Parameter Max. Units
VCES Collector-to-Emitter Breakdown Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 23
IC @ TC = 100°C Continuous Collector Current 12 A
ICM Pulsed Collector Current 92
ILM Clamped Inductive Load Current 92
VGE Gate-to-Emitter Voltage ± 20 V
EARV Reverse Voltage Avalanche Energy 10 mJ
PD @ TC = 25°C Maximum Power Dissipation 100
PD @ TC = 100°C Maximum Power Dissipation 42
TJOperating Junction and -55 to + 150
TSTG Storage Temperature Range
Soldering Temperature, for 10 seconds 300 (0.063 in. (1.6mm from case )
°C
Mounting torque, 6-32 or M3 screw. 10 lbfin (1.1Nm)
IRG4BC30UPbF
UltraFast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
E
C
G
n-channel
VCES = 600V
VCE(on) typ. = 1.95V
@VGE = 15V, IC = 12A
02/05/10
Parameter Typ. Max. Units
RθJC Junction-to-Case  1.2
RθCS Case-to-Sink, Flat, Greased Surface 0.50  °C/W
RθJA Junction-to-Ambient, typical socket mount  80
Wt Weight 2 (0.07)  g (oz)
Thermal Resistance
Absolute Maximum Ratings
W
Features
UltraFast: optimized for high operating
frequencies 8-40 kHz in hard switching, >200
kHz in resonant mode
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-220AB package
Generation 4 IGBTs offer highest efficiency available
IGBTs optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
Benefits
www.irf.com 1
Lead-Free
TO-220AB
PD - 95169A
IRG4BC30UPbF
2www.irf.com
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) 50 75 IC = 12A
Qge Gate - Emitter Charge (turn-on) 8.1 12 nC VCC = 400V See Fig.8
Qgc Gate - Collector Charge (turn-on) 18 27 VGE = 15V
td(on) Turn-On Delay Time 17
trRise Time 9.6 TJ = 25°C
td(off) Turn-Off Delay Time 78 120 IC = 12A, VCC = 480V
tfFall Time 97 150 VGE = 15V, RG = 23
Eon Turn-On Switching Loss 0.16 Energy losses include "tail"
Eoff Turn-Off Switching Loss 0.20 mJ See Fig. 10, 11, 13, 14
Ets Total Switching Loss 0.36 0.50
td(on) Turn-On Delay Time 20 TJ = 150°C,
trRise Time 13 IC = 12A, VCC = 480V
td(off) Turn-Off Delay Time 180 VGE = 15V, RG = 23
tfFall Time 140 Energy losses include "tail"
Ets Total Switching Loss 0.73 mJ See Fig. 13, 14
LEInternal Source Inductance 7.5 nH Measured 5mm from package
Cies Input Capacitance 1100 VGE = 0V
Coes Output Capacitance 73 pF VCC = 30V See Fig.7
Cres Reverse Transfer Capacitance 14 = 1.0MHz
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 V VGE = 0V, IC = 250µA
V(BR)ECS Emitter-to-Collector Breakdown Voltage 18 V VGE = 0V, IC = 1.0A
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage 0.63 V/°C VGE = 0V, IC = 1.0mA
1.95 2.1 IC = 12A VGE = 15V
VCE(ON) Collector-to-Emitter Saturation Voltage 2.52 IC = 23A See Fig.2, 5
2.09 IC = 12A , TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage -13 mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 3.1 8.6 S VCE = 100V, IC = 12A
250 VGE = 0V, VCE = 600V
2.0 VGE = 0V, VCE = 10V, TJ = 25°C
1000 VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ±100 n A VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
ICES Zero Gate Voltage Collector Current
V
µA
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
ns
ns
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 23,
(See fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
IRG4BC30UPbF
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
Fig. 2 - Typical Output Characteristics Fig. 3 - Typical Transfer Characteristics
0.1
1
10
100
0.1 1 10
CE
C
I , Collector-to-Emitter Current (A)
V , Collector-to-Emitter Voltage (V)
T = 150°C
T = 25°C
J
J
V = 15V
20µs PULSE WIDTH
GE
A
0.1
1
10
100
56789101112
C
I , Collector-to-Emitter Current (A)
GE
T = 25°C
T = 150°C
J
J
V , Gate-to-Emitter Voltage (V)
A
V = 10V
s PULSE WIDTH
CC
0
5
10
15
20
25
30
35
0.1 1 10 100
f, Frequency (kHz)
A
60% of rated
voltage
I
Ideal diodes
Square wave:
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Triangular wave:
I
Clamp voltage:
80% of rated
Power Dissipation = 21W
Load Current ( A )
IRG4BC30UPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1.5
2.0
2.5
3.0
-60 -40 -20 0 20 40 60 80 100 120 140 160
CE
V , Collector-to-Emitter Voltage (V)
V = 15V
80µs PULSE WIDTH
GE
A
T , Junction Temperature (°C)
J
I = 24A
I = 12A
I = 6.0A
C
C
C
0.01
0.1
1
10
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Rectangular Pulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
Thermal Response (Z )
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
12
JDM
thJC
C
0
5
10
15
20
25
25 50 75 100 125 150
Maximum DC Collector Current (A
T , Case Temperature (°C)
C
V = 15V
GE
A
IRG4BC30UPbF
www.irf.com 5
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
400
800
1200
1600
2000
1 10 100
CE
C, Capacitance (pF)
V , Collector-to-Emitter Voltage (V)
A
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GE
ies ge gc ce
res gc
oes ce gc
C
ies
C
res
C
oes
0
4
8
12
16
20
0 1020304050
GE
V , Gate-to-Emitter Voltage (V)
g
Q , Total Gate Charge (nC)
A
V = 400V
I = 12A
CE
C
0.2
0.3
0.4
0.5
0 102030405060
G
Total Switching Losses (mJ)
R , Gate Resistance (
)
A
V = 480V
V = 15V
T = 25°C
I = 12A
CC
GE
J
C
0.1
1
10
-60 -40 -20 0 20 40 60 80 100 120 140 160
Total Switching Losses (mJ)
A
I = 6.0A
I = 12A
I = 24A
R = 23
V = 15V
V = 480V
C
C
C
J
T , Junction Temperature (°C)
G
GE
CC
IRG4BC30UPbF
6www.irf.com
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
0.0
0.4
0.8
1.2
1.6
0102030
C
Total Switching Losses (mJ)
I , Collector-to-Emitter Current (A)
R = 23
T = 150°C
V = 480V
V = 15V
G
J
CC
GE
0.1
1
10
100
1000
1 10 100 100
0
C
CE
GE
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
SAFE OPERATING AREA
V = 20V
T = 125°C
GE
J
IRG4BC30UPbF
www.irf.com 7
D.U.T.
50V
L
V *
C
cd
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
1000V
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
t=5µs
d(on)
t
t
f
t
r
90%
t
d(off)
10%
90%
10%
5%
V
C
I
C
E
on
E
off
ts on off
E = (E +E )
c
d
e
Fig. 14b - Switching Loss
Waveforms
50V
Driver*
1000V
D.U.T.
I
C
C
V
c
de
L
Fig. 14a - Switching Loss
Test Circuit
* Driver same type
as D.U.T., VC = 480V
0 - VCC
RLICM
VCC
=
480µF
Pulsed Collector Current
Test Circuit
IRG4BC30UPbF
8www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/(
,17+($66(0%/</,1(&
7+,6,6$1,5)
/27&2'(
$66(0%/('21:: 3$57180%(5
$66(0%/<
/27&2'(
'$7(&2'(
<($5 
/,1(&
:((.
/2*2
5(&7,),(5
,17(51$7,21$/
Note: "P" in assembly line
position indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/