MGA-22103
2.5-2.7 GHz WiMAX Power Ampli er Module
Data Sheet
Description
Avago Technologies MGA-22103 power ampli er module
is designed for mobile and  xed wireless data applications
in the 2.5 to 2.7 GHz frequency range. The aggressive gain
shape limits the noise injected into radio receivers co-
located in the same device. The PA is optimized for IEEE
802.16 WiMAX modulation but can be used for any high
linearity applications. The PA exhibits  at gain and good
match while providing linear power e ciency to meet
stringent mask conditions. It utilizes Avago Technologies
proprietary GaAs Enhancement-mode pHEMT technology
for superior performance across voltage and temperature
levels.
The MGA-22103 is packaged in a 3 x 3 x 1 mm package for
space-constrained applications.
Functional Block Diagram
Features
 Advanced GaAs E-pHEMT
 50 all RF ports
25dB gain step in low power mode with reduced Idsq
 Integrated CMOS compatible pins for shutdown and
low power mode
 3 to 5 V supply
 Adjustable bias current with BCTRL pin
 Small size: 3 x 3 x 1 mm
 Stable under all loads or conditions
 -40° C to +85° C operation
At 2.5 GHz (BCTRL = 2.8 V)
 Gain of 34 dB
 PAE of 21% at SEM compliant Pout = 25 dBm
 Meets 802.16 masks at 25 dBm Pout , 16 QAM WiMAX
with 3.3 V and 437 mA
 16 QAM WiMAX EVM < -32 dB (2.5%) at 25 dBm
 Low power Idd, 85 mA at Pout = 0 dBm
Applications
 Portable WiMAX applications with stringent coexistence
requirements
Package Diagram
GND
16
GND
16
ISMN
BIAS NETWORK
OMN
VCC1
15
VCC2
13
GND
14
BSPLY
5
BSW
6
N/C
8
PMOD
7
RFIN
1
GND
2
GND
3
BCTRL
4
GND
12
RFOUT
11
GND
10
N/C
9
NC
4
BSPLY
5
BSW
PAMOD
67
NC
RFOUT
GND
GND
1
3
16
GND
VCC2
VCC1
17
14
GND
GND
12
10
11
GND
GND
BCTRL
RFIN
5
15
1
1
3
1
6 7 8
19
10
11
12
1314
1
2
4
2
Electrical Speci cations
Absolute Minimum and Maximum Ratings
Table 1. Minimum and Maximum Ratings
Parameter Speci cations
CommentsDescription Pin Min. Max. Unit
Supply Voltage VCC1
VCC2
5.5 V
Bias Supply BSPLY 3 5.5 V
Bias Control BCTRL 1.65 5.5 V
Bias ON/OFF BSW 1.65 5.5 V
Mode Control PAMOD 1.65 5.5 V
RF Input Power RFIN 15 dBm Using 16 QAM ¾
MSL MSL3
Channel Temperature 150 °C
Storage Temperature -65 150 °C
Table 2. Recommended Operating Range
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage VCC1
VCC2
3 3.3 5 V
Bias Supply BSPLY 3 3.3 5 V
13 mA
Bias Control BCTRL 2.75 2.8 2.85 V
0.7 A
Bias ON/OFF BSW 1.65 1.8 3.3 V
7uA
Mode Control PAMOD 1.65 1.8 3.3 V
17 A
RF Output Power RFOUT 25 27 dBm Using 16 QAM ¾
Frequency Range 2.5 2.7 GHz
Thermal Resistance, ch-b 23.4 °C/W Channel to board
Case Temperature -40 +85 °C
3
WiMAX (802.16e) Electrical Speci cations
All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3 V, BCTRL = 2.8 V, Tc = 25° C, 50 at all ports. Unless
otherwise speci ed, all data is taken with OFDM 16-QAM ¾ convolutional coding modulated signal per IEEE 802.16e
with 10 MHz BW operating over the BW of 2.5 GHz to 2.7 GHz.
Table 3. RF Electrical Characteristics
Parameter
Performance
Unit CommentsMin. Typical Max.
Input Return Loss -10 dB
Gain Flatness 1 dB Over any 10 MHz
Gain Variation (VCC) -1 1 dB 3 V to 5 V
High
Power
Mode
EVM -34 -30 dB Vcc = 3.3 V
-36 -32 Vcc = 3.6 V
SEM-A @ 5.05 MHz -20 -13 dBm/100 kHz IBW = 100 kHz
SEM-B @ 6.5 MHz -20 -13 dBm/MHz IBW = 1 MHz
SEM-C @ 10.5 MHz -26 -19
SEM-D @11.5 MHz -27 -25
SEM-E @15.5 MHz -37 -29.5
SEM-F @ 20.5 MHz -40 -37
Pout (SEM Compliant) +25 dBm 802.16e
Total DC Current 437 mA Pout = 25 dBm
Gain 31 34 37 dB
Low
Power
Mode
EVM -36 dB Pout = 0 dBm
Gain Step 18 23 24 dB
Total DC Current 85 mA Pout = 0 dBm
P1dB 31 dBm CW Single Tone
Psat 32 dBm CW Single Tone
2fo -36 dBm/MHz
Settling Time 0.2 0.5 S
Icc leakage current 10 40 AMax current speci ed at 85° C
Noise Power in Cell Band -146 dBm/Hz
Noise Power in GPS Band -149 dBm/Hz
Noise Power in PCS -144 dBm/Hz
4
Figure 1. EVM Frequency Sweep at 25° C and Pout = 25 dBm over Vcc Figure 2. EVM Frequency Sweep at 25° C and Pout = 26 dBm over Vcc
Figure 3. EVM Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over
Tambient
Figure 4. EVM Power Sweep at Vcc = 3.3 V and 25° C over Frequency
Figure 5. EVM Power Sweep at Vcc = 3.3 V and -30° C over Frequency Figure 6. EVM Power Sweep at Vcc = 3.3 V and +85° C over Frequency
Selected performance plots
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3V
EVM Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 26 dBm
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
-45.00
-40.00
-35.00
-30.00
-25.00
-20.00
2500 2600 2700
Frequency [MHz]
EVM [dB]
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
2500 2600 2700
Frequency [MHz]
EVM [dB]
-40.00
-38.00
-36.00
-34.00
-32.00
-30.00
-28.00
-26.00
-24.00
-22.00
-20.00
2500 2600 2700
Frequency [MHz]
EVM [dB]
-48
-46
-44
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
20 21 22 23 24 25 26
Pout [dBm]
EVM [dB]
-44
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
20 21 22 23 24 25 26
Pout [dBm]
EVM [dB]
-44
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
20 21 22 23 24 25 26
Pout [dBm]
3V0
3V3
3V6
4V2
5V0
EVM Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
EVM [dB]
3V3
3V6
4V2
5V0
EVM Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
EVM Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
-30° C
25° C
+85° C
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
5
Figure 7. Gain Frequency Sweep at 25° C and Pout = 25 dBm over Vcc Figure 8. Gain Frequency Sweep at Vcc = 3.3 V and Pout = 25 dBm over
Tambient
Figure 9. Gain Power Sweep at Vcc = 3.3 V and 25° C over Pout Figure 10. Gain Power Sweep at Vcc = 3.3 V and -30° C over Pout
Figure 11. Gain Power Sweep at Vcc = 3.3 V and +85° C over Pout
Gain Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3V
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
Gain Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
Gain Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
3V0
3V3
3V6
4V2
5V0
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
2500 2600 2700
Frequency [MHz]
Gain [dB]
29
31
33
35
37
39
2500 2600 2700
Frequency [MHz]
Gain [dB]
32
33
34
35
36
37
38
39
40
20 21 22 23 24 25 26
Pout [dBm]
Gain [dB]
32
33
34
35
36
37
38
39
40
20 21 22 23 24 25 26
Pout [dBm]
Gain [dB]
28
29
30
31
32
33
34
35
36
37
38
20 21 22 23 24 25 26
Pout [dBm]
Gain [dB]
-30° C
25° C
+85° C
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
6
Figure 12. Total Current Frequency Sweep at 25° C and Pout = 25 dBm over Vcc Figure 13. Total Current Frequency Sweep at 3.3 V and Pout = 25 dBm over
Tambient
Figure 14. Total Current Power Sweep at 3.3 V and 25° C over Frequency Figure 15. Total Current Power Sweep at 3.3 V and -30° C over Frequency
Figure 16. Total Current Power Sweep at 3.3 V and +85° C over Frequency
Total Current Frequency Sweep (Vcc = 3.0 to 5.0 V)
Tambient = 25° C and Pout = 25 dBm
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = 25° C and Vcc = 3.3 V
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = +85° C and Vcc = 3.3 V
Total Current Frequency Sweep (Tambient = -30° C to +85° C)
Vcc = 3.3 V and Pout = 25 dBm
Total Current Power Sweep (Freq = 2.5 to 2.7 GHz)
Tambient = -30° C and Vcc = 3.3 V
0.400
0.420
0.440
0.460
0.480
0.500
0.520
0.540
0.560
0.580
0.600
2500 2600 2700
Frequency [MHz]
Itotal [A]
0.40
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
2500 2600 2700
Frequency [MHz]
Itotal [A]
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout [dBm]
Itotal [A]
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout [dBm]
Itotal [A]
0.3
0.34
0.38
0.42
0.46
0.5
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout [dBm]
Itotal [A]
3V0
3V3
3V6
4V2
5V0
-30° C
25° C
+85° C
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
2.5 GHz
2.6 GHz
2.7 GHz
7
Figure 17. SEM Frequency Sweep at Vcc = 3.3 V and 25° C (2 dB Post-PA loss
assumed)
Figure 18. SEM Frequency Sweep at Vcc = 3.6 V and 25° C (2dB Post-PA loss
assumed)
Figure 19. SEM Frequency Sweep at Vcc = 4.2 V and 25° C (2 dB Post-PA loss
assumed)
Figure 20. SEM at Vcc = 3.3 V, 25° C and 2.5 GHz over Vcc (2dB Post-PA loss
assumed)
Figure 21. SEM at Vcc = 3.3 V, 25° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 22. SEM at Vcc = 3.3 V, 25° C and 2.7 GHz over Vcc (2dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 3.3 V and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 4.2 V and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Vcc = 3.6 V and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.5 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.6 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Pout = 25 dBm, Freq = 2.7 GHz and Tambient = 25° C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
Spec
2.5 GHz
2.6 GHz
2.7 GHz
Spec
2.5 GHz
2.6 GHz
2.7 GHz
Spec
2.5 GHz
2.6 GHz
2.7 GHz
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
8
Figure 23. SEM at Vcc = 3.3 V, -30° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 24. SEM at Vcc = 3.3 V, -30° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 25. SEM at Vcc = 3.3 V, -30° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 26. SEM at Vcc = 3.3 V, 25° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 27. SEM at Vcc = 3.3 V, 25° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 28. SEM at Vcc = 3.3 V, 25° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 25° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = -30° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = -30° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = -30° C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
9
Figure 29. SEM at Vcc = 3.3 V, +85° C and 2.5 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 30. SEM at Vcc = 3.3 V, +85° C and 2.6 GHz over Vcc (2 dB Post-PA loss
assumed)
Figure 31. SEM at Vcc = 3.3 V, +85° C and 2.7 GHz over Vcc (2 dB Post-PA loss
assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.5 GHz and Tambient = 85° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.7 GHz and Tambient = 85° C
WiMAX Spectrum Emission Mask, 802.16e (16QAM ¾)
Vcc = 3.3 V, Freq = 2.6 GHz and Tambient = 85° C
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
-60
-50
-40
-30
-20
-10
0
10
20
30
-25.00 -15.00 -5.00 5.00 15.00 25.00
freq_offset [MHz]
Pout [dBm/MHz]
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
Spec
25 dBm
24 dBm
23 dBm
22 dBm
21 dBm
10
Evaluation Board Description
Table 4. Pin Description:
Top Pin No. Function Bottom Pin No. Function
1 VCC2 2 VCC2
3 B_SPLY 4 GND
5 VCC1 6 GND
7 NC 8 GND
9 PAMOD 10 GND
11 NC 12 GND
13 NC 14 B_SW
15 B_CTRL 16 GND
17 NC 18 GND
19 NC 20 GND
Recommended turn on sequence
 Apply VCC1 and VCC2
 Apply BSPLY
 Apply BCTRL
 Apply BSW
 For HPM Apply PAMOD HI
 For LPM Apply PAMOD LO
 Apply RF Input not to exceed 15 dBm
Turn o in reverse order
Table 5. Typical Test Conditions:
Pin HPM LPM
VCC1, 2 3.3 V 3.3 V Supply Voltage
PAMOD 1.8 V 0 V Low Power Mode
B_SPLY 3.3 V 3.3 V Bias Voltage
B_CTRL 2.8 V 2.8 V Bias Control
B_SW 1.8 V 1.8 V PA Enable
Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply voltages, but B_CTRL
needs to be a regulated voltage which is optimized for 2.8 V at Vcc of 3.3 V. Other bias points
are described under  exible BCTRL optimization section.
Demoboard Top Pins Demoboard Bottom Pins
810 12 14 16 18 20
246
13 11 9 7 5 3 119 17 15
11
Application Circuit MGA-22103
1 RF In
2 GND
3 GND
4 BCTRL
GND 12
RF Out 11
GND 10
NC 9
BCTRL
RF In
RF Out
100 pF
GND 16
VCC1 15
GND 14
VCC2 13
5 BSPLY
6 BSW
7 PAMOD
8 NC
100 pF
BSPLY BSW PAMOD
Vdd1
100 pF
Vdd2
100 pF
100 pF
0.1 MF
100 pF
0.1 MF10 MF
47 MF
10 MF
Using 3.3 V or 5 V Supply and connecting Vcc1, Vcc2, BSLPY and BCTRL
Notes:
BCTRL regulates the device current, thus R1 and R2 should have good
tolerance rating. If available, a voltage regulator is the preferred method
of bias.
In this example we set R2 at 10 MOhm and solve for R1 with simple
voltage divider equation. Use high resistance values to limit leakage
current.
Vbat
Vcc1 Vcc2 BSPLY
R1
R2
BCTRL
VBCTRL = *VBATT
R2
R1 + R2
3.3 V Example:
2.85 V = *3.3 V
10 M
R1 + 10 M
R1 = 1. 58 M
R2 = 10 M
VBCTRL = 2.85 V
VBAT = 3.3 V
R2 = 10 M
R1 = ?
Given:
VBCTRL = *VBATT
R2
R1 + R2
5.0 V Example:
2.85 V = *5.0 V
10 M
R1 + 10 M
R1 = 7.54 M
R2 = 10 M
VBCTRL = 2.85 V
VBAT = 5.0 V
R2 = 10 M
R1 = ?
Given:
12
Land Pattern
Figure 32. Recommended footprint Figure 33. Recommended soldermask opening
Figure 34. Package dimensions
Notes:
1. All units are in millimeters
2. Package is symmetrical
3.00±0.10
1.50±0.10
Top view through package
3.00±0.10
1.50±0.10
0.55±0.10
0.30±0.10
0.20±0.10
0.10±0.10
NCBCTRL94
BSPLY
5
BSW
PAMOD
67
NC
8
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
3.00±0.10
3.00±0.10
0.30±0.10
1.50±0.10
0.15±0.10
1.50±0.10
Top view through package
0.30±0.100.20±0.10
NC
94
5678
RFOUT
15
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND
12
10
11
GND
GND
BCTRL
RFIN
BSPLY
BSW
PAMOD
NC
3.00±0.10
Top view through package
3.00±0.10
0.65±0.10
0.40±0.10
1.60±0.10
0.55±0.10
0.10±0.10
NCBCTRL94
5678
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
BSPLY
BSW
PAMOD
NC
13
Handling and Storage
Typical SMT Re ow Pro le for Maximum Temperature = 260+0/-5° C
Pro le Feature Sn-Pb Solder Pb-Free Solder
Average ramp-up rate (TL to TP) 3°C/sec max 3°C/sec max
Preheat
Temperature Min (Tsmin)
Temperature Max (Tsmax)
Time (mon to max) (ts)
100° C
150° C
60-120 sec
100° C
150° C
60-180 sec
Tsmax to TL
– Ramp-up Rate 3°C/sec max
Time maintained above:
– Temperature (TL)
– Time (TL)
183° C
60-150 sec
217° C
60-150 sec
Peak temperature (Tp) 240 +0/-5° C 260 +0/-5° C
Time within 5° C of actual Peak Temperature (tp) 10-30 sec 10-30 sec
Ramp-down Rate 6°C/sec max 6°C/sec max
Time 25° C to Peak Temperature 6 min max 8 min max
TIME
TEMPERATURE
tp
t 25° C TO PEAK
ts
PREHEAT
TL
TP
Tsmax
Tsmin
tL
CRITICAL ZONE
TL TO TP
RAMP UP
RAMP DOWN
25
MGA-22103 Part Number Ordering Information
Part Number
Devices Per
Container Container
MGA-22103-BLKG 100 7” Reel
MGA-22103-TR1G 3000 13” Reel
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.
AV02-2812EN - June 28, 2011
Tape and Reel Information