PD -95958A IRFH5007PbF HEXFET(R) Power MOSFET VDS RDS(on) max (@VGS = 10V) Qg (typical) RG (typical) ID 75 V 5.9 m 65 nC 1.2 100 (@Tc(Bottom) = 25C) h A PQFN 5X6 mm Applications * * * * Secondary Side Synchronous Rectification Inverters for DC Motors DC-DC Brick Applications Boost Converters Features and Benefits Features Benefits Low RDSon ( 5.9m) Low Thermal Resistance to PCB ( 0.5C/W) 100% Rg tested Low Profile ( 0.9 mm) results in Industry-Standard Pinout Compatible with Existing Surface Mount Techniques RoHS Compliant Containing no Lead, no Bromide and no Halogen MSL1, Industrial Qualification Lower Conduction Losses Enables Better Thermal Dissipation Increased Reliability Increased Power Density Multi-Vendor Compatibility Easier Manufacturing Environmentally Friendlier Increased Reliability Orderable part number IRFH5007TRPBF IRFH5007TR2PBF Package Type PQFN 5mm x 6mm PQFN 5mm x 6mm Standard Pack Form Quantity Tape and Reel 4000 Tape and Reel 400 Note Absolute Maximum Ratings VDS VGS ID @ TA = 25C ID @ TA = 70C ID @ TC(Bottom) = 25C ID @ TC(Bottom) = 100C IDM PD @TA = 25C PD @ TC(Bottom) = 25C Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current Power Dissipation Power Dissipation TJ TSTG Linear Derating Factor Operating Junction and Storage Temperature Range g g c g h Max. 75 20 17 13 100 88 400 3.6 250 Units 0.029 -55 to + 150 W/C V A W C Notes through are on page 8 www.irf.com 1 03/22/10 IRFH5007PbF Static @ TJ = 25C (unless otherwise specified) BVDSS VDSS/TJ RDS(on) VGS(th) VGS(th) IDSS IGSS gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Min. 75 --- --- 2.0 --- --- --- --- --- 100 --- --- --- --- --- --- --- Typ. --- 0.09 5.1 --- -8.4 --- --- --- --- --- 65 11 4.5 20 29.5 24.5 21 Conditions Max. Units --- V VGS = 0V, ID = 250A --- V/C Reference to 25C, ID = 1mA 5.9 m VGS = 10V, ID = 50A 4.0 V VDS = VGS, ID = 150A --- mV/C VDS = 75V, VGS = 0V 20 A VDS = 75V, VGS = 0V, TJ = 125C 250 VGS = 20V 100 nA VGS = -20V -100 --- S VDS = 15V, ID = 50A 98 --- VDS = 38V VGS = 10V --- nC --- ID = 50A --- See Fig.17 & 18 --- --- nC VDS = 16V, VGS = 0V Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance --- --- --- --- --- --- --- --- 1.2 10 14 30 11 4290 510 210 --- --- --- --- --- --- --- --- Parameter Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) e ns pF VDD = 38V, VGS = 10V ID = 50A RG=1.8 See Fig.15 VGS = 0V VDS = 25V = 1.0MHz Avalanche Characteristics EAS IAR Parameter Single Pulse Avalanche Energy Avalanche Current Diode Characteristics IS ISM VSD trr Qrr ton c Typ. --- --- d Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time Units mJ A Max. 250 50 Min. Typ. Max. Units h --- --- 100 c --- --- 400 A Conditions MOSFET symbol showing the integral reverse D G p-n junction diode. TJ = 25C, IS = 50A, VGS = 0V TJ = 25C, IF = 50A, VDD = 38V di/dt = 500A/s --- --- 1.3 V --- 31 47 ns --- 170 255 nC Time is dominated by parasitic Inductance e S e Thermal Resistance RJC (Bottom) RJC (Top) RJA RJA (<10s) 2 f f Junction-to-Case Junction-to-Case Junction-to-Ambient Junction-to-Ambient Parameter g g Typ. --- --- --- --- Max. 0.5 15 35 22 Units C/W www.irf.com IRFH5007PbF 1000 1000 100 BOTTOM TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 8.0V 6.0V 5.0V 4.5V 4.25V 4.0V 3.75V 100 10 1 3.75V BOTTOM 3.75V 10 60s PULSE WIDTH 60s PULSE WIDTH Tj = 150C Tj = 25C 0.1 1 0.1 1 10 100 1000 0.1 V DS, Drain-to-Source Voltage (V) 10 100 1000 Fig 2. Typical Output Characteristics 1000 2.5 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 100 T J = 150C 10 T J = 25C 1 VDS = 25V 60s PULSE WIDTH 0.1 ID = 50A VGS = 10V 2.0 1.5 1.0 0.5 2 3 4 5 6 7 -60 -40 -20 0 Fig 3. Typical Transfer Characteristics 100000 Fig 4. Normalized On-Resistance vs. Temperature 14.0 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 50A C oss = C ds + C gd 10000 Ciss Coss 1000 20 40 60 80 100 120 140 160 T J , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) VGS 10V 8.0V 6.0V 5.0V 4.5V 4.25V 4.0V 3.75V Crss 12.0 VDS= 60V VDS= 38V 10.0 VDS= 15V 8.0 6.0 4.0 2.0 0.0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs.Drain-to-Source Voltage www.irf.com 0 20 40 60 80 100 QG, Total Gate Charge (nC) Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage 3 IRFH5007PbF 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 T J = 150C 100 T J = 25C 10 1 OPERATION IN THIS AREA LIMITED BY RDS(on) 100sec 1msec 100 10msec 10 VGS = 0V 0.1 1 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0 1 VSD, Source-to-Drain Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage Fig 8. Maximum Safe Operating Area 150 4.0 VGS(th) , Gate threshold Voltage (V) Limited By Package 125 ID, Drain Current (A) DC Tc = 25C Tj = 150C Single Pulse 100 75 50 25 0 3.5 3.0 2.5 ID = 150A 2.0 ID = 500A ID = 1.0mA 1.5 ID = 1.0A 1.0 0.5 25 50 75 100 125 150 -75 -50 -25 T C , Case Temperature (C) 0 25 50 75 100 125 150 T J , Temperature ( C ) Fig 10. Threshold Voltage vs. Temperature Fig 9. Maximum Drain Current vs. Case (Bottom) Temperature Thermal Response ( Z thJC ) C/W 1 D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom) 4 www.irf.com 16 1100 ID = 50A EAS , Single Pulse Avalanche Energy (mJ) RDS(on), Drain-to -Source On Resistance (m ) IRFH5007PbF 12 T J = 125C 10 8 T J = 25C 6 ID 6.6A 13A BOTTOM 50A 1000 14 4 2 TOP 900 800 700 600 500 400 300 200 100 0 4 6 8 10 12 14 16 18 20 25 50 75 100 125 150 Starting T J , Junction Temperature (C) VGS, Gate -to -Source Voltage (V) Fig 12. On-Resistance vs. Gate Voltage Fig 13. Maximum Avalanche Energy vs. Drain Current V(BR)DSS tp 15V DRIVER L VDS D.U.T RG + V - DD IAS 20V A Fig 14a. Unclamped Inductive Test Circuit VDS VGS RG RD Fig 14b. Unclamped Inductive Waveforms VDS 90% D.U.T. + -VDD V10V GS Pulse Width 1 s Duty Factor 0.1 Fig 15a. Switching Time Test Circuit www.irf.com I AS 0.01 tp 10% VGS td(on) tr td(off) tf Fig 15b. Switching Time Waveforms 5 IRFH5007PbF D.U.T Driver Gate Drive + - - * D.U.T. ISD Waveform Reverse Recovery Current + RG * * * * dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent ISD Ripple 5% * VGS = 5V for Logic Level Devices Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs Id Vds Vgs L DUT 0 1K S VCC Vgs(th) Qgs1 Qgs2 Fig 17. Gate Charge Test Circuit 6 Qgd Qgodr Fig 18. Gate Charge Waveform www.irf.com IRFH5007PbF PQFN 5x6 Outline "B" Package Details For footprint and stencil design recommendations, please refer to application note AN-1154 at http://www.irf.com/technical-info/appnotes/an-1154.pdf PQFN 5x6 Outline "B" Part Marking INTERNATIONAL RECTIFIER LOGO DATE CODE ASSEMBLY SITE CODE (Per SCOP 200-002) PIN 1 IDENTIFIER XXXX XYWWX XXXXX PART NUMBER MARKING CODE (Per Marking Spec) LOT CODE (Eng Mode - Min last 4 digits of EATI#) (Prod Mode - 4 digits of SPN code) Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com 7 IRFH5007PbF PQFN 5x6 Outline "B" Tape and Reel Qualification information Qualification level Moisture Sensitivity Level RoHS compliant Indus trial (per JE DE C JE S D47F PQFN 5mm x 6mm guidelines ) MS L1 (per JE DE C J-S T D-020D ) Yes Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/ Applicable version of JEDEC standard at the time of product release. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25C, L = 0.20mH, RG = 25, IAS = 50A. Pulse width 400s; duty cycle 2%. R is measured at TJ of approximately 90C. When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material. Calculated continuous current based on maximum allowable junction temperature. Package is limited to 100A by production test capability. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.03/2010 8 www.irf.com