pins 16 Output current sunk by FTf pins 22 Output current sourced by any I/O and control pin -16 Total output current sunk by sum of all IOs and control pins except PA11 and PA12(2) 90 Total output current sunk by PA11 and PA12 25 Total output current sourced by sum of all IOs and control pins(2) -90 Injected current on FT, FFf, RST and B pins Unit mA -5/+0(3) Injected current on TC pin 5(4) Total injected current (sum of all I/O and control pins)(5) 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages. 3. Positive current injection is not possible on these I/Os. A negative injection is induced by VIN VDD while a negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer to Table 23: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum IINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 25. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature DocID027096 Rev 2 Value Unit -65 to +150 C 150 C 61/137 117 Electrical characteristics STM32L073xx 6.3 Operating conditions 6.3.1 General operating conditions Table 26. General operating conditions Symbol Parameter Conditions Min Max fHCLK Internal AHB clock frequency - 0 32 fPCLK1 Internal APB1 clock frequency - 0 32 fPCLK2 Internal APB2 clock frequency - 0 32 BOR detector disabled 1.65 3.6 BOR detector enabled, at power on 1.8 3.6 BOR detector disabled, after power on 1.65 3.6 VDD Standard operating voltage Unit MHz V VDDA Analog operating voltage (DAC not used) Must be the same voltage as VDD(1) 1.65 3.6 V VDDA Analog operating voltage (all features) Must be the same voltage as VDD(1) 1.8 3.6 V USB peripheral used 3.0 3.6 USB peripheral not used 1.65 3.6 2.0 V VDD 3.6 V -0.3 5.5 1.65 V VDD 2.0 V -0.3 5.2 VDD_US Standard operating voltage, USB domain(2) B Input voltage on FT, FTf and RST pins(3) VIN Input voltage on BOOT0 pin - 0 5.5 Input voltage on TC pin - -0.3 VDD+0.3 - 351 - 488 - 313 - 435 LQFP48 package - 370 UFBGA100 package - 88 LQFP100 package - 122 TFBGA64 package - 78 LQFP64 package - 109 LQFP48 package - 93 UFBGA100 package LQFP100 package Power dissipation at TA = 85 C (range 6) TFBGA64 package or TA = 105 C (range 7) (4) LQFP64 package PD Power dissipation at TA = 125 C (range 3) (4) 62/137 DocID027096 Rev 2 V V mW STM32L073xx Electrical characteristics Table 26. General operating conditions (continued) Symbol TA TJ Parameter Conditions Min Max Maximum power dissipation (range 6) -40 85 Maximum power dissipation (range 7) -40 105 Maximum power dissipation (range 3) -40 125 Junction temperature range (range 6) -40 C TA 85 -40 105 Junction temperature range (range 7) -40 C TA 105 C -40 125 Junction temperature range (range 3) -40 C TA 125 C -40 130 Temperature range Unit C 1. It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and normal operation. 2. VDD_USB must respect the following conditions: - When VDD is powered on (VDD < VDD_min), VDD_USB should be always lower than VDD. - When VDD is powered down (VDD < VDD_min), VDD_USB should be always lower than VDD. - In operating mode, VDD_USB could be lower or higher VDD. - If the USB is not used, VDD_USB must range from VDD_min to VDD_max to be able to use PA11 and PA12 as standard I/Os. 3. To sustain a voltage higher than VDD+0.3V, the internal pull-up/pull-down resistors must be disabled. 4. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJ max (see Table 89: Thermal characteristics on page 133). DocID027096 Rev 2 63/137 117 Electrical characteristics 6.3.2 STM32L073xx Embedded reset and power control block characteristics The parameters given in the following table are derived from the tests performed under the ambient temperature condition summarized in Table 26. Table 27. Embedded reset and power control block characteristics Symbol Parameter Conditions VDD rise time rate tVDD(1) VDD fall time rate TRSTTEMPO(1) Reset temporization Typ Max BOR detector enabled 0 - BOR detector disabled 0 - 1000 BOR detector enabled 20 - BOR detector disabled 0 - 1000 VDD rising, BOR enabled - 2 3.3 0.4 0.7 1.6 Falling edge 1 1.5 1.65 Rising edge 1.3 1.5 1.65 Falling edge 1.67 1.7 1.74 Rising edge 1.69 1.76 1.8 Falling edge 1.87 1.93 1.97 Rising edge 1.96 2.03 2.07 Falling edge 2.22 2.30 2.35 Rising edge 2.31 2.41 2.44 Falling edge 2.45 2.55 2.6 Rising edge 2.54 2.66 2.7 Falling edge 2.68 2.8 2.85 Rising edge 2.78 2.9 2.95 Falling edge 1.8 1.85 1.88 Rising edge 1.88 1.94 1.99 Falling edge 1.98 2.04 2.09 Rising edge 2.08 2.14 2.18 Falling edge 2.20 2.24 2.28 Rising edge 2.28 2.34 2.38 Falling edge 2.39 2.44 2.48 Rising edge 2.47 2.54 2.58 Falling edge 2.57 2.64 2.69 Rising edge 2.68 2.74 2.79 Falling edge 2.77 2.83 2.88 Rising edge 2.87 2.94 2.99 VDD rising, BOR VPOR/PDR Power on/power down reset threshold VBOR0 Brown-out reset threshold 0 VBOR1 Brown-out reset threshold 1 VBOR2 Brown-out reset threshold 2 VBOR3 Brown-out reset threshold 3 VBOR4 Brown-out reset threshold 4 VPVD0 Programmable voltage detector threshold 0 VPVD1 PVD threshold 1 VPVD2 PVD threshold 2 VPVD3 PVD threshold 3 VPVD4 PVD threshold 4 VPVD5 PVD threshold 5 64/137 Min DocID027096 Rev 2 disabled(2) Unit s/V ms V STM32L073xx Electrical characteristics Table 27. Embedded reset and power control block characteristics (continued) Symbol Parameter VPVD6 Conditions PVD threshold 6 Hysteresis voltage Vhyst Min Typ Max Falling edge 2.97 3.05 3.09 Rising edge 3.08 3.15 3.20 BOR0 threshold - 40 - All BOR and PVD thresholds excepting BOR0 - 100 - Unit V mV 1. Guaranteed by characterization results. 2. Valid for device version without BOR at power up. Please see option "D" in Ordering information scheme for more details. 6.3.3 Embedded internal reference voltage The parameters given in Table 29 are based on characterization results, unless otherwise specified. Table 28. Embedded internal reference voltage calibration values Calibration value name Description Memory address Raw data acquired at temperature of 25 C VDDA= 3 V VREFINT_CAL 0x1FF8 0078 - 0x1FF8 0079 Table 29. Embedded internal reference voltage(1) Symbol Parameter VREFINT out(2) Internal reference voltage Conditions Min Typ Max Unit - 40 C < TJ < +125 C 1.202 1.224 1.242 V TVREFINT Internal reference startup time - - 2 3 ms VVREF_MEAS VDDA and VREF+ voltage during VREFINT factory measure - 2.99 3 3.01 V AVREF_MEAS Accuracy of factory-measured VREFINT value(3) Including uncertainties due to ADC and VDDA/VREF+ values - - 5 mV TCoeff(4) Temperature coefficient -40 C < TJ < +125 C - 25 100 ppm/C ACoeff(4) Long-term stability 1000 hours, T= 25 C - - 1000 ppm VDDCoeff(4) Voltage coefficient 3.0 V < VDDA < 3.6 V - - 2000 ppm/V TS_vrefint(4)(5) ADC sampling time when reading the internal reference voltage - 5 10 - s TADC_BUF(4) Startup time of reference voltage buffer for ADC - - - 10 s IBUF_ADC(4) Consumption of reference voltage buffer for ADC - - 13.5 25 A IVREF_OUT(4) VREF_OUT output current(6) - - - 1 A VREF_OUT output load - - - 50 pF CVREF_OUT (4) DocID027096 Rev 2 65/137 117 Electrical characteristics STM32L073xx Table 29. Embedded internal reference voltage(1) (continued) Symbol Parameter Conditions Min Typ Max Unit Consumption of reference voltage buffer for VREF_OUT and COMP - - 730 1200 nA VREFINT_DIV1(4) 1/4 reference voltage - 24 25 26 VREFINT_DIV2(4) 1/2 reference voltage - 49 50 51 VREFINT_DIV3(4) 3/4 reference voltage - 74 75 76 ILPBUF(4) % VREFINT 1. Refer to Table 41: Peripheral current consumption in Stop and Standby mode for the value of the internal reference current consumption (IREFINT). 2. Guaranteed by test in production. 3. The internal VREF value is individually measured in production and stored in dedicated EEPROM bytes. 4. Guaranteed by design. 5. Shortest sampling time can be determined in the application by multiple iterations. 6. To guarantee less than 1% VREF_OUT deviation. 6.3.4 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 13: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code if not specified otherwise. The current consumption values are derived from the tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26: General operating conditions unless otherwise specified. The MCU is placed under the following conditions: * All I/O pins are configured in analog input mode * All peripherals are disabled except when explicitly mentioned * The Flash memory access time and prefetch is adjusted depending on fHCLK frequency and voltage range to provide the best CPU performance unless otherwise specified. * When the peripherals are enabled fAPB1 = fAPB2 = fAPB * When PLL is on, the PLL inputs are equal to HSI = 16 MHz (if internal clock is used) or HSE = 16 MHz (if HSE bypass mode is used) * The HSE user clock applied to OSCI_IN input follows the characteristic specified in Table 43: High-speed external user clock characteristics * For maximum current consumption VDD = VDDA = 3.6 V is applied to all supply pins * For typical current consumption VDD = VDDA = 3.0 V is applied to all supply pins if not specified otherwise The parameters given in Table 51, Table 26 and Table 27 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. 66/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Table 30. Current consumption in Run mode, code with data processing running from Flash memory Symbol Parameter fHCLK (MHz) Typ Max(1) 1 190 250 2 345 380 4 650 670 4 0,8 0,86 8 1,55 1,7 16 2,95 3,1 8 1,9 2,1 16 3,55 3,8 32 6,65 7,2 0,065 39 130 0,524 115 210 4,2 700 770 Range2, Vcore=1.5 V VOS[1:0]=10 16 2,9 3,2 Range1, Vcore=1.8 V VOS[1:0]=01 32 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from Flash memory) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Run mode code executed from Flash memory MSI clock source HSI clock source (16MHz) Range3, Vcore=1.2 V VOS[1:0]=11 Unit A mA A mA 7,15 7,4 1. Guaranteed by characterization results at 125 C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 31. Current consumption in Run mode vs code type, code with data processing running from Flash memory Symbol Parameter Supply IDD current in (Run Run mode, from code Flash executed memory) from Flash memory Conditions Range 3, VCORE=1.2 V, VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL on)(1) Range 1, VCORE=1.8 V, VOS[1:0]=01 fHCLK Typ Dhrystone 650 CoreMark 655 Fibonacci 4 MHz 485 while(1) 385 while(1), 1WS, prefetch off 375 Dhrystone 6,65 CoreMark 6,9 Fibonacci 32 MHz 6,75 while(1) 5,8 while(1), prefetch off 5,5 Unit A mA 1. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID027096 Rev 2 67/137 117 Electrical characteristics STM32L073xx Figure 14. IDD vs VDD, at TA= 25/55/85/105 C, Run mode, code running from Flash memory, Range 2, HSE, 1WS ,'' P$ 9'' 9 & & & & & & 06Y9 Figure 15. IDD vs VDD, at TA= 25/55/85/105 C, Run mode, code running from Flash memory, Range 2, HSI16, 1WS ,'' P$ 9'' 9 & & & & & & 06Y9 68/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Table 32. Current consumption in Run mode, code with data processing running from RAM Symbol Parameter fHCLK (MHz) Typ Max(1) 1 175 230 2 315 360 4 570 630 4 0,71 0,78 8 1,35 1,6 16 2,7 3 8 1,7 1,9 16 3,2 3,7 32 6,65 7,1 0,065 38 98 0,524 105 160 4,2 615 710 Range2, Vcore=1.5 V VOS[1:0]=10 16 2,85 3 Range1, Vcore=1.8 V VOS[1:0]=01 32 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) IDD (Run from RAM) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Run mode code executed from RAM, Flash memory switched off Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16 MHz) Unit A mA A mA 6,85 7,3 1. Guaranteed by characterization results at 125 C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). Table 33. Current consumption in Run mode vs code type, code with data processing running from RAM(1) Symbol Parameter Conditions fHCLK Dhrystone IDD (Run from RAM) Supply current in Run mode, code executed from RAM, Flash memory switched off fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL on)(2) Range 3, VCORE=1.2 V, VOS[1:0]=11 Range 1, VCORE=1.8 V, VOS[1:0]=01 CoreMark Fibonacci Typ 570 4 MHz 670 410 while(1) 375 Dhrystone 6,65 CoreMark Fibonacci while(1) Unit 32 MHz 6,95 5,9 A mA 5,2 1. Guaranteed by characterization results, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). DocID027096 Rev 2 69/137 117 Electrical characteristics STM32L073xx Table 34. Current consumption in Sleep mode Symbol Parameter fHCLK (MHz) Typ Max(1) 1 43,5 110 2 72 140 4 130 200 4 160 220 8 305 380 16 590 690 8 370 460 16 715 840 32 1650 2000 0,065 18 93 0,524 31,5 110 4,2 140 230 Range2, Vcore=1.5 V VOS[1:0]=10 16 665 850 Range1, Vcore=1.8 V VOS[1:0]=01 32 1750 2100 1 57,5 130 2 84 160 4 150 220 4 170 240 8 315 400 16 605 710 8 380 470 16 730 860 32 1650 2000 0,065 29,5 110 0,524 44,5 120 4,2 150 240 Range2, Vcore=1.5 V VOS[1:0]=10 16 680 930 Range1, Vcore=1.8 V VOS[1:0]=01 32 1750 2200 Condition Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16 MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Sleep mode, Flash memory switched OFF Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16 MHz) IDD (Sleep) Range3, Vcore=1.2 V VOS[1:0]=11 fHSE = fHCLK up to 16MHz included, fHSE = fHCLK/2 above 16 MHz (PLL ON)(2) Range2, Vcore=1.5 V VOS[1:0]=10 Range1, Vcore=1.8 V VOS[1:0]=01 Supply current in Sleep mode, Flash memory switched ON Range3, Vcore=1.2 V VOS[1:0]=11 MSI clock HSI clock source (16MHz) 1. Guaranteed by characterization results at 125 C, unless otherwise specified. 2. Oscillator bypassed (HSEBYP = 1 in RCC_CR register). 70/137 DocID027096 Rev 2 Unit A STM32L073xx Electrical characteristics Table 35. Current consumption in Low-power run mode Symbol Parameter fHCLK (MHz) Typ Max(1) 9,45 12 14 58 21 64 36,5 160 14,5 18 19,5 60 26 65 42 160 26,5 30 27,5 60 31 66 TA = 105C 37,5 77 TA = 125C 53,5 170 TA = - 40 to 25C 24,5 34 30 82 38,5 90 TA = 125C 58 120 TA = - 40 to 25C 30,5 40 36,5 88 45 96 TA = 125C 64,5 120 TA = - 40 to 25C 45 56 TA = 55C 48 96 51 110 TA = 105C 59,5 120 TA = 125C 79,5 150 Condition TA = - 40 to 25C TA = 85C MSI clock = 65 kHz, fHCLK= 32 kHz TA = 105C 0,032 TA = 125C TA = - 40 to 25C All peripherals OFF, code TA = 85C MSI clock = 65 kHz, executed from 0,065 fHCLK= 65kHz RAM, Flash TA = 105C memory switched TA = 125C OFF, VDD from 1.65 to 3.6 V TA = - 40 to 25C TA = 55C MSI clock=131 kHz, fHCLK= 131 kHz IDD (LP Run) Supply current in Low-power run mode TA = 85C TA = 85C MSI clock = 65 kHz, fHCLK= 32 kHz All peripherals OFF, code MSI clock = 65 kHz, executed from fHCLK= 65 kHz Flash memory, VDD from 1.65 V to 3.6 V TA = 105C TA = 85C TA = 105C MSI clock = 131 kHz, fHCLK= 131 kHz TA = 85C 0,131 0,032 0,065 0,131 Unit A 1. Guaranteed by characterization results at 125 C, unless otherwise specified. DocID027096 Rev 2 71/137 117 Electrical characteristics STM32L073xx Figure 16. IDD vs VDD, at TA= 25 C, Low-power run mode, code running from RAM, Range 3, MSI (Range 0) at 64 KHz, 0 WS ,'' P$ ( ( ( ( ( ( ( ( ( 9'' 9 06Y9 Table 36. Current consumption in Low-power sleep mode Symbol Parameter Condition (1) 4,7 - TA = - 40 to 25C 17 24 TA = 85C 19,5 30 TA= 105C 23 47 TA= 125C 32,5 70 TA= - 40 to 25C 17 24 TA= 85C 20 31 TA = 105C 23,5 47 TA = 125C 32,5 70 TA= - 40 to 25C 19,5 27 TA = 55C 20,5 28 TA = 85C 22,5 33 TA = 105C 26 50 TA= 125C 35 73 MSI clock = 65 kHz, fHCLK= 65 kHz MSI clock = 131kHz, fHCLK= 131 kHz 1. Guaranteed by characterization results at 125 C, unless otherwise specified. 72/137 Max MSI clock = 65 kHz, fHCLK= 32 kHz, TA = - 40 to 25C Flash memory OFF MSI clock = 65 kHz, fHCLK= 32 kHz All peripherals Supply current in OFF, code IDD Low-power sleep executed from (LP Sleep) mode Flash memory, VDD from 1.65 to 3.6 V Typ DocID027096 Rev 2 Unit A STM32L073xx Electrical characteristics Table 37. Typical and maximum current consumptions in Stop mode Symbol Parameter Max(1) Unit Conditions Typ TA = - 40 to 25C 0,43 1,00 TA = 55C 0,735 2,50 TA= 85C 2,25 4,90 TA = 105C 5,3 13,00 TA = 125C 12,5 28,00 IDD (Stop) Supply current in Stop mode A 1. Guaranteed by characterization results at 125 C, unless otherwise specified. Figure 17. IDD vs VDD, at TA= 25/55/ 85/105/125 C, Stop mode with RTC enabled and running on LSE Low drive ( ( ( ( ,'' P$ ( ( ( ( 9'' 9 & & & & & & 06Y9 DocID027096 Rev 2 73/137 117 Electrical characteristics STM32L073xx Figure 18. IDD vs VDD, at TA= 25/55/85/105/125 C, Stop mode with RTC disabled, all clocks off ( ( ( ,'' P$ ( ( ( ( 9'' 9 & & & & & & 06Y9 Table 38. Typical and maximum current consumptions in Standby mode Symbol Parameter Typ Max(1) TA = - 40 to 25C 0,855 1,70 TA = 55 C - 2,90 TA= 85 C - 3,30 TA = 105 C - 4,10 TA = 125 C - 8,50 TA = - 40 to 25C 0,29 0,60 TA = 55 C 0,32 1,20 TA = 85 C 0,5 2,30 TA = 105 C 0,94 3,00 TA = 125 C 2,6 7,00 Conditions Independent watchdog and LSI enabled IDD Supply current in Standby (Standby) mode Independent watchdog and LSI off 1. Guaranteed by characterization results at 125 C, unless otherwise specified 74/137 DocID027096 Rev 2 Unit A STM32L073xx Electrical characteristics Table 39. Average current consumption during Wakeup System frequency Current consumption during wakeup HSI 1 HSI/4 0,7 MSI clock = 4,2 MHz 0,7 MSI clock = 1,05 MHz 0,4 MSI clock = 65 KHz 0,1 Reset pin pulled down - 0,21 BOR on - 0,23 IDD (Wakeup from With Fast wakeup set StandBy) With Fast wakeup disabled MSI clock = 2,1 MHz 0,5 MSI clock = 2,1 MHz 0,12 Symbol parameter IDD (Wakeup from Supply current during Wakeup from Stop) Stop mode IDD (Reset) IDD (Power-up) DocID027096 Rev 2 Unit mA 75/137 117 Electrical characteristics STM32L073xx On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in the following tables. The MCU is placed under the following conditions: * all I/O pins are in input mode with a static value at VDD or VSS (no load) * all peripherals are disabled unless otherwise mentioned * the given value is calculated by measuring the current consumption - with all peripherals clocked off - with only one peripheral clocked on Table 40. Peripheral current consumption in Run or Sleep mode(1) Typical consumption, VDD = 3.0 V, TA = 25 C Peripheral CRS APB1 Low-power sleep and run 2.5 2 2 2 DAC1/2 4 3.5 3 2.5 I2C1 11 9.5 7.5 9 I2C3 11 9 7 9 LCD1 4 3.5 3 2.5 LPTIM1 10 8.5 6.5 8 LPUART1 8 6.5 5.5 6 SPI2 9 4.5 3.5 4 USB 8.5 4.5 4 4.5 USART2 14.5 12 9.5 11 USART4 5 4 3 5 USART5 5 4 3 5 TIM2 10.5 8.5 7 9 TIM3 12 10 8 11 TIM6 3.5 3 2.5 2 TIM7 3.5 3 2.5 2 3 2 2 2 WWDG 76/137 Range 2, Range 3, Range 1, VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 DocID027096 Rev 2 Unit A/MHz (fHCLK) STM32L073xx Electrical characteristics Table 40. Peripheral current consumption in Run or Sleep mode(1) (continued) Typical consumption, VDD = 3.0 V, TA = 25 C Peripheral ADC1(2) Range 2, Range 3, Range 1, VCORE=1.8 V VCORE=1.5 V VCORE=1.2 V VOS[1:0] = 01 VOS[1:0] = 10 VOS[1:0] = 11 Low-power sleep and run 5.5 5 3.5 4 4 3 3 2.5 USART1 14.5 11.5 9.5 12 TIM21 7.5 6 5 5.5 TIM22 7 6 5 6 FIREWALL 1.5 1 1 0.5 DBGMCU 1.5 1 1 0.5 SYSCFG 2.5 2 2 1.5 GPIOA CortexM0+ core GPIOB I/O port GPIOC 3.5 3 2.5 2.5 3.5 2.5 2 2.5 8.5 6.5 5.5 7 GPIOD CortexM0+ core GPIOE I/O port GPIOH 1 0.5 0.5 0.5 8 6 5 6 1.5 1 1 0.5 1.5 1 1 1 0(3) 0(3) 0(3) SPI1 APB2 CRC (3) FLASH 0 DMA1 10 8 6.5 8.5 RNG 5.5 1 0.5 0.5 TSC 3 2.5 2 3 All enabled 204 162 130 202 PWR 2.5 2 2 1 AHB Unit A/MHz (fHCLK) A/MHz (fHCLK) A/MHz (fHCLK) A/MHz (fHCLK) A/MHz (fHCLK) 1. Data based on differential IDD measurement between all peripherals off an one peripheral with clock enabled, in the following conditions: fHCLK = 32 MHz (range 1), fHCLK = 16 MHz (range 2), fHCLK = 4 MHz (range 3), fHCLK = 64kHz (Low-power run/sleep), fAPB1 = fHCLK, fAPB2 = fHCLK, default prescaler value for each peripheral. The CPU is in Sleep mode in both cases. No I/O pins toggling. Not tested in production. 2. HSI oscillator is off for this measure. 3. Current consumption is negligible and close to 0 A. DocID027096 Rev 2 77/137 117 Electrical characteristics STM32L073xx Table 41. Peripheral current consumption in Stop and Standby mode(1) Symbol IDD(PVD / BOR) - IREFINT - - Typical consumption, TA = 25 C Peripheral LSE Low drive(2) VDD=1.8 V VDD=3.0 V 0.7 1.2 - 1.7 0.11 0,13 - LSI 0.27 0.31 - IWDG 0.2 0.3 - LPTIM1, Input 100 Hz 0.01 0,01 - LPTIM1, Input 1 MHz 11 12 - LPUART1 - 0,5 - RTC 0.16 0,3 - LCD1 (static duty) 0.15 0.15 - LCD1 (1/8 duty) 1.6 2.6 Unit A A 1. LCD, LPTIM, LPUART peripherals can operate in Stop mode but not in Standby mode. 2. LSE Low drive consumption is the difference between an external clock on OSC32_IN and a quartz between OSC32_IN and OSC32_OUT.- 6.3.5 Wakeup time from low-power mode The wakeup times given in the following table are measured with the MSI or HSI16 RC oscillator. The clock source used to wake up the device depends on the current operating mode: * Sleep mode: the clock source is the clock that was set before entering Sleep mode * Stop mode: the clock source is either the MSI oscillator in the range configured before entering Stop mode, the HSI16 or HSI16/4. * Standby mode: the clock source is the MSI oscillator running at 2.1 MHz All timings are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. 78/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Table 42. Low-power mode wakeup timings Symbol tWUSLEEP Parameter Conditions Wakeup from Sleep mode tWUSLEEP_ Wakeup from Low-power sleep mode, fHCLK = 262 kHz LP tWUSTOP tWUSTDBY Typ Max fHCLK = 32 MHz 7 8 fHCLK = 262 kHz Flash memory enabled 7 8 fHCLK = 262 kHz Flash memory switched OFF 9 10 fHCLK = fMSI = 4.2 MHz Wakeup from Stop mode, regulator in Run fHCLK = fHSI = 16 MHz mode fHCLK = fHSI/4 = 4 MHz 5.0 8 4.9 7 8.0 11 fHCLK = fMSI = 4.2 MHz Voltage range 1 5.0 8 fHCLK = fMSI = 4.2 MHz Voltage range 2 5.0 8 fHCLK = fMSI = 4.2 MHz Voltage range 3 5.0 8 7.3 13 13 23 28 38 fHCLK = fMSI = 262 kHz 51 65 fHCLK = fMSI = 131 kHz 100 120 fHCLK = MSI = 65 kHz 190 260 fHCLK = fHSI = 16 MHz 4.9 7 fHCLK = fHSI/4 = 4 MHz 8.0 11 fHCLK = fHSI = 16 MHz Wakeup from Stop mode, regulator in lowfHCLK = fHSI/4 = 4 MHz power mode, code running from RAM fHCLK = fMSI = 4.2 MHz 4.9 7 7.9 10 4.7 8 Wakeup from Standby mode FWU bit = 1 fHCLK = MSI = 2.1 MHz 65 130 Wakeup from Standby mode FWU bit = 0 fHCLK = MSI = 2.1 MHz 2.2 3 fHCLK = fMSI = 2.1 MHz Wakeup from Stop mode, regulator in lowfHCLK = fMSI = 1.05 MHz power mode fHCLK = fMSI = 524 kHz DocID027096 Rev 2 Unit Number of clock cycles s ms 79/137 117 Electrical characteristics 6.3.6 STM32L073xx External clock source characteristics High-speed external user clock generated from an external source In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.The external clock signal has to respect the I/O characteristics in Section 6.3.12. However, the recommended clock input waveform is shown in Figure 19. Table 43. High-speed external user clock characteristics(1) Symbol fHSE_ext Parameter User external clock source frequency Conditions Min Typ Max Unit CSS is on or PLL is used 1 8 32 MHz CSS is off, PLL not used 0 8 32 MHz VHSEH OSC_IN input pin high level voltage 0.7VDD - VDD VHSEL OSC_IN input pin low level voltage VSS - 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time 12 - - tr(HSE) tf(HSE) OSC_IN rise or fall time - - 20 OSC_IN input capacitance - 2.6 - pF 45 - 55 % - - 1 A Cin(HSE) ns - DuCy(HSE) Duty cycle IL OSC_IN Input leakage current V VSS VIN VDD 1. Guaranteed by design. Figure 19. High-speed external clock source AC timing diagram 9+6(+ 9+6(/ WU +6( WI +6( W: +6( W: +6( W 7+6( (;7(5 1$/ &/2&. 6285& ( I+6(BH[W 26& B,1 ,/ 670/[[ DLF 80/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Low-speed external user clock generated from an external source The characteristics given in the following table result from tests performed using a lowspeed external clock source, and under ambient temperature and supply voltage conditions summarized in Table 26. Table 44. Low-speed external user clock characteristics(1) Symbol Parameter Conditions fLSE_ext User external clock source frequency VLSEH OSC32_IN input pin high level voltage VLSEL OSC32_IN input pin low level voltage tw(LSE) tw(LSE) OSC32_IN high or low time tr(LSE) tf(LSE) OSC32_IN rise or fall time CIN(LSE) Typ Max Unit 1 32.768 1000 kHz 0.7VDD - VDD V - VSS - 0.3VDD 465 - ns - - 10 - - 0.6 - pF - 45 - 55 % VSS VIN VDD - - 1 A OSC32_IN input capacitance DuCy(LSE) Duty cycle IL Min OSC32_IN Input leakage current 1. Guaranteed by design, not tested in production Figure 20. Low-speed external clock source AC timing diagram 9/6(+ 9/6(/ WU /6( WI /6( W: /6( W: /6( W 7/6( (;7(5 1$/ &/2&. 6285& ( I/6(BH[W 26&B,1 ,/ 670/[[ DLF DocID027096 Rev 2 81/137 117 Electrical characteristics STM32L073xx High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 1 to 25 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 45. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 45. HSE oscillator characteristics(1) Symbol Parameter Conditions fOSC_IN Oscillator frequency RF Feedback resistor Gm Maximum critical crystal transconductance tSU(HSE) (2) Startup time Min Typ - 1 - - Startup VDD is stabilized Max Unit 25 MHz 200 - k - - 700 A /V - 2 - ms 1. Guaranteed by design. 2. Guaranteed by characterization results. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see Figure 21). CL1 and CL2 are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. Refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com. Figure 21. HSE oscillator circuit diagram I+6(WRFRUH 5P /P 5) &2 &/ 26&B,1 &P JP 5HVRQDWRU 5HVRQDWRU &RQVXPSWLRQ FRQWURO 670 26&B287 &/ DLE 82/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 46. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Table 46. LSE oscillator characteristics(1) Symbol fLSE Gm Conditions(2) Min(2) Typ Max Unit - 32.768 - kHz LSEDRV[1:0]=00 lower driving capability - - 0.5 LSEDRV[1:0]= 01 medium low driving capability - - 0.75 LSEDRV[1:0] = 10 medium high driving capability - - 1.7 LSEDRV[1:0]=11 higher driving capability - - 2.7 VDD is stabilized - 2 - Parameter LSE oscillator frequency Maximum critical crystal transconductance tSU(LSE)(3) Startup time A/V s 1. Guaranteed by design. 2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers". 3. Guaranteed by characterization results. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer. To increase speed, address a lower-drive quartz with a high- driver mode. Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com. Figure 22. Typical application with a 32.768 kHz crystal 5HVRQDWRUZLWKLQWHJUDWHG FDSDFLWRUV &/ 26&B,1 I/6( 'ULYH SURJUDPPDEOH DPSOLILHU N+] UHVRQDWRU 26&B287 &/ 069 Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one. DocID027096 Rev 2 83/137 117 Electrical characteristics 6.3.7 STM32L073xx Internal clock source characteristics The parameters given in Table 47 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. High-speed internal 16 MHz (HSI16) RC oscillator Table 47. 16 MHz HSI16 oscillator characteristics Symbol fHSI16 TRIM (1)(2) ACCHSI16 (2) Parameter Conditions Min Typ Max Unit Frequency VDD = 3.0 V - 16 - MHz HSI16 usertrimmed resolution Trimming code is not a multiple of 16 - 0.4 0.7 % Trimming code is a multiple of 16 - Accuracy of the factory-calibrated HSI16 oscillator - 1.5 % VDDA = 3.0 V, TA = 25 C -1(3) - 1(3) % VDDA = 3.0 V, TA = 0 to 55 C -1.5 - 1.5 % VDDA = 3.0 V, TA = -10 to 70 C -2 - 2 % VDDA = 3.0 V, TA = -10 to 85 C -2.5 - 2 % VDDA = 3.0 V, TA = -10 to 105 C -4 - 2 % -5.45 - 3.25 % VDDA = 1.65 V to 3.6 V TA = - 40 to 125 C tSU(HSI16)(2) HSI16 oscillator startup time - - 3.7 6 s IDD(HSI16)(2) HSI16 oscillator power consumption - - 100 140 A 1. The trimming step differs depending on the trimming code. It is usually negative on the codes which are multiples of 16 (0x00, 0x10, 0x20, 0x30...0xE0). 2. Guaranteed by characterization results. 3. Guaranteed by test in production. Figure 23. HSI16 minimum and maximum value versus temperature 9PLQ 9W\S 9PD[ 9PD[ 9PLQ 06Y9 84/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics High-speed internal 48 MHz (HSI48) RC oscillator Table 48. HSI48 oscillator characteristics(1) Symbol fHSI48 TRIM Parameter Conditions Frequency Min Typ Max Unit - 48 - MHz (2) HSI48 user-trimming step 0.09 DuCy(HSI48) Duty cycle 0.14 (2) % (2) % 0.2 (2) - 55 -4(3) - 4(3) % 45 ACCHSI48 Accuracy of the HSI48 oscillator (factory calibrated before CRS calibration) tsu(HSI48) HSI48 oscillator startup time - - 6(2) s HSI48 oscillator power consumption - 330 380(2) A IDDA(HSI48) TA = 25 C 1. VDDA = 3.3 V, TA = -40 to 125 C unless otherwise specified. 2. Guaranteed by design. 3. Guaranteed by characterization results. Low-speed internal (LSI) RC oscillator Table 49. LSI oscillator characteristics Symbol fLSI(1) DLSI(2) tsu(LSI)(3) IDD(LSI) (3) Parameter Min Typ Max Unit LSI frequency 26 38 56 kHz LSI oscillator frequency drift 0C TA 85C -10 - 4 % LSI oscillator startup time - - 200 s LSI oscillator power consumption - 400 510 nA 1. Guaranteed by test in production. 2. This is a deviation for an individual part, once the initial frequency has been measured. 3. Guaranteed by design. Multi-speed internal (MSI) RC oscillator Table 50. MSI oscillator characteristics Symbol fMSI Parameter Frequency after factory calibration, done at VDD= 3.3 V and TA = 25 C DocID027096 Rev 2 Condition Typ Max Unit MSI range 0 65.5 - MSI range 1 131 - MSI range 2 262 - MSI range 3 524 - MSI range 4 1.05 - MSI range 5 2.1 - MSI range 6 4.2 - kHz MHz 85/137 117 Electrical characteristics STM32L073xx Table 50. MSI oscillator characteristics (continued) Symbol ACCMSI DTEMP(MSI)(1) DVOLT(MSI)(1) IDD(MSI)(2) tSU(MSI) 86/137 Parameter Condition Typ Frequency error after factory calibration - 0.5 - MSI oscillator frequency drift 0 C TA 85 C - 3 - MSI range 0 - 8.9 +7.0 MSI range 1 - 7.1 +5.0 MSI range 2 - 6.4 +4.0 MSI range 3 - 6.2 +3.0 MSI range 4 - 5.2 +3.0 MSI range 5 - 4.8 +2.0 MSI range 6 - 4.7 +2.0 - - 2.5 MSI range 0 0.75 - MSI range 1 1 - MSI range 2 1.5 - MSI range 3 2.5 - MSI range 4 4.5 - MSI range 5 8 - MSI range 6 15 - MSI range 0 30 - MSI range 1 20 - MSI range 2 15 - MSI range 3 10 - MSI range 4 6 - MSI range 5 5 - MSI range 6, Voltage range 1 and 2 3.5 - MSI range 6, Voltage range 3 5 - MSI oscillator frequency drift VDD = 3.3 V, - 40 C TA 110 C MSI oscillator frequency drift 1.65 V VDD 3.6 V, TA = 25 C MSI oscillator power consumption MSI oscillator startup time DocID027096 Rev 2 Max Unit % % %/V A s STM32L073xx Electrical characteristics Table 50. MSI oscillator characteristics (continued) Symbol tSTAB(MSI)(2) fOVER(MSI) Parameter Condition MSI oscillator stabilization time MSI oscillator frequency overshoot Typ Max Unit MSI range 0 - 40 MSI range 1 - 20 MSI range 2 - 10 MSI range 3 - 4 MSI range 4 - 2.5 MSI range 5 - 2 MSI range 6, Voltage range 1 and 2 - 2 MSI range 3, Voltage range 3 - 3 Any range to range 5 - 4 Any range to range 6 - s MHz 6 1. This is a deviation for an individual part, once the initial frequency has been measured. 2. Guaranteed by characterization results. 6.3.8 PLL characteristics The parameters given in Table 51 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. Table 51. PLL characteristics Value Symbol Parameter Unit Min Typ Max(1) PLL input clock(2) 2 - 24 MHz PLL input clock duty cycle 45 - 55 % fPLL_OUT PLL output clock 2 - 32 MHz tLOCK PLL input = 16 MHz PLL VCO = 96 MHz - 115 160 s Jitter Cycle-to-cycle jitter - 600 ps IDDA(PLL) Current consumption on VDDA - 220 450 IDD(PLL) Current consumption on VDD - 120 150 fPLL_IN A 1. Guaranteed by characterization results. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. DocID027096 Rev 2 87/137 117 Electrical characteristics 6.3.9 STM32L073xx Memory characteristics RAM memory Table 52. RAM and hardware registers Symbol VRM Parameter Conditions Data retention mode(1) STOP mode (or RESET) Min Typ Max Unit 1.65 - - V 1. Minimum supply voltage without losing data stored in RAM (in Stop mode or under Reset) or in hardware registers (only in Stop mode). Flash memory and data EEPROM Table 53. Flash memory and data EEPROM characteristics Symbol Conditions Min Typ Max(1) Unit - 1.65 - 3.6 V Erasing - 3.28 3.94 Programming - 3.28 3.94 Average current during the whole programming / erase operation - 500 700 A Maximum current (peak) TA = 25 C, VDD = 3.6 V during the whole programming / erase operation - 1.5 2.5 mA Parameter VDD Operating voltage Read / Write / Erase tprog Programming time for word or half-page IDD ms 1. Guaranteed by design. Table 54. Flash memory and data EEPROM endurance and retention Value Symbol Parameter Cycling (erase / write) Program memory NCYC(2) Min(1) Unit 10 Cycling (erase / write) EEPROM data memory Cycling (erase / write) Program memory TA = -40C to 105 C 100 kcycles 0.2 Cycling (erase / write) EEPROM data memory 88/137 Conditions TA = -40C to 125 C DocID027096 Rev 2 2 STM32L073xx Electrical characteristics Table 54. Flash memory and data EEPROM endurance and retention (continued) Value Symbol Parameter Data retention (program memory) after 10 kcycles at TA = 85 C Data retention (EEPROM data memory) after 100 kcycles at TA = 85 C tRET(2) Data retention (program memory) after 10 kcycles at TA = 105 C Data retention (EEPROM data memory) after 100 kcycles at TA = 105 C Data retention (program memory) after 200 cycles at TA = 125 C Data retention (EEPROM data memory) after 2 kcycles at TA = 125 C Conditions Min(1) Unit 30 TRET = +85 C 30 TRET = +105 C years 10 TRET = +125 C 1. Guaranteed by characterization results. 2. Characterization is done according to JEDEC JESD22-A117. 6.3.10 EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: * Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. * FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 55. They are based on the EMS levels and classes defined in application note AN1709. Table 55. EMS characteristics Symbol Parameter Conditions Level/ Class VFESD VDD = 3.3 V, LQFP100, TA = +25 C, Voltage limits to be applied on any I/O pin to fHCLK = 32 MHz induce a functional disturbance conforms to IEC 61000-4-2 3B VEFTB Fast transient voltage burst limits to be applied through 100 pF on VDD and VSS pins to induce a functional disturbance VDD = 3.3 V, LQFP100, TA = +25 C, fHCLK = 32 MHz conforms to IEC 61000-4-4 4A DocID027096 Rev 2 89/137 117 Electrical characteristics STM32L073xx Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: * Corrupted program counter * Unexpected reset * Critical data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). Electromagnetic Interference (EMI) The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 56. EMI characteristics Symbol Parameter SEMI 90/137 Conditions VDD = 3.6 V, Peak level TA = 25 C, LQFP100 package compliant with IEC 61967-2 DocID027096 Rev 2 Monitored frequency band Max vs. frequency range at 32 MHz 0.1 to 30 MHz -7 30 to 130 MHz 14 130 MHz to 1 GHz 9 EMI Level 2 Unit dBV - STM32L073xx 6.3.11 Electrical characteristics Electrical sensitivity characteristics Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts x (n+1) supply pins). This test conforms to the ANSI/JEDEC standard. Table 57. ESD absolute maximum ratings Symbol VESD(HBM) Ratings Conditions Class Maximum value(1) 2 2000 TA = +25 C, Electrostatic discharge conforming to voltage (human body model) ANSI/JEDEC JS-001 TA = +25 C, conforming to ANSI/ESD STM5.3.1. Electrostatic discharge VESD(CDM) voltage (charge device model) Unit V C4 500 1. Guaranteed by characterization results. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: * A supply overvoltage is applied to each power supply pin * A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD 78A IC latch-up standard. Table 58. Electrical sensitivities Symbol LU Parameter Static latch-up class Conditions TA = +125 C conforming to JESD78A DocID027096 Rev 2 Class II level A 91/137 117 Electrical characteristics 6.3.12 STM32L073xx I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibility to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5 A/+0 A range), or other functional failure (for example reset occurrence oscillator frequency deviation). The test results are given in the Table 59. Table 59. I/O current injection susceptibility Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0 -0 NA Injected current on PA0, PA4, PA5, PC15, PH0 and PH1 -5 0 Injected current on any other FT, FTf pins -5 (1) NA Injected current on any other pins -5 (1) +5 1. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 92/137 DocID027096 Rev 2 Unit mA STM32L073xx 6.3.13 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 60 are derived from tests performed under the conditions summarized in Table 26. All I/Os are CMOS and TTL compliant. Table 60. I/O static characteristics Symbol VIL VIH Vhys Ilkg RPU Parameter Input low level voltage Input high level voltage I/O Schmitt trigger voltage hysteresis (2) Input leakage current (4) Weak pull-up equivalent resistor(5) RPD Weak pull-down equivalent resistor CIO I/O pin capacitance (5) Conditions Min Typ Max Unit TC, FT, FTf, RST I/Os - - 0.3VDD BOOT0 pin - - 0.14VDD(1) All I/Os 0.7 VDD - - Standard I/Os - 10% VDD(3) - BOOT0 pin - 0.01 - VSS VIN VDD All I/Os except for PA11, PA12, BOOT0 and FTf I/Os - - 50 VSS VIN VDD, PA11 and PA12 I/Os - - -50/+250 VSS VIN VDD FTf I/Os - - 100 VDD VIN 5 V All I/Os except for PA11, PA12, BOOT0 and FTf I/Os - - 200 VDD VIN 5 V FTf I/Os - - 500 VDD VIN 5 V PA11, PA12 and BOOT0 - - 10 A VIN = VSS 30 45 60 k VIN = VDD 30 45 60 k - - 5 - pF V nA nA 1. Guaranteed by characterization. 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results. 3. With a minimum of 200 mV. Guaranteed by characterization results. 4. The max. value may be exceeded if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This MOS/NMOS contribution to the series resistance is minimum (~10% order). DocID027096 Rev 2 93/137 117 Electrical characteristics STM32L073xx Figure 24. VIH/VIL versus VDD (CMOS I/Os) 9,/9,+ 9 LQV DOOS 9 '' 3+ 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' + 3 9 ,+PLQ 3& 7 %22 9 ' ' PLQ 9,+PLQ LUH UHTX DUG WDQG 6V &02 WV9 ,+ PHQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG &026VWDQGDUGUHTXLUHPHQWV9,/PD[ 9'' 9,/PD[ 9'' 9 06Y9 Figure 25. VIH/VIL versus VDD (TTL I/Os) 9,/9,+ 9 SLQV DOO 3+ ' ' 9 3& 9 ,+PLQ W%227 IRU S H[FH 9 '' 3+ LQ 9 ,+P 3& 7 %22 77/VWDQGDUGUHTXLUHPHQWV9,+PLQ 9 9,+PLQ 9 ,/PD[ ' 9 ' ,QSXWUDQJHQRW JXDUDQWHHG 9,/PD[ 77/VWDQGDUGUHTXLUHPHQWV9,/PD[ 9 9'' 9 06Y9 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or source up to 15 mA with the non-standard VOL/VOH specifications given in Table 61. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2: 94/137 * The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD() (see Table 24). * The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS() (see Table 24). DocID027096 Rev 2 STM32L073xx Electrical characteristics Output voltage levels Unless otherwise specified, the parameters given in Table 61 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. All I/Os are CMOS and TTL compliant. Table 61. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2), IIO = +8 mA 2.7 V VDD 3.6 V - 0.4 VDD-0.4 - (1) Output low level voltage for an I/O pin TTL port(2), IIO =+ 8 mA 2.7 V VDD 3.6 V - 0.4 (3)(4) Output high level voltage for an I/O pin TTL port(2), IIO = -6 mA 2.7 V VDD 3.6 V 2.4 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +15 mA 2.7 V VDD 3.6 V - 1.3 VOH(3)(4) Output high level voltage for an I/O pin IIO = -15 mA 2.7 V VDD 3.6 V VDD-1.3 - VOL(1)(4) Output low level voltage for an I/O pin IIO = +4 mA 1.65 V VDD < 3.6 V - 0.45 VOH(3)(4) Output high level voltage for an I/O pin IIO = -4 mA V -0.45 1.65 V VDD 3.6 V DD VOL VOH Output low level voltage for an FTf VOLFM+(1)(4) I/O pin in Fm+ mode Unit V - IIO = 20 mA 2.7 V VDD 3.6 V - 0.4 IIO = 10 mA 1.65 V VDD 3.6 V - 0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 24. The sum of the currents sunk by all the I/Os (I/O ports and control pins) must always be respected and must not exceed IIO(PIN). 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 24. The sum of the currents sourced by all the I/Os (I/O ports and control pins) must always be respected and must not exceed IIO(PIN). 4. Guaranteed by characterization results. DocID027096 Rev 2 95/137 117 Electrical characteristics STM32L073xx Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 26 and Table 62, respectively. Unless otherwise specified, the parameters given in Table 62 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. Table 62. I/O AC characteristics(1) OSPEEDRx[1:0] bit value(1) Symbol fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) tf(IO)out tr(IO)out Output rise and fall time 00 01 Fmax(IO)out Maximum frequency(3) 10 tf(IO)out tr(IO)out Output rise and fall time Fmax(IO)out Maximum frequency(3) 11 Fm+ configuration(4) - Min Max(2) CL = 50 pF, VDD = 2.7 V to 3.6 V - 400 CL = 50 pF, VDD = 1.65 V to 2.7 V - 100 CL = 50 pF, VDD = 2.7 V to 3.6 V - 125 CL = 50 pF, VDD = 1.65 V to 2.7 V - 320 CL = 50 pF, VDD = 2.7 V to 3.6 V - 2 CL = 50 pF, VDD = 1.65 V to 2.7 V - 0.6 CL = 50 pF, VDD = 2.7 V to 3.6 V - 30 CL = 50 pF, VDD = 1.65 V to 2.7 V - 65 CL = 50 pF, VDD = 2.7 V to 3.6 V - 10 CL = 50 pF, VDD = 1.65 V to 2.7 V - 2 CL = 50 pF, VDD = 2.7 V to 3.6 V - 13 CL = 50 pF, VDD = 1.65 V to 2.7 V - 28 CL = 30 pF, VDD = 2.7 V to 3.6 V - 35 CL = 50 pF, VDD = 1.65 V to 2.7 V - 10 CL = 30 pF, VDD = 2.7 V to 3.6 V - 6 CL = 50 pF, VDD = 1.65 V to 2.7 V - 17 - 1 - 10 Parameter tf(IO)out tr(IO)out Output rise and fall time fmax(IO)out Maximum frequency(3) Conditions tf(IO)out Output fall time tr(IO)out Output rise time - 30 Maximum frequency(3) - 350 - 15 - 60 8 - fmax(IO)out tf(IO)out Output fall time tr(IO)out Output rise time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF, VDD = 2.5 V to 3.6 V CL = 50 pF, VDD = 1.65 V to 3.6 V - Unit kHz ns MHz ns MHz ns MHz ns MHz ns KHz ns ns 1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the line reference manual for a description of GPIO Port configuration register. 2. Guaranteed by design. 3. The maximum frequency is defined in Figure 26. 4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the line reference manual for a detailed description of Fm+ I/O configuration. 96/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Figure 26. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI 7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH,2$&FKDUDFWHULVWLFV 6.3.14 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU , except when it is internally driven low (see Table 63). Unless otherwise specified, the parameters given in Table 63 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 26. Table 63. NRST pin characteristics Symbol VIL(NRST) (1) Parameter Conditions Min Typ NRST input low level voltage - VSS - 0.8 - 1.4 - VDD IOL = 2 mA 2.7 V < VDD < 3.6 V - - IOL = 1.5 mA 1.65 V < VDD < 2.7 V - - - - 10%VDD(2) - mV Weak pull-up equivalent resistor(3) VIN = VSS 30 45 60 k NRST input filtered pulse - - - 50 ns NRST input not filtered pulse - 350 - - ns VIH(NRST)(1) NRST input high level voltage NRST output low level VOL(NRST)(1) voltage Vhys(NRST)(1) RPU VF(NRST)(1) VNF(NRST) (1) NRST Schmitt trigger voltage hysteresis Max Unit V 0.4 1. Guaranteed by design. 2. 200 mV minimum value 3. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is around 10%. DocID027096 Rev 2 97/137 117 Electrical characteristics STM32L073xx Figure 27. Recommended NRST pin protection 9'' ([WHUQDOUHVHWFLUFXLW 538 1567 ,QWHUQDOUHVHW )LOWHU ) 670/[[ DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 63. Otherwise the reset will not be taken into account by the device. 6.3.15 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 64 are preliminary values derived from tests performed under ambient temperature, fPCLK frequency and VDDA supply voltage conditions summarized in Table 26: General operating conditions. Note: It is recommended to perform a calibration after each power-up. Table 64. ADC characteristics Symbol Parameter Conditions Min Typ Max Unit - 3.6 V VDDA V VDDA Analog supply voltage for ADC on - 1.65 VREF+ Positive reference voltage - 1.65 VREF- Negative reference voltage - - 0 - Current consumption of the ADC on VDDA and VREF+ 1.14 Msps - 200 - 10 ksps - 40 - Current consumption of the ADC on VDD(1) 1.14 Msps - 70 - 10 ksps - 1 - Voltage scaling Range 1 0.14 - 16 Voltage scaling Range 2 0.14 - 8 Voltage scaling Range 3 0.14 - 4 Sampling rate 12-bit resolution 0.01 - 1.14 MHz External trigger frequency fADC = 16 MHz, 12-bit resolution - - 941 kHz - - - 17 1/fADC IDDA (ADC) fADC fS(2) fTRIG(2) ADC clock frequency A MHz VAIN Conversion voltage range - 0 - VREF+ V RAIN(2) External input impedance See Equation 1 and Table 65 for details - - 50 k RADC(2) Sampling switch resistance - - - 1 k 98/137 DocID027096 Rev 2 STM32L073xx Electrical characteristics Table 64. ADC characteristics (continued) Symbol Parameter CADC(2) Internal sample and hold capacitor tCAL(2)(3) Calibration time Conditions Min Typ Max Unit - - - 8 pF fADC = 16 MHz 5.2 s - 83 1/fADC 1.5 ADC cycles + 2 fPCLK cycles - 1.5 ADC cycles + 3 fPCLK cycles - ADC clock = PCLK/2 - 4.5 - fPCLK cycle ADC clock = PCLK/4 - 8.5 - fPCLK cycle ADC clock = HSI16 WLATENCY(4) tlatr(2) JitterADC tS(2) tUP_LDO(2)(3) tSTAB(2)(3) tConV(2) ADC_DR register write latency Trigger conversion latency fADC = fPCLK/2 = 16 MHz 0.266 s fADC = fPCLK/2 8.5 1/fPCLK fADC = fPCLK/4 = 8 MHz 0.516 s fADC = fPCLK/4 16.5 1/fPCLK fADC = fHSI16 = 16 MHz 0.252 - 0.260 s fADC = fHSI16 - 1 - 1/fHSI16 fADC = 16 MHz 0.093 - 10 s - 1.5 - 160.5 1/fADC Internal LDO power-up time - - - 10 s ADC stabilization time - ADC jitter on trigger conversion Sampling time Total conversion time (including sampling time) fADC = 16 MHz, 12-bit resolution 12-bit resolution 14 1 - 1/fADC 10.13 14 to 162 (tS for sampling +12.5 for successive approximation) s 1/fADC 1. A current consumption proportional to the APB clock frequency has to be added (see Table 40: Peripheral current consumption in Run or Sleep mode). 2. Guaranteed by design. 3. This parameter only includes the ADC timing. It does not take into account register access latency. 4. This parameter specifies the latency to transfer the conversion result into the ADC_DR register. EOC bit is set to indicate the conversion is complete and has the same latency. Equation 1: RAIN max formula TS - - R ADC R AIN < ------------------------------------------------------------N+2 f ADC x C ADC x ln ( 2 ) The formula above (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). DocID027096 Rev 2 99/137 117 Electrical characteristics STM32L073xx Table 65. RAIN max for fADC = 14 MHz Ts (cycles) tS (s) RAIN max (k)(1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4 28.5 2.04 25.2 41.5 2.96 37.2 55.5 3.96 50 71.5 5.11 NA 239.5 17.1 NA 1. Guaranteed by design. Table 66. ADC accuracy(1)(2)(3) Symbol Parameter Conditions Min Typ Max ET Total unadjusted error - 2 4 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 2.5 ED Differential linearity error - 1 1.5 10.2 11 11.3 12.1 - Effective number of bits 1.65 V < VDDA = VREF+< 3.6 V, range 1/2/3 ENOB Effective number of bits (16-bit mode oversampling with ratio =256)(4) SINAD Signal-to-noise distortion 63 69 - Signal-to-noise ratio 63 69 - SNR Signal-to-noise ratio (16-bit mode oversampling with ratio =256)(4) 70 76 - THD Total harmonic distortion - -85 -73 ET Total unadjusted error - 2 5 EO Offset error - 1 2.5 EG Gain error - 1 2 EL Integral linearity error - 1.5 3 - 1 2 1.65 V < VREF+ Y&W >Y&W >Y&W d&' h&' 7HPSHUDWXUH & 7.6.1 06Y9 Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 134/137 DocID027096 Rev 2 STM32L073xx 8 Part numbering Part numbering Table 90. STM32L073xx ordering information scheme Example: STM32 L 073 R 8 T 6 D TR Device family STM32 = ARM-based 32-bit microcontroller Product type L = Low power Device subfamily 073 = USB + LCD Pin count C = 48/49 pins R = 64 pins V = 100 pins Flash memory size 8 = 64 Kbytes B = 128 Kbytes Z = 192 Kbytes Package T = LQFP H = TFBGA I = UFBGA Temperature range 6 = Industrial temperature range, -40 to 85 C 7 = Industrial temperature range, -40 to 105 C 3 = Industrial temperature range, -40 to 125 C Options No character = VDD range: 1.8 to 3.6 V and BOR enabled D = VDD range: 1.65 to 3.6 V and BOR disabled Packing TR = tape and reel No character = tray or tube For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. DocID027096 Rev 2 135/137 135 Revision history 9 STM32L073xx Revision history Table 91. Document revision history Date Revision 03-Aug-2015 1 Initial release 2 Changed confidentiality level to public. Updated datasheet status to "production data". Modified ultra-low-power platform features on cover page. Changed number of GPIOs for LQFP48 for 37 in Table 2: Ultralow-power STM32L073xxx device features and peripheral counts. Changed LCD_VLCD1 into LCD_VLCD2 in Section 3.13.2: VLCD voltage monitoring. In Section 6: Electrical characteristics, updated notes related to values guaranteed by characterization. Updated |VSS| definition to include VREF- in Table 23: Voltage characteristics. Added VDD_USB and updated IIO(PIN) in Figure 24: Current characteristics. Updated Table 56: EMI characteristics. Updated fTRIG and VAIN maximum value, added VREF+ and VREFin Table 64: ADC characteristics. Updated Section 7.2: UFBGA100 package information. Updated Figure 53: LQFP48 marking example (package top view). 26-Oct-2015 136/137 Changes DocID027096 Rev 2 STM32L073xx IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2015 STMicroelectronics - All rights reserved DocID027096 Rev 2 137/137 137