MGA-22103 2.5-2.7 GHz WiMAX Power Amplifier Module Data Sheet Description Features Avago Technologies MGA-22103 power amplifier module is designed for mobile and fixed wireless data applications in the 2.5 to 2.7 GHz frequency range. The aggressive gain shape limits the noise injected into radio receivers colocated in the same device. The PA is optimized for IEEE 802.16 WiMAX modulation but can be used for any high linearity applications. The PA exhibits flat gain and good match while providing linear power efficiency to meet stringent mask conditions. It utilizes Avago Technologies proprietary GaAs Enhancement-mode pHEMT technology for superior performance across voltage and temperature levels. Advanced GaAs E-pHEMT The MGA-22103 is packaged in a 3 x 3 x 1 mm package for space-constrained applications. 25dB gain step in low power mode with reduced Idsq Integrated CMOS compatible pins for shutdown and low power mode 3 to 5 V supply Adjustable bias current with BCTRL pin Small size: 3 x 3 x 1 mm Stable under all loads or conditions -40 C to +85 C operation At 2.5 GHz (BCTRL = 2.8 V) Gain of 34 dB Functional Block Diagram GND 16 50 all RF ports PAE of 21% at SEM compliant Pout = 25 dBm VCC1 GND 16 15 GND 14 Meets 802.16 masks at 25 dBm Pout , 16 QAM WiMAX with 3.3 V and 437 mA VCC2 13 RFIN 1 GND 12 16 QAM WiMAX EVM < -32 dB (2.5%) at 25 dBm Low power Idd, 85 mA at Pout = 0 dBm Portable WiMAX applications with stringent coexistence requirements PMOD 7 N/C 8 RFIN 11 GND 12 GND 313 BCTRL 44 VCC2 BSW 6 16 15 14 14 13 12 GND 12 11 RFOUT 11 17 GND 10 GND 10 19 5 16 7 8 NC BSPLY 5 PAMOD N/C 9 BCTRL 4 GND Package Diagram VCC1 GND 10 BIAS NETWORK Applications BSW GND 3 RFOUT 11 GND OMN ISMN BSPLY GND 2 NC Electrical Specifications Absolute Minimum and Maximum Ratings Table 1. Minimum and Maximum Ratings Parameter Specifications Description Pin Supply Voltage VCC1 VCC2 Bias Supply BSPLY Min. 3 Max. Unit 5.5 V 5.5 V Bias Control BCTRL 1.65 5.5 V Bias ON/OFF BSW 1.65 5.5 V Mode Control PAMOD 1.65 5.5 V RF Input Power RFIN 15 dBm MSL MSL3 Channel Temperature 150 C 150 C Storage Temperature -65 Comments Using 16 QAM 3/4 Table 2. Recommended Operating Range Parameter Specifications Description Pin Min. Typical Max. Unit Supply Voltage VCC1 VCC2 3 3.3 5 V Bias Supply BSPLY 3 3.3 5 V Bias Control BCTRL 2.75 13 2.8 mA 2.85 BSW 1.65 Mode Control PAMOD 1.65 1.8 3.3 7 1.8 Frequency Range RFOUT 25 2.5 Thermal Resistance, ch-b Case Temperature 2 V A 27 dBm 2.7 GHz 23.4 -40 V uA 3.3 17 RF Output Power V A 0.7 Bias ON/OFF Comments C/W +85 C Using 16 QAM 3/4 Channel to board WiMAX (802.16e) Electrical Specifications All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3 V, BCTRL = 2.8 V, Tc = 25 C, 50 at all ports. Unless otherwise specified, all data is taken with OFDM 16-QAM 3/4 convolutional coding modulated signal per IEEE 802.16e with 10 MHz BW operating over the BW of 2.5 GHz to 2.7 GHz. Table 3. RF Electrical Characteristics Performance Parameter Min. Input Return Loss Gain Flatness Gain Variation (VCC) High Power Mode SEM-A @ 5.05 MHz Max. dB dB Over any 10 MHz 1 dB 3 V to 5 V -34 -30 dB Vcc = 3.3 V -36 -32 -20 -13 dBm/100 kHz IBW = 100 kHz dBm/MHz IBW = 1 MHz dBm 802.16e mA Pout = 25 dBm -20 -13 SEM-C @ 10.5 MHz -26 -19 SEM-D @11.5 MHz -27 -25 SEM-E @15.5 MHz -37 -29.5 SEM-F @ 20.5 MHz -40 -37 Gain +25 437 31 EVM Gain Step 34 37 -36 18 Total DC Current Comments 1 SEM-B @ 6.5 MHz Total DC Current Unit -10 -1 EVM Pout (SEM Compliant) Low Power Mode Typical 23 Vcc = 3.6 V dB dB 24 Pout = 0 dBm dB 85 mA Pout = 0 dBm P1dB 31 dBm CW Single Tone Psat 32 dBm CW Single Tone 2fo Settling Time Icc leakage current 0.2 -36 dBm/MHz 0.5 S 10 40 A Noise Power in Cell Band -146 dBm/Hz Noise Power in GPS Band -149 dBm/Hz Noise Power in PCS -144 dBm/Hz 3 Max current specified at 85 C Selected performance plots EVM Frequency Sweep (Vcc = 3.0 to 5.0 V) Tambient = 25 C and Pout = 25 dBm -20.00 -20.00 3V0 3V3 3V6 4V2 5V0 -25.00 3V3 3V6 4V2 5V0 -22.00 -24.00 -30.00 EVM [dB] EVM [dB] EVM Frequency Sweep (Vcc = 3.0 to 5.0 V) Tambient = 25 C and Pout = 26 dBm -35.00 -26.00 -28.00 -30.00 -40.00 -32.00 -45.00 2500 2600 Frequency [MHz] -34.00 2500 2700 Figure 1. EVM Frequency Sweep at 25 C and Pout = 25 dBm over Vcc EVM [dB] EVM [dB] EVM Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = 25 C and Vcc = 3.3V -30 C 25 C +85 C 2600 Frequency [MHz] 2700 Figure 3. EVM Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over Tambient -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 2.5 GHz 2.6 GHz 2.7 GHz 20 EVM [dB] EVM [dB] 21 22 23 Pout [dBm] 24 25 Figure 5. EVM Power Sweep at Vcc = 3.3 V and -30 C over Frequency 4 22 23 Pout [dBm] 24 25 26 EVM Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = +85 C and Vcc = 3.3 V 2.5 GHz 2.6 GHz 2.7 GHz 20 21 Figure 4. EVM Power Sweep at Vcc = 3.3 V and 25 C over Frequency EVM Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = -30 C and Vcc = 3.3 V -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 2700 Figure 2. EVM Frequency Sweep at 25 C and Pout = 26 dBm over Vcc EVM Frequency Sweep (Tambient = -30 C to +85 C) Vcc = 3.3 V and Pout = 25 dBm -20.00 -22.00 -24.00 -26.00 -28.00 -30.00 -32.00 -34.00 -36.00 -38.00 -40.00 2500 2600 Frequency [MHz] 26 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 2.5 GHz 2.6 GHz 2.7 GHz 20 21 22 23 Pout [dBm] 24 25 Figure 6. EVM Power Sweep at Vcc = 3.3 V and +85 C over Frequency 26 Gain Frequency Sweep (Vcc = 3.0 to 5.0 V) Tambient = 25 C and Pout = 25 dBm Gain Frequency Sweep (Tambient = -30 C to +85 C) Vcc = 3.3 V and Pout = 25 dBm 39 40.00 3V0 3V3 3V6 4V2 5V0 39.00 37 37.00 Gain [dB] Gain [dB] 38.00 -30 C 25 C +85 C 36.00 35.00 34.00 35 33 31 33.00 32.00 2500 2600 Frequency [MHz] 29 2500 2700 Figure 7. Gain Frequency Sweep at 25 C and Pout = 25 dBm over Vcc Gain Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = -30 C and Vcc = 3.3 V 40 40 2.5 GHz 2.6 GHz 2.7 GHz 39 38 37 36 35 36 35 34 33 33 20 21 22 23 24 Pout [dBm] 25 26 2.5 GHz 2.6 GHz 2.7 GHz 20 21 22 23 Pout [dBm] 24 32 20 21 22 23 Pout [dBm] 24 25 Figure 10. Gain Power Sweep at Vcc = 3.3 V and -30 C over Pout Gain Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = +85 C and Vcc = 3.3 V Gain [dB] 37 34 Figure 9. Gain Power Sweep at Vcc = 3.3 V and 25 C over Pout 25 Figure 11. Gain Power Sweep at Vcc = 3.3 V and +85 C over Pout 5 2.5 GHz 2.6 GHz 2.7 GHz 39 Gain [dB] Gain [dB] 38 38 37 36 35 34 33 32 31 30 29 28 2700 Figure 8. Gain Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over Tambient Gain Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = 25 C and Vcc = 3.3V 32 2600 Frequency [MHz] 26 26 0.600 0.580 0.560 0.540 0.520 0.500 0.480 0.460 0.440 0.420 0.400 2500 Total Current Frequency Sweep (Tambient = -30 C to +85 C) Vcc = 3.3 V and Pout = 25 dBm 3V0 3V3 3V6 4V2 5V0 Itotal [A] Itotal [A] Total Current Frequency Sweep (Vcc = 3.0 to 5.0 V) Tambient = 25 C and Pout = 25 dBm 2600 Frequency [MHz] 2700 Figure 12. Total Current Frequency Sweep at 25 C and Pout = 25 dBm over Vcc 0.62 0.62 2.5 GHz 2.6 GHz 2.7 GHz 0.46 0.42 0.34 23 Pout [dBm] 24 25 26 Figure 14. Total Current Power Sweep at 3.3 V and 25 C over Frequency 0.62 2.5 GHz 2.6 GHz 2.7 GHz 0.58 Itotal [A] 0.54 0.5 0.46 0.42 0.38 0.34 0.3 20 21 22 23 Pout [dBm] 24 25 0.30 20 21 22 23 Pout [dBm] 24 25 Figure 15. Total Current Power Sweep at 3.3 V and -30 C over Frequency Total Current Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = +85 C and Vcc = 3.3 V 26 Figure 16. Total Current Power Sweep at 3.3 V and +85 C over Frequency 6 0.42 0.34 22 2.5 GHz 2.6 GHz 2.7 GHz 0.46 0.38 21 Total Current Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = -30 C and Vcc = 3.3 V 0.50 0.38 20 2700 0.54 0.50 0.30 2600 Frequency [MHz] 0.58 Itotal [A] Itotal [A] 0.54 -30 C 25 C +85 C Figure 13. Total Current Frequency Sweep at 3.3 V and Pout = 25 dBm over Tambient Total Current Power Sweep (Freq = 2.5 to 2.7 GHz) Tambient = 25 C and Vcc = 3.3 V 0.58 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 0.40 2500 26 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Vcc = 3.3 V and Tambient = 25 C WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Vcc = 3.6 V and Tambient = 25 C 30 30 Spec 2.5 GHz 2.6 GHz 2.7 GHz 20 10 Pout [dBm/MHz] Pout [dBm/MHz] 10 0 -10 -20 -30 0 -10 -20 -30 -40 -40 -50 -50 -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 -60 -25.00 25.00 Figure 17. SEM Frequency Sweep at Vcc = 3.3 V and 25 C (2 dB Post-PA loss assumed) 25.00 0 -10 -20 -30 10 0 -10 -20 -30 -40 -40 -50 -50 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 -60 -25.00 25.00 Figure 19. SEM Frequency Sweep at Vcc = 4.2 V and 25 C (2 dB Post-PA loss assumed) Spec 3V0 3V3 3V6 4V2 5V0 20 Pout [dBm/MHz] Pout [dBm/MHz] 10 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 20. SEM at Vcc = 3.3 V, 25 C and 2.5 GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Freq = 2.6 GHz and Tambient = 25 C WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Freq = 2.7 GHz and Tambient = 25 C 30 30 10 0 -10 -20 -30 10 0 -10 -20 -30 -40 -40 -50 -50 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 21. SEM at Vcc = 3.3 V, 25 C and 2.6 GHz over Vcc (2 dB Post-PA loss assumed) Spec 3V0 3V3 3V6 4V2 5V0 20 Pout [dBm/MHz] Spec 3V0 3V3 3V6 4V2 5V0 20 Pout [dBm/MHz] 15.00 30 Spec 2.5 GHz 2.6 GHz 2.7 GHz 20 7 -5.00 5.00 freq_offset [MHz] WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Freq = 2.5 GHz and Tambient = 25 C 30 -60 -25.00 -15.00 Figure 18. SEM Frequency Sweep at Vcc = 3.6 V and 25 C (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout = 25 dBm, Vcc = 4.2 V and Tambient = 25 C -60 -25.00 Spec 2.5 GHz 2.6 GHz 2.7 GHz 20 -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 22. SEM at Vcc = 3.3 V, 25 C and 2.7 GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = -30 C WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = -30 C 30 30 20 Pout [dBm/MHz] 10 0 -10 -20 -30 10 0 -10 -20 -30 -40 -40 -50 -50 -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 -60 -25.00 25.00 Figure 23. SEM at Vcc = 3.3 V, -30 C and 2.5 GHz over Vcc (2 dB Post-PA loss assumed) -20 -30 10 Pout [dBm/MHz] 0 -10 0 -10 -20 -30 -40 -40 -50 -50 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 -60 -25.00 25.00 Figure 25. SEM at Vcc = 3.3 V, -30 C and 2.7 GHz over Vcc (2 dB Post-PA loss assumed) -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 26. SEM at Vcc = 3.3 V, 25 C and 2.5 GHz over Vcc (2 dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 25 C WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 25 C 30 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 10 Pout [dBm/MHz] 25.00 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 0 -10 -20 -30 10 0 -10 -20 -30 -40 -40 -50 -50 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 27. SEM at Vcc = 3.3 V, 25 C and 2.6 GHz over Vcc (2 dB Post-PA loss assumed) Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 Pout [dBm/MHz] Pout [dBm/MHz] 10 8 15.00 30 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 -60 -25.00 -5.00 5.00 freq_offset [MHz] WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 25 C 30 30 -15.00 Figure 24. SEM at Vcc = 3.3 V, -30 C and 2.6 GHz over Vcc (2 dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = -30 C -60 -25.00 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 Pout [dBm/MHz] Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 28. SEM at Vcc = 3.3 V, 25 C and 2.7 GHz over Vcc (2 dB Post-PA loss assumed) 30 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 10 Pout [dBm/MHz] WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 85 C 0 -10 -20 -30 -20 -30 -50 -50 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 85 C 30 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 10 Pout [dBm/MHz] 0 -10 -40 Figure 29. SEM at Vcc = 3.3 V, +85 C and 2.5 GHz over Vcc (2 dB Post-PA loss assumed) 0 -10 -20 -30 -40 -50 -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 31. SEM at Vcc = 3.3 V, +85 C and 2.7 GHz over Vcc (2 dB Post-PA loss assumed) 9 10 -40 -60 -25.00 Spec 25 dBm 24 dBm 23 dBm 22 dBm 21 dBm 20 Pout [dBm/MHz] 30 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 85 C -60 -25.00 -15.00 -5.00 5.00 freq_offset [MHz] 15.00 25.00 Figure 30. SEM at Vcc = 3.3 V, +85 C and 2.6 GHz over Vcc (2 dB Post-PA loss assumed) Evaluation Board Description Table 4. Pin Description: Recommended turn on sequence Top Pin No. Function Bottom Pin No. Function 1 VCC2 2 VCC2 Apply VCC1 and VCC2 3 B_SPLY 4 GND Apply BSPLY 5 VCC1 6 GND Apply BCTRL 7 NC 8 GND Apply BSW 9 PAMOD 10 GND For HPM Apply PAMOD HI 11 NC 12 GND For LPM Apply PAMOD LO 13 NC 14 B_SW Apply RF Input not to exceed 15 dBm 15 B_CTRL 16 GND 17 NC 18 GND 19 NC 20 GND Turn off in reverse order Table 5. Typical Test Conditions: Pin HPM LPM VCC1, 2 3.3 V 3.3 V Supply Voltage PAMOD 1.8 V 0V Low Power Mode B_SPLY 3.3 V 3.3 V Bias Voltage B_CTRL 2.8 V 2.8 V Bias Control B_SW 1.8 V 1.8 V PA Enable Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply voltages, but B_CTRL needs to be a regulated voltage which is optimized for 2.8 V at Vcc of 3.3 V. Other bias points are described under flexible BCTRL optimization section. Demoboard Top Pins 19 17 15 13 11 9 7 5 3 1 10 Demoboard Bottom Pins 2 4 6 8 10 12 14 16 18 20 Application Circuit MGA-22103 Vdd1 Vdd2 47 MF 10 MF 0.1 MF 10 MF 100 pF VCC2 13 GND 14 VCC1 15 GND 16 100 pF RF In 1 RF In GND 12 2 GND RF Out 11 3 GND GND 10 RF Out BCTRL 4 BCTRL 100 pF 8 NC 7 PAMOD 100 pF 6 BSW 100 pF 5 BSPLY 0.1 MF NC 9 100 pF BSPLY BSW PAMOD Using 3.3 V or 5 V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL Vbat R1 R2 Vcc1 Vcc2 BSPLY 3.3 V Example: VBCTRL = R2 *VBATT R1 + R2 10 M 2.85 V = *3.3 V R1 + 10 M R1 = 1. 58 M R2 = 10 M 11 BCTRL Notes: BCTRL regulates the device current, thus R1 and R2 should have good tolerance rating. If available, a voltage regulator is the preferred method of bias. In this example we set R2 at 10 MOhm and solve for R1 with simple voltage divider equation. Use high resistance values to limit leakage current. Given: 5.0 V Example: VBCTRL = 2.85 V VBCTRL = VBAT = 3.3 V R2 = 10 M R1 = ? R2 *VBATT R1 + R2 10 M 2.85 V = *5.0 V R1 + 10 M R1 = 7.54 M R2 = 10 M Given: VBCTRL = 2.85 V VBAT = 5.0 V R2 = 10 M R1 = ? Land Pattern 2 11 RFOUT 4 5 6 7 8 NC BCTRL PAMOD 3 BSW GND 17 GND 10 GND 9 NC 0.300.10 0.100.10 Top view through package RFIN 1 GND 2 GND 3 BCTRL 4 5 6 7 8 Figure 33. Recommended soldermask opening 0.200.10 VCC2 1.500.10 2 GND 3 BCTRL 4 17 GND BSPLY 5 0.150.10 13 6 7 12 GND 11 RFOUT 10 GND 9 NC Top view through package Figure 34. Package dimensions 12 Notes: 1. All units are in millimeters 2. Package is symmetrical 8 NC GND PAMOD 1 BSW 3.000.10 1.500.10 RFIN 14 0.300.10 0.300.10 GND VCC1 GND 3.000.10 15 0.550.10 GND 11 RFOUT 10 GND 9 NC Top view through package Figure 32. Recommended footprint 16 VCC2 17 GND 12 0.400.10 0.100.10 GND 0.650.10 GND 13 NC 12 14 PAMOD 1 15 BSW RFIN 16 BSPLY 13 1.600.10 3.000.10 14 GND GND 0.200.10 15 BSPLY 3.000.10 1.500.10 16 0.550.10 1.500.10 VCC1 3.000.10 VCC2 GND VCC1 GND 3.000.10 Handling and Storage Typical SMT Reflow Profile for Maximum Temperature = 260+0/-5 C tp TP CRITICAL ZONE TL TO TP RAMP UP TEMPERATURE TL tL Tsmax Tsmin ts PREHEAT RAMP DOWN 25 t 25 C TO PEAK TIME Profile Feature Sn-Pb Solder Pb-Free Solder Average ramp-up rate (TL to TP) 3C/sec max 3C/sec max Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (mon to max) (ts) 100 C 150 C 60-120 sec 100 C 150 C 60-180 sec Tsmax to TL - Ramp-up Rate 3C/sec max Time maintained above: - Temperature (TL) - Time (TL) 183 C 60-150 sec 217 C 60-150 sec Peak temperature (Tp) 240 +0/-5 C 260 +0/-5 C Time within 5 C of actual Peak Temperature (tp) 10-30 sec 10-30 sec Ramp-down Rate 6C/sec max 6C/sec max Time 25 C to Peak Temperature 6 min max 8 min max MGA-22103 Part Number Ordering Information Part Number Devices Per Container Container MGA-22103-BLKG 100 7" Reel MGA-22103-TR1G 3000 13" Reel 13 Tape and Reel Information For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2011 Avago Technologies. All rights reserved. AV02-2812EN - June 28, 2011