May 2003 1
© 20 03 Actel Corpor ati on *See Actel’s website for the latest version of the datasheet.
v3.0
ProASICPLUS Flash Family FPGAs TM
Features and Benefits
High Capacity
75,000 to 1 million System Gates
27k to 198kbits of Two-Port SRAM
66 to 712 User I/Os
Reprogrammable Flash Technology
•0.22µ 4LM Fl a sh-b a s ed CMO S Proc e ss
Live at Power-Up, Single-Chip Solution
No Configuration Device Required
Retains Programmed Design duri ng Power-Down/
Power-Up Cyc les
Performance
3.3V, 32-bit PC I (up to 50 MHz)
Two Integrated PLLs
External System Performance up to 150 MHz
Secure Programming
The Industry’s Most Effective Security Key (FlashLock)
Prevents Read Back o f Programming Bitstream
Low Power
Low Impeda nce Flash Switches
Segmented H ierarchical Routing Structure
Small, Efficient, Configurable (Combinatorial or
Sequential) Logic Cells
High Performance Routing Hierarchy
Ul tra-Fast Local and Long-Line N e twork
High Speed Very Long-Line Network
High Performance, Low Skew, Splittable Global Network
100% Routability and Utilization
I/O
Schmitt-Trigger Option on Every Input
Mixed 2.5V/3.3V Support with Individually-Selectable
Voltage and Slew Rate
Bidirectional Global I/Os
Compliance with PCI Specification Revision 2.2
Bound ar y-Sca n Te st IEEE Std. 114 9.1 (JTA G) Compli a nt
Pin Compatible Packages across ProASICPLUS Fa mi ly
Unique Clock Conditioning Circuitry
PLL with Fl ex ib le Pha se , M ul tip ly / Div id e and De l ay
Capabilitie s
Internal and/or External Dynamic PLL Configuration
Two LVPECL Differential Pairs for Clock or Data Inputs
Standard FPGA and ASIC Design Flow
Flexibility with Choice of Industry-Standard Frontend
Tools
Effi c ient De s ign th rou gh Fr o nt end Tim in g and Gate
Optimization
ISP Support
In-System Programming (ISP) via JTAG Port
SRAMs and FIFOs
ACTgen Netlist G eneration Ensures Optimal Usage of
Embedded Memory B locks
24 SRAM and FIFO Configurations with Synchronous and
Asynchronous Operation up to 150MHz (typical)
ProASICPLUS Product Profile
Device APA075 APA150 APA300 APA450 APA600 APA750 APA1000
Maximum System Gates 75,000 150,000 300,000 450,000 600,000 750,000 1,000,000
Maximum Tiles (Registers) 3,072 6,144 8,192 12,288 21,504 32,768 56,320
Embedd ed RAM Bits (k=1,024 bits) 27k 36k 72k 108k 126k 144k 198k
Embedd ed RAM Blocks (256x9) 12 16 32 48 56 64 88
LVPECL 222 2 2 22
PLL 222 2 2 22
Global N e twork s 444 4 4 44
Maximum Clo cks 24 32 32 48 56 64 88
Maximum User I/Os 158 242 290 344 454 562 712
JTAG ISP Yes Yes Yes Yes Yes Yes Yes
PCI Yes Yes Yes Yes Yes Yes Yes
Package (by pin count)
TQFP
PQFP
PBGA
FBGA
100, 144
208
144
100
208
456
144, 256
208
456
144, 256
208
456
144, 256, 484
208
456
256, 484, 676
208
456
676, 896
208
456
896, 1152
ProASICPLUS Flash Family FPGAs
2v3.0
General Description
The ProASICPLUS family of devices, Actel’s second
generation Flash FPGAs, offers enhanced performance over
Actel’s ProASIC family. It combines the advantages of ASICs
with the benefits of programmable devices through
nonvolatile Flash technology. This enables engineers to
create high-density systems using existing ASIC or FPGA
design flows and tools. In addition, the ProASICPLUS family
offers a unique clock conditioning circuit based on two
on-board phase-locked loops (PLLs). The family offers up to
1 million system gates, supported with up to 198kbits of
2-port SRAM and up to 712 user I/Os, all providing 50 MHz
PCI performance.
Advantages to the designer extend beyond performance.
Unlike SRAM-based FPGAs, four levels of routing hierarchy
simplify routing, while the use of Flash technology allows all
fu nc t i onal i ty t o be l i v e at p ow e r - up . No ex t e rn a l Bo o t P RO M
is required to support device programming. While on-board
security mechanisms prevent all access to the program
information, reprogramming can be performed in-system to
support future design iterations and field upgrades. The
device’s architecture mitigates the complexity of ASIC
migration at higher user volume. This makes ProASICPLUS a
cost-effective solution for applications in the networking,
communications, computing, and avionics markets.
The ProASICPLUS family achieves its nonvolatility and
reprogrammability through an advanced Flash-based
0.22µm LVCMOS process with four-layers of metal. Standard
CMOS design techniques are used to implement logic and
control functions, including the PLLs and LVPECL inputs.
This results in predictable performance fully compatible
with gate arrays.
The ProASICPLUS architecture provides granularity
comparable to gate arrays. The device core consists of a
Sea-of-Tiles. Each tile can be configured as a flip-flop,
latch, or 3-input/1-output logic function by programming the
appropriate Flash switches. The combination of fine
granularity, flexible routing resources, and abundant Flash
switches allow 100% utilization and over 95% routability for
highly congested designs. Tiles and larger functions are
interconnected through a 4-level routing hierarchy.
Embedded 2-port SRAM blocks with built-in FIFO/RAM
control logic can have user-defined depth and width. Users
can also select programming for synchronous or
asynchronous operation, as well as parity generations or
checking.
The unique clock conditioning circuitry in each device
includes two clock conditioning blocks. Each block provides
a PLL core, delay lines, phase shifts (0°, 90°, 180°, 270°),
and clock multipliers/dividers, as well as the circuitry
needed to provide bidirectional access to the PLL. The PLL
block contains four programmable frequency dividers,
which allow the incoming clock signal to be divided by a
wide range of factors from 1 to 64. The clock conditioning
circuit also delays or advances the incoming reference clock
up to 8 ns (in increments of 0.25 ns). The PLL can be
configured inter nally or externally during operation wit hout
redesigning or reprogramming the part. In addition to the
PLL, there are two LVPECL differential input pairs to
accommodate high speed clock and data inputs.
To support customer needs for more comprehensive, lower
cost board-level testing, Actel’s ProASICPLUS devices are
fully compatible with IEEE Standard 1149.1 for test access
port and boundary-scan test architecture. For more
information concerning the Flash FPGA implementation,
please refer to the “Boundary Scan (JTAG)” section on
page13.
ProASICPLUS devices are available in a variety of
high-performance plastic packages. Those packages and the
performance features discussed above are described in
more detail in the following sections.
v3.0 3
ProASICPLUS Flash Family FPGAs
Ordering Information
Plastic Device Resources
APA1000 FG
_
Part Number
Speed Grade
Blank =Standard Speed
F
F
= 20% Slower than Standard
P ackage Type
PQ =Plastic Quad Flat Pack (0.5mm pitch)
TQ =Thin Quad Flat Pack (1.4mm pitch)
FG =Fine Pitch Ball Grid Array (1.0mm pitch)
BG =Plastic Ball Grid Array (1.27mm pitch)
1152 I
Package Lead Count
Application (Ambient Temperature Range)
Blank = Commercial (0 to +70˚ C)
I = Industrial (-40 to +85˚ C)
PP = Pre-production
ES = Engineering Silicon (Room Temperature Only)
150,000 Equivalent System Gates
APA150 =
75,000 Equivalent System Gates
APA075 =
APA450
APA600
APA750
APA1000
450,000 Equivalent System Gates
600,000 Equivalent System Gates
750,000 Equivalent System Gates
1,000,000 Equivalent S
y
stem Gates
APA300
300,000 Equivalent System Gates
=
=
=
=
=
User I/Os*
Device TQFP
100-Pin TQFP
144-Pin PQFP
208-Pin PBGA
456-Pin FBGA
144-Pin FBGA
256-Pin FBGA
484-Pin FBGA
676-Pin FBGA
896-Pin FBGA
1152-Pin
APA075 66 107 158 100
APA150 66 158 242 100 186
APA300 158 290 100 186
APA450 158 344 100 186 344
APA600 158 356 186 370 454
APA750 158 356 454 562
APA1000 158 356 642 712
Package De fin ition s
TQFP = Thin Quad Flat Pack, PQFP = Plastic Quad Flat Pack, PBGA = Plastic Ball Grid Array, FBGA = Fine Pit ch Ball Grid Array
*Each pair of PECL I/Os w ere counted as one user I/O.
ProASICPLUS Flash Family FPGAs
4v3.0
Product Availability
Speed Grade Application
Std. F* C I
APA075 Device
100-Pin Thin Quad Flat Pack (TQF P) ✔✔
144-Pin Thin Quad Flat Pack (TQFP) PP PP PP PP
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
APA150 Device
100-Pin Thin Quad Flat Pack (TQF P) ✔✔
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
APA300 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
APA450 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
144-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
484-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
APA600 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
256-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
484-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
676-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
APA750 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
676-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
896-Pin Plastic Ball Grid Array (FBGA) ✔✔
APA1000 Device
208-Pin Plastic Quad Flat Pack (PQFP) ✔✔
456-Pin Plastic Ball Grid Array (PBGA) ✔✔
896-Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
1152- Pin Fine Pitch Ball Grid Array (FBGA) ✔✔
Note: *–F part s are only available as com mercial temperature devices.
Applications: C = Commercial Availability: =Available
I = Industrial PP= Product Planned
v3.0 5
ProASICPLUS Flash Family FPGAs
ProASICPLUS Architecture
The proprietary ProASICPLUS architecture provides
granularity comparable to gate arrays.
The ProASICPLUS device core consists of a Sea-of-Tiles
(Figure 1). Each tile can be configured as a 3-input logic
function (e.g., NAND gate, D-Flip-Flop, etc.) by
programming the appropriate Flash switch
interconnections (Figure2 on page 6 and Figure 3 on
page6). Tiles and larger functions are connected with any
of the four levels of routing hierarchy. Flash switches are
distributed throughout the device to provide nonvolatile,
reconfigurable interconnect programming. Flash switches
are programmed to connect signal lines to the appropriate
logic cell inputs and outputs. Dedicated high-performance
lines are connected as needed for fast, low-skew global
signal distribution throughout the core. Maximum core
utilizati on is possible for virtually any design.
ProASICPLUS devices also contain embedded two-port
SRAM blocks with built-in FIFO/RAM control logic.
Programming options include synchronous or asynchronous
operation, two-port RAM configurations, user defined depth
and width, and parity generation or checking. Please see
the “Embedded Memory Configurat ions” section on page21
for more informatio n.
Flash Switch
Unlike SRAM FPGAs, ProASICPLUS uses a live on power-up
ISP Flash switch as its programming element.
In the ProASICPLUS Flash switch , two transistors share the
floating gate, which stores the programming information.
On e is the sensing transistor, which is only used for writing
and verification of the floating gate voltage. The other is the
switching transistor. It can be used in the architecture to
connect/separat e routing nets or to configure logic. It is also
used to erase the floating gate (Figure2 on page 6).
Logic Tile
The logic tile cell (Figure 3 on page 6) has three inputs (any
or all of which can be inverted) and one output (which can
connect to both ultra-fast local and efficient long-line
routing resources). Any three-input, one-output logic
function (except a three-input XOR) can be configured as
one tile. The tile can be configured as a latch with clear or
set or as a flip-flop with clear or set. Thus, the tiles can
flexibly map logic and sequential gates of a design.
Figure 1 The ProASICPLUS Device Arch itecture
256x9 Two-Port SRAM
or FIFO Block
Logic Tile
256x9 Two Port SRAM
or FIFO Block
RAM Block
RAM Block
I/Os
ProASICPLUS Flash Family FPGAs
6v3.0
Routing Resources
The routing structure of ProASICPLUS devices is designed to
provide high performance through a flexible four-level
hierarchy of routing resources: ultra-fast local resources,
efficient long-line resources, high speed very long-line
resources, and high performance global networks.
The ultra-fast local resources are dedicated lines that allow
the output of each tile to connect directly to every input of
the eight surrounding tiles (Figure 4 on page 7).
The efficient long-line resources provide routing for longer
distances and higher fanout connections. These resources
vary in length (spanning 1, 2, or 4 tiles), run both vertically
and horizontally, and cover the entire ProASICPLUS device
(Figure 5 on page7). Each tile can drive signals onto the
efficient long-line resources, which can in turn, access every
input of every tile. Active buffers are inserted automatically
by routing software to limit the loading effects due to
distance and fanout.
The high-speed very long-line resources, which span the
entire device with minimal delay , are used to route very long
or very high fanout nets. (Figure 6 on page 8).
The high-performance global networks are low skew, high
fanout nets that are accessible from external pins or from
internal logic (Figure 7 on page 9). These nets are typically
used to distribute clocks, resets, and other high fanout nets
requiring a minimum skew. The global networks are
implemented as clock trees, and signals can be introduced
at any junction. These can be employed hierarchically with
signals accessing every input on all tiles.
Figure 2 Flash Switch
Figure 3 Core Logic Tile
Switch In
Switch Out
Word
Floating Gate
Sensing Switching
Local Routing
In 1
In 2 (CLK)
In 3 (Reset)
Efficient Long-Line Routing
v3.0 7
ProASICPLUS Flash Family FPGAs
Figure 4 Ultra-Fast Local Resources
Figure 5 Efficie nt Long-Line Resources
L
LL
LL
L
Inputs
Output
Ultra-Fast
Local Lines
(connects a tile to the
adjacent tile, I/O buffer,
or memory block)
LL L
LLLLLL
LLLLLL
LL LLLL
LL LLLL
LLLLLL
Logic Cell
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Spans 1 Tile
Spans 2 Tiles
Spans 4 Tiles
Logic Tile
ProASICPLUS Flash Family FPGAs
8v3.0
Figure 6 High Speed Very Long-Line Resources
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
High Speed Very Long-Line Resouces
SRAM
SRAM
v3.0 9
ProASICPLUS Flash Family FPGAs
Clock Resources
The ProASICPLUS family offers powerful and flex ible control
of circuit timing through the use of analog circuitry. Each
chip has two clock conditioning blocks containing a
phase-locked loop (PL L) core , delay lines, phase shifter (0°,
90°, 180°, 270°), clock multiplier/dividers and all the
circuitry needed for the selection and interconnection of
inputs to the global network (thus providing bidirectional
access to the PLL). This permits the PLL block to drive
inputs and/or outputs via the two global lines on each side
of the chip (four total lines). This circuitry is discussed in
more detail in the “ProASICPLUS Clock Management
System” section on page 15.
Clock Trees
One of the main architectural benefits of ProASICPLUS is
the set of power and delay friendly global networks.
ProASICPLUS offers four global trees. Each of these trees is
based on a network of spines and ribs that reach all the tiles
in their regions (Figure 7). This flexible clock tree
architecture allows users to map up to 88 different
internal/external clocks in an APA1000 device. Details on
the clock spines and various numbers o f the family are g iven
in Table 1 on page 10.
The flexible use of the ProASICPLUS clock spine allows the
designer to cope with several design requirements. Users
implementing clock resource intensive applications can
easily route external or gated internal clocks using global
routing spines. Users can also drastically reduce delay
penalties and save buffering resources by mapping critical
high-fanout nets to spines. For design hints on using these
features, refer to Actel’s Efficient Use of ProASIC Clock
Trees application note.
Note: This figure shows routing for only one global path.
Figure 7 High Performance Global Network
PAD RING
PAD RING
PAD RING
I/O RING
I/O RING
Global
Pads Global
Pads
High Performace
Global Network
Global Networks
Global Spine
Global Ribs
Scope of Spine
(Shaded area
plus local RAMs
and I/Os)
Top Spine
Bottom Spine
ProASICPLUS Flash Family FPGAs
10 v3.0
Array Coordinates
During many place-and-route operations in Actel’s Designer
software tool, it is possible to set constraints that require
array coordinates.
Table 2 is provided as a re ference. The array coordinates are
measured from the lower left (0,0). They can be used in
region constraints for specific groups, designated by a
wildcard, and containing core cells, I/Os, and memories.
I/O and cell coordinates are used for placement constraints.
Two coordinate systems are needed because there is not a
one-to-one correspondence between I/O cells and core cells.
In addition, the I/O coordinate system changes depending
on the die/package combination.
Core cell coordinates start at the lower left corner (1,1) or
(1,5) if memories are present at the bottom. Memory
coordinates use the same system and are indicated in
Table 2. The memory coordinates for an APA1000 are
illustrated in Figure 8. For more information on how to use
constraints, see the Desi gner Use r’s Gu ide for ProASICPLUS
software tools.
Table 1 Clock Spines
APA075 APA150 APA300 APA450 APA600 APA750 APA1000
Global Clock Networks (Trees) 4444444
Clock Spines/Tree 6 8 8 12 14 16 22
Total Spines 24 32 32 48 56 64 88
Top or Bottom Spin e Hei ght ( Tiles ) 16 24 32 32 48 64 80
Tiles in Each Top or Bottom Spine 512 768 1,024 1,02 4 1,536 2,048 2,560
Total Tiles 3,072 6,144 8,192 12,288 21,504 32,768 56,320
Table 2 Array Coordinates
Device
Logic Tile Memory Rows
AllMin. Max. Bottom Top
x y x y y y Min. Max.
APA075 1 1 96 32 (33,33) or (33, 35) 0,0 97, 37
APA150 1 1 128 48 (49,49) or (49, 51) 0,0 129, 53
APA300 1 5 128 68 (1,3) or (1,5) (69,69) or (69, 71) 0,0 129, 73
APA450 1 5 192 68 (1,3) or (1,5) (69,69) or (69, 71) 0,0 193, 73
APA600 1 5 224 100 (1,3) or (1,5) (101,101) or (101, 103) 0,0 225, 105
APA750 1 5 256 132 (1,3) or (1,5) (133,133) or (133, 135) 0,0 257, 137
APA1000 1 5 352 164 (1,3) or (1,5) (165,165) or (165, 167) 0,0 353, 169
Figure 8 Core Cell Coordinates for the APA1000
(1,5)
(1,1)
Core
(1,164)
(1,165)
(1,3)
(1,167)
Memory
Blocks
Memory
Blocks
(1,169)
(0,0)
(353,169)
(352,167)
(352,165)
(352,165)
(352,5)
(352,3)
(353,0)
(352,1)
v3.0 11
ProASICPLUS Flash Family FPGAs
Input/Output Blocks
To meet complex system demands, the ProASICPLUS family
offers devices with a large number of user I/O pins, up to
712 on the APA1000. If the I/O pad power supply (VDDP) i s
3.3V, each I/O can be selectively configured at the 2.5V and
3.3V threshold levels. Table 3 shows the available supply
voltage configurations (the PLL block uses an independent
2.5V supply on the AVDD and AGND pins). All I/Os include
ESD protection circuits. Each I/O has been tested to 2000V
to the human body model (per JESD22 (HMB)).
Six or seven standard I/O pads are grouped with a GND pad
and either a VDD (cor e power) or VDDP (I/O power) pad. Two
reference bias signals circle the chip. One protects the
cascaded output drivers while the other creates a virtual
VDD su pply f o r the I/O ring.
I/O pads are fully configurable to provide the maximum
flexibility and speed. Each pad can be configured as an
input, an output, a tristate driver, or a bidirectional buffer
(Figure 9 and Table 4).
Table 3 ProASICPLUS I/O Power Supply Voltages
VDDP
2.5V 3.3V
Input Compatibility 2.5V 3.3V, 2.5V
Output Drive 2.5V 3.3V, 2.5V
Note: VDD is always 2.5V.
Figure 9 I/O Block Schematic Representation
3.3V/2.5V
Signal Control
Pull-up
Control
Pad
Y
EN
A
3.3V/2.5V Signal Control Drive
Strength and Slew-Rate Control
Table 4 I/O Features
Function Description
I/O pads configured as inputs Individually selectable 2.5V or 3.3V threshold levels
Optional pull-up resistor
Optionally con figurabl e as Schmitt tr igger i nput. The Schmitt tr igger input option can
be configured as an input only, not a bidirectional buffer. This input type may be
slower tha n a stand ard i nput under certain conditions an d has a typical hystere sis of
0.35V. I/O macros with an “S” in the standard I/O library have added Schmitt
capabilities
3.3V PCI Compliant
I/O pads configured as outputs Individually selectable 2.5V or 3.3V compliant output signals
2.5V – JEDEC JESD 8-5
3.3V – JEDEC JESD 8-A (LVTTL and LVCMOS)
3.3V PCI compliant
Ability to drive LVTTL and LVCMOS levels
Selectable drive strengths
Selectable slew rates
Tristate
I/O pads configured as bidirectional
buffers Individually selectable 2.5V or 3.3V compliant output signals
2.5V – JEDEC JESD 8-5
3.3V – JEDEC JESD 8-A (LVTTL and LVCMOS)
3.3V PCI compliant
Optional pull-up resistor
Selectable drive strengths
Selectable slew rates
Tristate
ProASICPLUS Flash Family FPGAs
12 v3.0
Power-up Sequencing
While ProASICPLUS devices ar e live at power-up, the or der of
VDD and VDDP power-up is important during system start-up.
VDD should be powere d up before (or coincident with) VDDP
on ProASICPLUS devices. Failure to follow these guidelines
may result in undesirable pin behavior during system
start-up. For more information, refer Actel’s ProASICPLUS
Family Devices Power-Up Behavior application note.
LVPECL Input Pads
In addition to standard I/O pads and power pads,
ProASICPLUS devices have a single LVPECL input pad on
both the east and west sides of th e device, along with AVDD
and AGND pins to power the PLL block. The LVPECL pad
cell consists of an input buffer (containing a low voltage
differential amplifier) and a signal and its complement,
PPECL (I/P) (PECLN) and NPECL (PECLREF). The
LVPECL input pad cell differs from the standard I/O cell in
that it is operated from VDD only.
Since it is exclusively an input, it requires no output signal,
output enable signal, or output configuration bits. As a
special high-speed differential input, it a lso does not require
pull ups. Recommended termination for LVPECL inputs is
shown in Figure 10. The LVPECL pad cell compares
voltages, as illustrated in Figure 11, on the PPECL (I/P) pad
and the NPECL pad and sends the results to the global MUX
(Figure14 on page 16). This high speed, low skew output
essentially cont rols the clock conditioning circuit.
LVPECLs are designed to meet LVPECL JEDEC receiver
standard levels (Table 5).
Figur e 10 Recommended Terminati on for LVPECL Inputs
Figur e 11 LVPECL High and Low Threshold Values
Table 5 LVPECL Receiver Specifications
Symbol Parameter Min. Max Units
VIH Input High Voltage 1.49 2.72 V
VIL Input Low Voltage 0.86 2.125 V
VID Differential Input Voltage 0.3 VDD V
+
_
PPECL
NPECL
From LVPECL Driver Data
Z = 50
0
Z = 50
0
R = 100
Voltage
2.72
2.125
1.49
0.86
v3.0 13
ProASICPLUS Flash Family FPGAs
Boundary Scan (JTAG)
ProASICPLUS devices are compatible with IEEE Standard
1149.1, which defines a set of hardware architecture and
mechanisms for cost-effective board-level testing. The basic
ProASICPLUS boundary-scan logic circuit is composed of the
TAP (test access port), TAP controller, test data registers,
and instruction register (Figure 12). This circuit supports
all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD and BYPASS) and the o ptional IDCODE
instruction (Table 6).
Each test section is accessed through the TAP, which has
five associated pins: TCK (test clock input), TDI and TDO
(test data input and output), T MS (test mode selector) and
TRST (test reset input). TMS, TDI and TRST are equipped
with pull-up resistors to ensure proper operation when no
input data is supplied to them. These pins are dedicated for
boundary-scan test usage. Actel recommends that a nominal
20k pull-up resistor is added to TDO and T CK pins.
The TAP controller is a four-bit state machine (16 states)
that operates as shown in Figure 13 on page 14. The 1s and
0s represent the values that must be present at TMS at a
rising edge of TCK for the given state transition to occur. IR
and DR indicate that the instruction register or the data
register is operating in that state.
ProASICPLUS devices have to be programmed at least once
for complete boundary-scan functionality to be available. If
boundary-scan functionality is required prior to partial
programming, refer to online t e ch nical support on the Actel
website and search for ProASICPLUS BSDL.
Figur e 12 ProASICPLUS JTAG Boundary Scan Test Logic Cir cuit
Device
Logic
TDI
TCK
TMS
TRST
TDO
I/OI/OI/O I/OI/O
I/OI/OI/O I/OI/O
I/O
I/O
I/O
I/O
Bypass Register
Instruction
Register
TAP
Controller
Test Data
Registers
Table 6 Boundary-Scan Opcodes
Hex Opcode
EXTEST 00
SAMPLE/PRELOAD 01
IDCODE 0F
CLAMP 05
BYPASS FF
ProASICPLUS Flash Family FPGAs
14 v3.0
The TAP controller receives two control inputs (TMS and
TCK) and generates control and clock signals f or the rest of
the test logic architecture. On power-up, the TAP cont roller
enters the Test-Logic-Reset state. To guarantee a reset of
the controller from any of the possible states, TMS must
remain high for five TCK cycles. The TRST pin may also be
used to asynchronously place the TAP controller in the
Test-Logic-Reset state.
ProASICPLUS devices support three types of test data
registers: bypass, device identification, and boundary scan.
The bypass register is selected when no other register needs
to be accessed in a device. This speeds up test data transfer
to other devices in a test data path. The 32-bit device
identification register is a shift register with four fields
(lowest significant byte (LSB), ID number, part number and
version). The boundary-scan register observes and controls
the state of each I/O pin.
Each I/O cell has three boundary-scan register cells, each
with a serial-in, serial-out, parallel-in, and parallel-out pin.
The serial pins are used to serially connect all the
boundary-scan register cells in a device into a
boundary-scan register chain, which starts at the TDI pin
and ends at the TDO pin. The parallel ports are connect ed to
the internal core logic tile and the input, output, and control
ports of an I/O buffer to capture and load data into the
register to control or observe the logic state of each I/O.
Figur e 13 TAP Controller State Diagram
Test-Logic
Reset
Run-Test/
Idle Select-DR-
Scan
Capture-DR
Shift-DR
Exit-DR
Pause-DR
Exit2-DR
Update-DR
Select-IR-
Scan
Capture-IR
Shift-IR
Exit-IR
Pause-IR
Exit2-IR
Update-IR
1
11
0
1
0
00
11 00
00
11
00
1
1
11
11
110
0
00
00
v3.0 15
ProASICPLUS Flash Family FPGAs
Timing Control and Characteristics
ProASICPLUS Clock Management System
Introduction
ProASICPLUS devices provide designers with very flexible
clock conditioning capabilities. Each member of the
ProASICPLUS family contains two phase-locked loop (PLL)
blocks which perform the following functions:
Clock Phase Adjustment via Programmable Delay (250 ps
steps from –8 ns to +8 ns)
Clock Skew Minimization
Clock Fre qu enc y Synth esi s
Each PLL has the following key features:
Input Fre q ue nc y Ran ge (fIN) = 1.5 to 180 MHz
Feedback Frequency Range (fVCO) = 1.5 to 180 MHz
Outp ut F req ue nc y R an g e ( f OUT) = 6 to 18 0 M Hz
Output Phase Shift = 0 °, 90 °, 180 °, and 270 °
Output Duty Cycle = 50%
Low Output Jitter (max at 25° C)
–f
VCO <10 MHz. Jitter ±1% or better
10 MHz < fVCO < 60 MHz. Jitter ±2% or better
–f
VCO > 60 MHz. Jitter ±1% or better
Maximum Acquisition Time = 80µ s
Low Power Consumption – 6.9 mW (max – analog supply)
+ 7.0µW/ MHz (m ax – d ig it a l su pp ly)
Physical Implementation
Each side of the chip contains a clock conditioning circuit
based upon a 180 MHz PLL block (Figure 14 on page16).
Two global multiplexed lines extend along each side of the
chip to provide b idirectional access to the PLL on that side
(neither MUX can be connected to the opposite side's PLL).
Each global line has optional LVPECL input pads
(described below). The global lines may be driven by eit her
the LVPECL global input pad or the outputs from the PLL
block or both. E ach global line can be driven by a different
output from the PLL. Unused global pi ns can be configured
as regular I/Os or left unconnected. They default to an input
with pull-up. The two signals available to drive the global
networks are as follows (Figure 15 on page 17):
Global A (secondary clock)
Output from Global MUX A
Condition ed ve r s i on of PLL outp ut ( f OUT) – delayed or
advanced
Divided version of either of the above
Further delayed version of either of the above (0.25 ns,
0.50 ns, or 4.00 ns delay)1
Global B
Output from G lobal MUX B
Delayed or advanced version of fOUT
Divided version of either of the above
Further delayed version of either of the above (0.25 ns,
0.50 ns, or 4.00 ns delay)1
Functional Description
Each PLL block contains four programmable dividers as
shown in Figure 14 on page 16. These allow frequency
scaling of the input clock signal as follows:
The n divider divides the input clock by integer factors
fro m 1 t o 32 .
The m divider in the feedback path allows multiplication
of th e input clo c k by in te ge r factor s rang ing from 1 t o 6 4 .
The t wo di vide rs t oge ther c an impl emen t any com bina tion
of mul t ip li c ati o n an d di v ision resu lt ing in a cl o ck
frequency between 24 and 180 MHz exiting the PLL core.
This clock has a fixed 50% duty cycle.
The output freq uenc y of the PLL core is gi ven by the
following formula (fREF is the reference clock frequency):
fOUT = fREF * m/n
The third and fourth dividers (u and v) permit the signals
appl ied to th e gl oba l n etw ork to eac h be fu rth er div ided b y
in teger factors ranging from 1 to 4.
The implementations:
fGLB = m/(n*u)
fGLA = m/(n*v)
enable the user to define a wide range of frequency
multipliers and divisors. The clock conditioning cir cuit can
advance or delay the clock up to 8 ns (in increments of
0.25ns) relative to the positive edge of the incoming
reference clock. The syst em also allow s for the selection of
output frequency clock phases of 0°, 90°, 180°, and 270°.
Prior to the application of signals to the rib drivers, they
pass through programmable delay units, one per global
network. These units permit the delaying of global signals
relative to other signals to assist in the control of input
set-up times. Not all possible combinations of input and
output modes can be used. The degrees of fre edom available
in the bidirectional global pad system and in the clock
conditioning circuit have been restricted. This avoids
unnecessary and unwieldy design kit and software work.
1. This mode is available through the delay feature of the Global MUX driver.
ProASICPLUS Flash Family FPGAs
16 v3.0
Lock Signal
A Lock signal (Active High) is provided (using the ACTgen
PLL development tool) to indicate that the PLL has locked
to the incoming clock signal. Users can employ the Lock
signal as a soft reset of the logic driven by GLB and/or GLA.
PLL Configuration Options
The PLL can be configured during design (via
Flash-configuration bits set in the programming bitstream)
or dynamically during device operation, thus eliminating the
need for complete reprogramming. The dynamic
configuration bits are loaded into a serial-in/parallel-out
shift register provided in the clock conditioning circuit of
each PLL and then latched into the PLL block. The JTAG
ports can be used along with a built-in user JTAG interface
hardware to load the configuration shift register externally.
Another option is internal dynamic configuration via user-
designed hardware. Refer to Actels ProASICPLUS PLL
Dynam ic R eco nfig uratio n U si ng JTA G application note for
more information.
For information on the clock conditioning circuit, refer to
the, Actel’s Using ProASICPLUS Clock Conditioning
Circuits application note.
Notes:
1. FBDLY is a programmable delay line from 0 to 4 ns in 250 ps increments.
2. DLYA, DLYB, DLYAFB is a programmable delay line with values 0, 250 ps, 500 ps, and 4 ns.
Figur e 14 PLL Block – Top-Level View and Detailed PLL Block D iagr am
Clock Conditioning Circuitry Detailed Block Diagram
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
90˚
180˚
270˚
External Feedback Signal
AVDD AGND GND
GLA
GLB
Dynamic
Configuration Bits
Flash
Configuration Bits
8
27
4
Clock Conditioning
Circuitry
(Top level view)
+
-Global MUX A OUT
Global MUX B OUT
VDD
See Figure 13
on page 17
Input Pins to the PLL
FBDLY DLYAFB
DLYB
DLYA
1
2
2
2
v3.0 17
ProASICPLUS Flash Family FPGAs
Sample Implementations
Frequency Synthesis
Figure16 on page 18 illustrates an example where the PLL
is used to multiply a 33 MHz external clock up to 133 MHz.
Figure17 on page 18 uses two dividers to synthesize a
50 MHz output clock from a 40 MHz input reference clock.
The input frequency of 40 MHz is multiplied by 5 and
divided by 4, giving an output clock (GLB) frequency of 50
MHz. When dividers are used, a given r atio can be g enerated
in multiple ways, allowing the user to stay within the
operating frequency ranges of the PLL. For example, in this
case the input divider could have been 2 and the output
divider also 2, giving us a division of the input frequency by
4 to go with the feedback loop division (effective
multiplication) by 5.
Adjustable Clock Delay
Figure18 on page 19 illustrates the delay of t he inpu t clock
by employing one of the adjustable delay lines. This is easily
done in ProASICPLUS by bypassing the PLL core entirely and
using the output delay line. Notice also that the output
clock can be effectively advanced relative to the input clock
by using th e delay line in the feedback pat h. This is shown
in Figure 19 on page 19.
Clock Skew Minimization
Figure20 on page 20 indicates how feedback from the clock
network can be used to create minimal skew between the
distributed clock network and the "input" clock. The input
clock is fed to the reference clock input of the PLL. The
output clock (GLA) feeds a clock network. The feedback
input to the PLL uses a clock input delayed by a routing
network. The PLL th en adjusts the phase of t he input clock
to match the delayed clock, thus providing nearly zero
effective skew between the two clocks. Refer to Actel’s
Using ProASICPLUS Clock Conditioning Circuits
application note for more information.
Logic Tile Timing Characteristics
Timing characteristics for ProASICPLUS devices fall into
three categories: family dependent, device dependent, and
design dependent. The input and output buffer
characteristics are common to all ProASICPLUS family
members. Internal routing delays are device dependent.
Design dependency means that actual delays are not
determined until after placement and routing of the user’s
design are complete. De lay values may then be determined
by using the Timer utility or performing simulation with
post-layout delays.
Note: When a sig nal from an I/O til e is connected to the co re, it cannot be connected to the Glo bal MUX at the same time .
Figur e 15 Input Connectors to ProASICPLUS Clock Conditioning Circuitry
Configuration Tile
Configuration Tile
PECL Pad Cell
GLMX
GL
Std. Pad Cell
Std. Pad Cell
Std. Pad Cell
GL
NPECL
PPECL
CORE
Package Pins Physical I/O
Buffers Global MUX
External
Feedback
Global MUX B
OUT
Global MUX A
OUT
Legend
Physical Pin
DATA Signals to the Core
DATA Signals to the PLL Block
DATA Signals to the Global MUX
Control Signals to the Global MUX
ProASICPLUS Flash Family FPGAs
18 v3.0
Critical Nets and Typical Nets
Propagation delays are expressed only for typical nets,
which are used for initial design performance evaluation.
Critical net delays can then be applied to the most timing
critical paths. Critical nets are determined by net property
assignment prior to placement and routing. Refer to the
Actel Designer User’s Guide for details on using constraints.
Timing Derating
Since ProASICPLUS devices are manufactured with a CMOS
process, device performance will vary with temperature,
voltage, and process. Minimum timing parameters reflect
maximum operating voltage, minimum operating
temperature, and optimal process variations. Maximum
timing parameters reflect minimum operating voltage,
maximum operating temperature, and worst-case process
variations (within process specifications).
Figur e 16 Using the PLL 33 MHz In, 133 MHz Out
Figur e 17 Using the PLL 40 MHz In, 50 MHz Out
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0˚
90
180˚
270˚
˚
33 MHz 133 MHz
÷4
÷1
÷1
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0˚
90˚
180˚
270˚
40 MHz 50 MHz
÷5
÷4
÷1
v3.0 19
ProASICPLUS Flash Family FPGAs
Figur e 18 Using the PLL to Delay the Input Clock
Figur e 19 Using the PLL to "Advance" the Input Clock
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0˚
90˚
180˚
270˚
133 MHz 133 MHz
÷1
÷1
÷1
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0˚
90˚
180˚
270˚
133 MHz 133 MHz
÷1
÷1
÷1
ProASICPLUS Flash Family FPGAs
20 v3.0
Figur e 20 Using the PLL for Clock De-skewing
÷n
÷m÷u
÷v
D
D
D
D
PLL Core
External Feedback
Global MUX B OUT
Global MUX A OUT
GLB
GLA
0
˚
90
˚
180
˚
270
˚
133 MHz
133 MHz
÷1
÷1
÷1
D
Q
Q
SET
CLR
v3.0 21
ProASICPLUS Flash Family FPGAs
PLL Electrical Specifications
User Security
ProASICPLUS devices have FlashLock protections bits that,
once programmed, block the entire programmed contents
from being read externally. If locked, the user can only
reprogram the device employing the user-defined security
key. This protects the device from being read back and
duplicated. Since programmed data is stored in nonvolatile
memory cells (which are actually very small capacitors),
rather than in the wiring, physical deconstructi on cannot be
used to compromise data. This approach is further
hampered by the placement of the memory cells beneath
the four metal layers (whose removal cannot be
accomplished without disturbing the charge in the
capacitor). This is the highest security provided in the
industry. For more information, refer to Actel’s Design
Security in Nonvolatile Flash and Antifuse FPGAs white
paper.
Embedded Memory Floorplan
The embedded memory is located across the top and bottom
of the device in 256x9 blocks (Figure1 on page 5).
Depending upon the device, up to 88 blocks are available to
support a variety of memory configurations. Each block can
be programmed as an independent memory or combined
(using dedicated memory routing resources) to form larger,
more complex memories. A single memory configuration
cannot include blocks from both the top and bottom
memory locations.
Embedded Memory Configurations
The embedded memory in the ProASICPLUS family provides
great configuration flexibility (Table 7 on page 22). Unlike
many other programmable vendors each ProASICPLUS block
is designed and optimized as a two-port memory (1 read, 1
write). This provides 198kbits of total memory for two-port
and single port usage in the APA1000 device.
Each memory can be configured as FIFO or SRAM, with
independent selection of synchronous or asynchr onous read
and write ports (Table 8 on page 22). Additional
characteristics include programmable flags as well as parity
checking and generation. Figure 21 on page23 and
Figure22 on page 24 show the block diagrams of the basic
SRAM and FIFO blocks. Table9 on page 23 and Table 10 on
page24 describe memory block SRAM and FIFO interface
signals, r espectively . A single memory is designed to operat e
Parameter Value Notes
Freq uen cy Rang es
Reference Frequency fIN (min.) 1.5 MHz Clock conditioning circuitry (min.) lowest output
frequency
Reference Frequency fIN (max.) 180 MHz Clock conditioning circuitry (max.) highest output
frequency
OSC Frequency fVCO (min.) 24 MHz Lowest output frequency voltage controlled
oscillator
OSC Frequency fVCO (max.) 180 MHz Highest output frequency voltage controlled
oscillator
Clock Conditioning Circuitry fOUT (min.) 6 MHz Lowest input frequency clock conditioning
circuitry
Clock Conditioning Circu itry fOUT (max.) 180 MHz Highest input frequency clock conditioning
circuitry
Long Term Jitter Peak-to-Peak Max.
Temperature Frequency MHz
fVCO<10 10<fVCO<60 fVCO>60
25°C (or higher) ±1% ±2% ±1%
0°C ±1.5% ±2.5% ±1%
–40°C ±2.5% ±3.5% ±1%
Acquisition Time from Cold Start
Acquisition Time (max.) 200 cycles Period of low reference clock frequencies
Acquisiti on Time (max.) 80 µs High reference clock frequencies
Power Consumption
Analog Supply Power (max*) 6.9 mW
Digital Supply Current (max) 7 µW/MHz
Duty Cycle 50% ± 0 .5%
Note: *High clock frequency
TM
ProASICPLUS Flash Family FPGAs
22 v3.0
at up to 150MHz (standard speed grade typical conditions).
Each block contains a 256 word, 9-bit wide (1 read port, 1
write port) memory. The memory blocks may be combined
in parallel to form wider memories or stacked to form
deeper memories (Figure 23 on page 25). This provides
optimal bit widths of 9 (1 block), 18, 36, and 72, and optimal
depths of 256, 512, 768, and 1,024. Refer to Actel’s A Guide
to ACTgen Macros for mo re in fo rma t io n .
Figure 24 on page 25 gives an example of optimal memory
usage. Ten blocks with 23,040 bits have been used to
generate three memories of various widths and depths.
Figure 25 on page 25 shows how memory can be used in
parallel to create extra read ports. In this example, using
only 10 of the 88 available blocks of the APA1000 yields an
effective 6,912 bits of multiple port memories. The Actel
ACTgen software facilitates building wider and deeper
memories for optimal memory usage.
Table 7 ProASICPLUS Memory Configurations by Device
Device Bottom Top
Maximum Width Maximum Depth
DWDW
APA075 0 12 256 108 1,536 9
APA150 0 16 256 144 2,048 9
APA300 16 16 256 144 2,048 9
APA450 24 24 256 216 3,072 9
APA600 28 28 256 252 3,584 9
APA750 32 32 256 288 4,096 9
APA1000 44 44 256 396 5,632 9
Table 8 Basic Memory Configur ations
Type Write Access Read Access Parity Library Cell Name
RAM Asynchronous Asynchronous Checked RAM256x9AA
RAM Asynchronous Asynchronous Generated RAM256x9AAP
RAM Asynchronous Synchronous Transparent Checked RAM256x9AST
RAM Asynchronous Synchronous Transparent Generated RAM256x9ASTP
RAM Asynchronous Synchronous Pipelined Checked RAM256x9ASR
RAM Asynchronous Synchronous Pipelined Generated RAM256x9ASRP
RAM Synchronous Asynchronous Checked RAM256x9SA
RAM Synchronous Asynchronous Generated RAM256xSAP
RAM Synchronous Synchronous Tr ansparent Checked RAM256x9SST
RAM Synchronous Synchronous Transparent Generated RAM256x9SSTP
RAM Synchronous Synchronous Pipelined Checked RAM256x9SSR
RAM Synchronous Synchronous Pipelined Generated RAM256x9SSRP
FIFO Asynchronous Asynchronous Checked FIFO256x9AA
FIFO Asynchronous Asynchronous Generated FIFO256x9AAP
FIFO Asynchronous Synchronous Transparent Checked FIFO256x9AST
FIFO Asynchronous Synchronous Transparent Generated FIFO256x9ASTP
FIFO Asynchronous Synchronous Pipelined Checked FIFO256x9ASR
FIFO Asynchronous Synchronous Pipelined Generated FIFO256x9ASRP
FIFO Synchronous Asynchronous Checked FIFO256x9SA
FIFO Synchronous Asynchronous Generated FIFO256x9SAP
FIFO Synchronous Synchronous Transparent Checked FIFO256x9SST
FIFO Synchronous Synchronous Transparent Generated FIFO256x9SSTP
FIFO Synchronous Synchronous Pipelined Checked FIFO256x9SSR
FIFO Synchronous Synchronous Pipelined Generated FIFO256x9SSRP
v3.0 23
ProASICPLUS Flash Family FPGAs
Note: To save area while using embedded memories, the memory blocks contain multiplexers (called DMUX) for each output signal. These
DMUX cells do not consume any core logic tiles and con nect direct ly to high speed routing reso urces between the memo ry blocks. They are
used when memories are cascaded and are automatically inserted by the software tools.
Figur e 21 Ex ample SRAM Block Diagrams
Table 9 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 IN Write clock used on synchronization on write side
RCLKS 1 IN Read clock used on synchronization on read side
RADDR<0:7> 8 IN Read address
RBLKB 1 IN Read block select (active LOW)
RDB 1 IN Read pulse (active LOW)
WADDR<0:7> 8 IN Write address
WBLKB 1 IN Write block select (active LOW)
DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in
WRB 1 IN Write pulse (active LOW)
DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
SRAM
(256 X 9)
Sync Write &
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS RCLKS
RPE
PARODD
SRAM
(256 X 9)
Async Write
&
Async Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7
>
WADDR <0:7>
WRB
WBLKB
RDB
RBLKB
PARODD
WPE RPE
WPE
SRAM
(256 X 9)
Sync Write
&
Async Read
Ports
DI <0:8> DO <0:8>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
WCLKS
RPE
PARODD
WPE
RADDR <0:7>
PARODD
SRAM
(256 X 9)
Async Write
&
Sync Read
Ports
DI <0:8> DO <0:8>
RADDR <0:7
>
WADDR <0:7>
WRB RDB
WBLKB RBLKB
RCLKS
RPE
WPE
ProASICPLUS Flash Family FPGAs
24 v3.0
Note: To save area while using embedded memories, the memory blocks contain multiplexers (called DMUX) for each output signal. These
DMUX cells do not consume any core logic tiles and con nect direct ly to high speed routing reso urces between the memo ry blocks. They are
used when memories are cascaded and are automatically inserted by the software tools.
Figur e 22 Basic FIFO Block Diagrams
Table 10 Memory Block FIFO Inte rface Sign als
FIFO Signal Bits In/Out Description
WCLKS 1 IN Write clock used for synchronization on write side
RCLKS 1 IN R ead clock used for synchronization on read side
LEVEL <0:7> 8 IN D irect configuration implements static flag logic
RBLKB 1 IN Read block select (active LOW)
RDB 1 IN Read pulse (active LOW)
RESET 1 IN Reset for FIFO pointers (active LOW)
WBLKB 1 IN Write block select (active LOW)
DI<0:8> 9 IN Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB 1 IN Write pulse (active LOW)
FULL, EMPTY 2 OUT FIFO flags. FULL prevents write and EMPTY prevents read
EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds the nu mber of words specified by the
LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8> 9 OUT Output data bits <0:8>
RPE 1 OUT Read parity error
WPE 1 OUT Write parity error
LGDEP <0:2> 3 IN Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 IN Parity generation/detect – Even when low, odd when high
FIFO
(256 X 9)
Sync Write &
Sync Read
Ports
LEVEL<0:7> DO <0:8>
DI<0:8>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
RCLKS
RESET
RESET
FIFO
(256 X 9)
Sync Write &
Async Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
WCLKS
FIFO
(256 X 9)
Async Write &
Async Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
FIFO
(256 X 9)
Async Write &
Sync Read
Ports
DI <0:8> DO <0:8>
LEVEL <0:7>
WRB
RDB
WBLKB
RBLKB
RPE
PARODD
WPE
LGDEP<0:2>
FULL
EMPTY
EQTH
GEQTH
RCLKS
RESET
RESET
v3.0 25
ProASICPLUS Flash Family FPGAs
Figur e 23 APA1000 Memory Block Architecture
Figur e 24 Ex ample Showing Memories with Different Widths and Depths
Figur e 25 Multiport Memory Usage
Word
Depth
Word Width
88 blocks
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
256
9
Word
Depth
Word Width
1,024 words x 9 bits, 1 read, 1 write
512 words x 18 bits, 1 read, 1 write
256 words x 18 bits, 1 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 23,040
256
256
256
256
9
256
256
99
256
99
256
256
256
256
256
999
256
9
512 words x 9 bits, 4 read, 1 write
256 words x 9 bits, 2 read, 1 write
Total Memory Blocks Used = 10
Total Memory Bits = 6,912
Word
Depth
Word Width Write Port Write Port
Read Ports
99
Read Ports
999 9
256
256
256
256
256
256
256
ProASICPLUS Flash Family FPGAs
26 v3.0
Design Environment
The ProASICPLUS family of FPGAs is fully supp orted by both
Actel’s Libero™ Integrated Design Environment and Actel’s
Designer FPGA Development Software. Actel's Designer
software provides a comprehensive suite of backend
development tools for FPGA development. The Designer
software includes timing-driven place and route, a
world-class integrated static timing analyzer and
constraints editor, a design netlist schematic viewer, and
SmartPower, a tool that allows the user to quickly estimate
the power consumption in a design.
Libero IDE provides an integrated design manager that
seamlessly integrates design tools while guiding the user
through the design flow, managing all design and log files,
and passing necessary design data among tools (Figure 26).
Libero IDE includes Synplicity ® Synplify for Actel, Mentor
Graphics™ ViewDraw for Actel, Actel's own Designer
software, Model Technology™ ModelSim HDL Simulator,
and SynaptiCAD™ WaveFormer Lite.
ISP
The user can generate *.bit or *.stp programming files from
the Designer software and can use these files to program a
device.
ProASICPLUS devices can be programmed in system. For
more information on ISP of ProASICPLUS devices, refer to
the In-System Programming ProASICPLUS Devices and
Performing Internal In-System Programming Using Actel’s
ProASICPLUS Devices application notes. Prior to being
pro gramme d for th e first time , the Pro ASICPLUS device I/Os
are inputs with pull-ups.
Figur e 26 Design Flow
Synthesis
Timing Simulation
Functional Simulation
Stimulus Generation
Simulator
Schematic Entry
Synthesis
Libraries
Fuse or Bitstream
Layout
Compile
Back-Annotate
NetlistViewer
SmartPower
ChipEdit and
ChipViewer
PinEdit
Timer
Static T iming Analyzer
and Constraints Editor
I/O Assignments
Design Synthesis and Optimization
Power Analysis
Schematic Viewer
Placement Editor
Silicon Sculptor
(Antifuse and Flash Families) Silicon Explorer II
(Antifuse and Flash Families)
FlashPro
(Flash Families)
FlashPro Lite
(ProASIC
PLUS
Family)
BP Microsystems
Programmers
Cross-Probing
User
Testbench
Actel
Device
Design Implementation Design Implementation
ProgrammingProgramming System VerificationSystem Verification
Design Creation/VerificationDesign Creation/Verification
HDL Editor
ACTgen
Macro Builder
Optimization and DRC
Timing Driven Place-and-Route
Libero
TM
IDE Project Manager
v3.0 27
ProASICPLUS Flash Family FPGAs
Package Thermal Characteristics
The ProASICPLUS family is available in several package
types with a range of pin counts. Actel has selected
packages based on high pin count, reliability factors, and
superior thermal characteristics.
Thermal resistance defines the ability of a package to
conduct heat away from the silicon, through the package to
the surrounding air. Junction-to-ambient thermal
resistance is measured in degrees Celsius/Watt and is
represented as Theta ja (Θja). The lower the thermal
resistance, the more efficiently a package will dissipate
heat.
A package’s maximum allowed power (P) is a function of
maximum junction temperature (TJ), maximum ambient
operating temperature (TA), and junction-to-ambient
thermal resistance Θja. Maximum junction temperature is
the maximum allowable temperature on the active surface
of the IC and is 110° C. P is defined as:
Θja is a function of the rate (in linear feet per minute –
lfpm) of airflow in contact with the package. When the
estimated power consumption exceeds the maximum
allowed power, other means of cooling, such as increasing
the airflow rate, must be used.
PTJTA
Θja
-----------------
=
Package Type Pin Count Θjc Θja Still Air Θja 300 ft./min. Units
Thin Quad Flat Pack (TQFP ) 100 12 37.5 30 °C/W
Thin Quad Flat Pack (TQFP ) 144 11 3 2 24 °C/W
Plastic Quad Flat Pack (PQFP) 208 8 30 23 °C/W
PQFP with Heatspreader 208 3.8 20 17 °C/W
Plastic Ball Grid Array (PBGA) 456 3 15.6 12 °C/W
Fine Pitch Ball Grid Array (FBGA) 144 3.8 38.8 26.7 °C/W
Fine Pitch Ball Grid Array (FBGA) 256 3.8 25 22 °C/W
Fine Pitch Ball Grid Ar ray (FBGA)1484 3.2 20 15 °C/W
Fine Pitch Ball Grid Ar ray (FBGA)2484 3.2 20.5 16.6 °C/W
Fine Pitch Ball Grid Array (FBGA) 676 3.2 16.4 11.5 °C/W
Fine Pitch Ball Grid Array (FBGA) 896 2.4 13.6 10.3 °C/W
Fine Pitch Ball Grid Array (FBGA) 1152 1.8 12 8.9 °C/W
Notes:
1. Depop u la te d Ar ray
2. Full Array
ProASICPLUS Flash Family FPGAs
28 v3.0
Calculating Typical Power
Dissipation
ProASICPLUS device power is calculated with both a static
and an active component. The active component is a
function of both the number of tiles utilized and the system
speed. Power dissipation can be calculated using the
following formula: Ptotal = Pdc + Pac
where:
Pclock, the clock component of power dissipation, is given by
Pclock = (P1 + P2 * R - P7*R2) * Fs
where:
Pstorage, the storage-tile (Register) component of AC power
dissipation, is given by
Pstorage = P5 * ms * Fs
where:
Plogic, the logic-tile component of AC power dissipation, is
given by Plogic = P3 * mc * Fs
where:
Poutputs, the I/O component of AC po wer diss ipat ion, is give n by
Poutputs = (P4 + (Cload * VDDP2)) * p * Fp
where:
The input’s component of AC power dissipation is given by
Pinputs = P8 * q * Fq
where:
Ppll = P9 * Npll
where:
Finally, Pmemory, the memory component of AC power
consumption, is given by
Pmemory = P6 * Nmemory * Fmemory * Ememory
where:
•P
dc = 12.5 mW (Typically 2.5V x 5mA)
Pdc includes the static components of:
PVDDP + PVDD + PAVDD
•P
ac =P
clock + Pstorage + Plogic + Pinputs + Poutputs +
Pmemory + Ppll
P1 = 100 µW/MHz is the basic power consumption of
the clock tree per MHz of the clock
•P2 =1.3 µW/MHz is the incr eme ntal power con su mption of
the clock tree per storage tile – also per MHz of the
clock
P7 = 0. 00003 µW/MHz is a correction factor for highly
loaded clock-trees
R = the number of storage tiles clocked by this clock
Fs = the clock frequency
P5 =1.1 µW/MHz is the average power consumption of a
storage-tile per MHz of its output toggling rate. The
maximum output toggling rate is Fs/2
ms =the number of storage tiles (Register) switching
during each Fs cycle
Fs = th e clock frequency
P3 =1.4 µW/MHz, is the average power consumption
of a logic ti le per MHz of its output togg ling rate.
The maximum output toggling rate is Fs/2
mc=the number of logic tiles switching during each
Fs cycle
Fs =the clock frequency
P4 = 326 µW/MHz is the intrinsic power consumption
of an output pad normalized per MHz of the
output frequency. This is the total I/O current
VDD + VDDP
•C
load = the output load
p = the number of outputs
Fp = the average output frequency
P8 = 29 µW/MHz is the intrinsic power consumption of
an input pad normalized per MHz of the input
frequency
q = the number of inputs
Fq = the average input frequency
P9 = 6.9 mW. This value has been estimated at
maximum PLL clock frequency
•N
Pll = number of PLLs used
P6 = 175 µW/MHz is the ave ra ge power consu mpti on
of a me mor y blo ck per MHz of t he cloc k
•N
memory = the number of RAM/FIFO blocks
(1 block = 256 words * 9 bits)
•F
memory = the clock frequency of the memory
•E
memory = the average number of active blocks divided
by the total number of blocks (N) of the
memory.
Ty pical values for Ememory woul d be 1/ 4 for
a 1k x 8, 9,16, 32 me mo r y an d 1/16 fo r a
4kx8, 9, 16, and 32 memory
In addition , an application-dependent
component to Ememory can be considered.
For example, for a 1kx8 memory using only
1 cycle out of 3, Ememory = 1/4*1/3 = 1/12
v3.0 29
ProASICPLUS Flash Family FPGAs
The following is an APA750 example using a shift register
design with 13,440 st orage tiles (Register) and 0 logic tiles.
This design has one clock at 10 MHz, and 24 outputs
toggling at 5 MHz. We then calculate the various
components as follows:
Pclock
=> Pclock = (P1 + P2 * R - P7*R2) * Fs = 124.2 mW
Pstorage
=> Pstorage = P5 * ms * Fs = 147.8 mW
Plogic
=> Plogic = 0 mW
Poutputs
=> Poutputs = (P4 + Cload * VDDP2) * p * Fp = 87.3 mW
Pinputs
=> Pinputs = P8 * q * Fq = 0.3 mW
Pmemory
=> Pmemory = 0 mW
Pac => 360 mW
Ptotal
Pdc + Pac = 372 mW (Typical)
Fs= 10 MHz
R = 13,440
ms = 13,440 (in a shift register 100% of storage-tiles are
toggling at each clock cycle and Fs = 10 MHz)
mc = 0 (no logic tile in this shift-register )
•C
load = 40 pF
•V
DDP = 3.3 V
• p = 24
•Fp = 5 MHz
•q = 1
Fq = 10 MHz
Nmemory = 0 (no RAM/FIFO in this shift-register)
ProASICPLUS Flash Family FPGAs
30 v3.0
Operating Conditions
Standard and –F parts are the same unless otherwise noted. –F parts are only available as commercial.
Absolute Maximum Ratings*
Parameter Condition Minimum Maximum Units
Supply Voltage Core (VDD)–0.33.0V
Supply Voltage I/O Ring (VDDP)–0.34.0V
DC Input V ol t ag e –0.3 VDDP + 0.3 V
PCI DC Input Voltage –1.0 VDDP + 1 .0 V
PCI DC Input Clamp Current (absolute) VIN < –1 or VIN= VDDP + 1V 10 mA
LVPECL Input Voltage –0.3 VDDP + 0.5 V
GND 00V
Note: * Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. Exposure to absolute
maximum rat ed conditi ons for extend ed period s may affect devi ce reliabil ity. Devices sho uld not be op erated ou tside the Recom mended
Operating Conditions.
Programming, Storage and Operating Limits
Product Grade Programming Cycles Program Retention
Storage Temperature Operating
Min. Max.
TJ Max
Junction
Temperature
Commercial 100 20 years –55°C 110°C 110°C
Industrial 100 20 years –55°C 110°C 110°C
Note: This is a stress rating only. Functional operation at these or any other condition above those indicated in the operational and
programming specification is not implied.
Supply Voltages
Mode VDD VDDP
Single Voltage 2.5V 2.5V
Mixed Voltage 2.5V 3. 3V
Parameter Condition
Commercial/Industrial
UnitsMinimum Maximum
VPP During Programming 15.8 16.5 V
Normal Operation10 16.5 V
VPN During Programming –13.8 –13.2 V
Normal Operation2–13.8 0 V
IPP During Programming 25 mA
IPN During Programming 10 mA
AVDD VDD VDD V
AGND GND GND V
Notes:
1. Please refer to the “VPP Programming Supply Pin” section on page60 for more information.
2. Please refer to the “VPN Programming Supply Pin” section on page61 for more information.
Recommended Operating Conditions
Parameter Symbol
Limits
Commercial Industrial
DC Supply Voltage (2.5V I/Os) VDD & VDDP 2.5V ± 0.2V 2.5V ± 0.2V
DC Supply Voltage (Mixed 2.5V, 3.3V I/Os) VDDP
VDD
3.3V ± 0.3V
2.5V ± 0.2V 3.3V ± 0.3V
2.5V ± 0.2V
Operating Ambient Temperature Range TA0°C to 70°C –40°C to 85°C
Maximum Operating Junction Temperature TJ110°C 110°C
v3.0 31
ProASICPLUS Flash Family FPGAs
DC Electrical Specifications (VDDP = 2.5V ±0.2V)1
Symbol Parameter Conditions
Commercial / Industrial1,2
Min. Typ. Max. Units
VOH
Output High Voltage
High Drive (O B25LPH)
Low Drive (OB25LPL)
IOH = –6 mA
IOH = –12 mA
IOH = –24 mA
IOH = –3 mA
IOH = –6 mA
IOH = –8 mA
2.1
2.0
1.7
2.1
1.9
1.7
V
VOL
Output Low Voltage
High Drive (O B25LPH)
Low Drive (OB25LPL)
IOL = 8 mA
IOL = 15 m A
IOL = 24 m A
IOL = 4 mA
IOL = 8 mA
IOL = 15 m A
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH Input High Voltage 1.7 VDDP + 0.3 V
VIL Input Low Voltage –0.3 0.7 V
RWEAKPULLUP Weak Pull-up Resistance
(OTB25LPU) VIN 1.25V 6 56 k
HYST Input Hysteresis Schmitt See Table 4 on page 11 0.3 0.35 0.45 V
IIN Input Current with pull up (VIN = GND) –240 – 20 µA
without pull up (VIN = GND or VDD) –10 10 µA
IDDQ
Quiescent Supply Current
(standby)
Commercial VIN = GND3 or VDD
Std. 5.0 15 mA
–F 5.0 25 mA
IDDQ
Quiescent Supply Current
(standby)
Industrial VIN = GND3 or V DD Std. 5.0 20 mA
IOZ 3-State Output Leakage Current VOH = GND or VDD Std. –10 10 µA
–F4–10 100 µA
IOSH
Output Short Circuit Current High
High Drive (OB2 5LP H)
Low Drive (OB25LPL) VIN = VSS
VIN = VSS
–120
–100 mA
IOSL
Output Short Circuit Current Low
High Drive (OB2 5LP H)
Low Drive (OB25LPL) VIN = VDDP
VIN = VDDP
100
30 mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
Notes:
1. All pro c ess cond i tion s. Jun ct io n Tem p erat u re: –4 0 to +1 10° C .
2. –F parts are only available as commercial.
3. No pull-up resistor.
4. This will not exceed 2mA total per device.
ProASICPLUS Flash Family FPGAs
32 v3.0
DC Electrical Specifications (VDDP = 3.3V ±0.3V and VDD 2.5V ±0.2V)1
Symbol Parameter Conditions
Commercial / Industrial1,2
UnitsMin. Typ. Max.
VOH
Output High Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOH = –14 mA
IOH = –24 mA
IOH = –6 mA
IOH = –12 mA
0.9VDDP
2.4
0.9VDDP
2.4
V
Output High Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOH = –0.1 mA
IOH = –0.5 mA
IOH = –3.0 mA
IOH = –0.1 mA
IOH = –0.5 mA
IOH = –1.0 mA
2.1
2.0
1.7
2.1
2.0
1.7
V
VOL
Output Low Voltage
3.3V I/O, High Drive (OB33P)
3.3V I/O, Low Drive (OB33L)
IOL = 15 mA
IOL = 20 mA
IOL = 28 mA
IOL = 7 mA
IOL = 10 mA
IOL = 15 mA
0.1VDDP
0.4
0.7
0.1VDDP
0.4
0.7
V
Output Low Voltage
2.5V I/O, High Drive (OB25H)
2.5V I/O, Low Drive (OB25L)
IOL = 7 mA
IOL = 14 mA
IOL = 28 mA
IOL = 5 mA
IOL = 10 mA
IOL = 15 mA
0.2
0.4
0.7
0.2
0.4
0.7
V
VIH
Input High Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 2
1.7 VDDP + 0.3
VDDP + 0.3 V
VIL
Input Low Voltage
3.3V LVTTL/LVCMOS
2.5V Mode 0.3
0.3 0.8
0.7 V
RWEAKPULLUP Weak Pull-up Resistance
(IOB33U) VIN 1.5V 7 43 k
RWEAKPULLUP Weak Pull-up Resistance
(IOB25U) VIN 1.5V 7 43 k
IIN Input Current with pull up (VIN = GND) –300 –40 µA
without pull up (VIN = GN D or VDD) –10 10 µA
IDDQ
Quiescent Supply Current
(standby)
Commercial VIN = GND3 or VDD
Std. 5.0 15 mA
–F 5.0 25 mA
IDDQ
Quiescent Supply Current
(standby)
Industrial VIN = GND3 or VDD Std. 5.0 20 mA
Notes:
1. All process conditions. Junction Tem perature: –40 to +110°C.
2. –F parts are only available as commercial.
3. No pull- up resistor.
4. This wil l not exceed 2mA total per device.
v3.0 33
ProASICPLUS Flash Family FPGAs
IOZ 3-State Output Leakage Current VOH = GND or VDD Std. –10 10 µA
–F4–10 100 µA
IOSH
Output Short Circuit Curr ent High
3.3V High Drive (OB 33P)
3.3V Low Drive (OB33L)
2.5V High Drive (OB 25H)
2.5V Low Drive (OB25L)
VIN = GND
VIN = GND
VIN = GND
VIN = GND
–200
–100
–20
–10
mA
IOSL
Output Short Circuit Current Low
3.3V High Drive
3.3V Low Drive
2.5V High Drive
2.5V Low Drive
VIN = VDD
VIN = VDD
VIN = VDD
VIN = VDD
200
100
200
100
mA
CI/O I/O Pad Capacitance 10 pF
CCLK Clock Input Pad Capacitance 10 pF
DC Specifications (3.3V PCI Operation)1
Symbol Parameter Condition
Commercial / Industrial2,3
UnitsMin. Max.
VDD Supply Voltage for Core 2.3 2.7 V
VDDP Supply Voltage for I/O Ring 3.0 3.6 V
VIH Input High Voltage 0.5VDDP VDDP + 0.5 V
VIL Input Low Voltage –0.5 0.3VDDP V
IIPU Input Pull-up Voltage40.7VDDP V
IIL Input Leakage Current50 < VIN < VCCI Std. –10 10 µA
–F6–10 100 µA
VOH Output High Voltage IOUT = –500 µA 0.9VDDP V
VOL Output Low Voltage IOUT = 1500 µA 0.1VDDP V
CIN Input Pin Capacit ance (exce pt CLK) 10 pF
CCLK CLK Pin Cap aci t ance 5 12 pF
Notes:
1. For PCI operati on, us e OTB33P H, OB33P H, IO B33P H, IB33, or IB33S macro libra ry cell only.
2. All process conditions. Junction Temperature: –40 to +110°C.
3. –F part s are av ail abl e as c om mer cia l onl y.
4. This specification is guaranteed by design. It is the minimum voltage to which pull-up resistors are calculated to pull a floated network.
Designers with ap plications sensit ive to static power utilization sho uld ensure that the input buffer is conducting minimum current at this
input voltage.
5. Input leakage currents include hi-Z output leakage for all bidirectional buffers with tristate outputs.
6. The sum of the leakage currents for all inputs shall not exceed 2mA per device.
DC Electrical Specifications (VDDP = 3.3V ±0.3V and VDD 2.5V ±0.2V)1 (Continued)
Symbol Parameter Conditions
Commercial / Industrial1,2
UnitsMin. Typ. Max.
Notes:
1. All process conditions. Junction Tem perature: –40 to +110°C.
2. –F parts are only available as commercial.
3. No pull- up resistor.
4. This wil l not exceed 2mA total per device.
ProASICPLUS Flash Family FPGAs
34 v3.0
AC Specifications (3.3V PCI Revision 2.2 Operation)
Symbol Parameter Condition
Commercial / Industrial
UnitsMin. Max.
IOH(AC)
Switching Current High
0 < VOUT 0.3 VCCI* –12VCCI mA
0.3VCCI VOUT <
0.9VCCI*(–17.1 + (VDDP – VOUT)) mA
0.7VCCI < VOUT < VCCI*See equatio n C – page 124
of the PCI Specification
document rev. 2.2
(Test Point) VOUT = 0.7VCC*–32V
CCI mA
IOL(AC)
Switchi ng Curr ent Low
VCCI > VOUT 0.6VCCI* 16VDDP mA
0.6VCCI > VOUT >
0.1VCCI 1 (26.7VOUT)mA
0.18VCCI > VOUT > 0* See e quat ion D – page 124
of the PCI Specification
document rev. 2.2
(Test Point) VOUT = 0.18VCC 38VCCI mA
ICL Low Clamp Current –3 < VIN –1 25 + (VIN + 1)/0.015 mA
ICH High Cla mp Curre nt VCCI + 4 > VIN VCCI + 1 25 + (VIN – VDDP – 1 )/0. 015 mA
slewROutput Rise Slew Rate 0.2VCCI to 0.6VCCI lo ad* 1 4 V/ns
slewFOutput Fall Slew Rate 0.6VCCI to 0.2VCCI lo ad* 1 4 V/ns
Note: * Refer to the PCI Specification docu ment rev. 2.2.
pin
output
buffer
1/2 in. max
10 pF
1k
pin
output
buffer 10 pF
1k
Pad Loading Applicable to the Rising Edge PCI
Pad Loading Applicable to the Falling Edge PCI
v3.0 35
ProASICPLUS Flash Family FPGAs
Tristate Buffer Delays
Tristate Buffer Delays
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description
Max tDLH1Max tDHL2Max tENZH3Max tENZL4Unit
sSTD F STD F STD –F STD –F
OTB33PH 3.3V, PCI Output Current, High Slew Rate 2.0 2.4 2.2 2.6 2.2 2.6 2.0 2.4 ns
OTB33PN 3.3V, High Output Current, Nominal Slew Rate 2.2 2.6 2.9 3.5 2.4 2.9 2.1 2.5 ns
OTB33PL 3.3V, High Output Current, Low Slew Rate 2.5 3.0 3.2 3.9 2.7 3.3 2.8 3.4 ns
OTB33LH 3.3V, Low Output Current, High Slew Rate 2.6 3.1 4.0 4.8 2.8 3.4 3.0 3.6 ns
OTB33LN 3.3V, Low Output Current, Nominal Slew Rate 2.9 3.5 4.3 5.2 3.2 3.8 4.1 4.9 ns
OTB33LL 3.3V, Low Output Current, Low Slew Rate 3.0 3.6 5.6 6.7 3.3 3.9 5.5 6.6 ns
OTB25HH 2.5V, High Output Current, High Slew Rate 3.1 3.8 1.8 2.2 2.8 3.4 1.7 2.0 ns
OTB25HN 2.5V, High Output Current, Nominal Slew Rate 3.1 3.7 2.7 3.3 2.9 3.5 2.7 3.2 ns
OTB25HL 2.5V, High Output Current, Low Slew Rate 3.1 3.7 3.9 4.7 2.9 3.5 3.8 4.6 ns
OTB25LH 2.5V, Low Output Current, High Slew Rate 4.6 5.6 2.9 3.5 4.6 5.5 2.9 3.4 ns
OTB25LN 2.5V, Low Output Current, Nominal Slew Rate 4.6 5.6 3.7 4.5 4.6 5.5 3.6 4.3 ns
OTB25LL 2.5V, Low Output Current, Low Slew Rate 4.6 5.6 5.1 6.1 4.5 5.4 4.8 5.8 ns
OTB25LPHH 2.5V, Low Power, High Output Current, High Slew
Rate52.0 2.4 2.1 2.5 2.3 2.7 2.0 2.4 ns
OTB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew
Rate52.4 2.9 3.0 3.6 2.7 3.2 2.1 2.5 ns
OTB25LPHL 2.5V, Low Power , High Output Current, Low Slew Rate52.9 3.5 3.2 3.8 3.1 3.8 2.7 3.2 ns
OTB25LPLH 2.5V, Low Power, Low Output Current, High Slew Rate52.7 3.3 4.6 5.5 3.0 3.6 2.6 3.1 ns
OTB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew
Rate53.5 4.2 4.2 5.1 3.8 4.5 3.8 4.6 ns
OTB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate54.0 4.8 5.3 6.4 4.2 5.1 5.1 6.1 ns
Notes:
1. tDLH=Data-to-Pad HIGH
2. tDHL=Data-to-Pad LOW
3. tENZH=Enable-to-Pad, Z to HIGH
4. tENZL = Enable-to-Pad, Z to LOW
5. Low power I/O work with VDDP=2.5V ±10% only. VDDP=2.3V for delays.
PAD
A
OTBx
A50%
PAD
V
OL
V
OH
50%
t
DLH
50%
50%
t
DHL
EN 50%
PAD V
OL
50%
t
ENZL
50%
10%
EN 50%
PAD
GND
V
OH
50%
t
ENZH
50%
90%
V
CC
EN
35pF
ProASICPLUS Flash Family FPGAs
36 v3.0
Output Buffer Delays
Output Buffer Delays
PAD
A
OBx
A50%
PAD
VOL
VOH
50%
tDLH
50%
50%
tDHL
35pF
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, 35 pF load, TJ = 70°C)
Macro Type Description
Max tDLH1Max tDHL2
UnitsSTD –F STD –F
OB33PH 3.3V, PC I Output Current, High Slew Rate 2.0 2.4 2.2 2.6 ns
OB33PN 3.3V, High Output Current, Nominal Slew Rate 2.2 2.6 2.9 3.5 ns
OB33PL 3.3V, High Output Current, Low Slew Rate 2.5 3.0 3.2 3.9 ns
OB33LH 3.3V, Low Output Current, High Slew Rate 2.6 3.1 4.0 4.8 ns
OB33LN 3.3V, Low Output Current, Nominal Slew Rate 2.9 3.5 4.3 5.2 ns
OB33LL 3.3V, Low Output Current, Low Slew Rate 3.0 3.6 5.6 6.7 ns
OB25HH 2.5V, High Output Current, High Slew Rate 3.1 3.8 1.8 2.2 ns
OB25HN 2.5V, High Output Current, Nominal Slew Rate 3.1 3.7 2.7 3.3 ns
OB25HL 2.5V, High Output Current, Low Slew Rate 3.1 3.7 3.9 4.7 ns
OB25LH 2.5V, Low Output Current, High Slew Rate 4.6 5.6 2.9 3.5 ns
OB25LN 2.5V, Low Output Current, Nominal Slew Rate 4.6 5.6 3.7 4.5 ns
OB25LL 2.5V, Low Output Current, Low Slew Rate 4.6 5.6 5.1 6.1 ns
OB25LPHH 2.5V, Low Power, High Output Current, High Slew Rate32.0 2.4 2.1 2.6 ns
OB25LPHN 2.5V, Low Power, High Output Current, Nominal Slew Rate32.4 2.9 3.0 3.6 ns
OB25LPHL 2.5V, Low Power, High Output Current, Low Slew Rate32.9 3.5 3.2 3.8 ns
OB25LPLH 2.5V, Low Power , Low Output Current, High Slew Rate32.7 3.3 4.6 5.5 ns
OB25LPLN 2.5V, Low Power, Low Output Current, Nominal Slew Rate33.5 4.2 4.2 5.1 ns
OB25LPLL 2.5V, Low Power, Low Output Current, Low Slew Rate34.0 4.8 4.3 6.4 ns
Notes:
1. tDLH = Data-to-Pad HIGH
2. tDHL = Dat a -to- P ad LOW
3. Low power I/O work with V DDP=2.5V ±10% only. VDDP=2.3V for delays .
v3.0 37
ProASICPLUS Flash Family FPGAs
Input Buffer Delays
Input Buffer Delays
Global Input Buffer Delays
PAD YPAD VCC 0V
50%
Y
GND
VCC
50%
tINYH
50%
50%
tINYL
IBx
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C
Macro Type Description
Max. tINYH1 Max. tINYL2
UnitsStd. –F Std. –F
IB25 2.5V, CMOS Input Levels3, No Pull-up Resistor 0.7 0.9 0.8 1.0 ns
IB25S 2.5V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 0.7 0.9 0.8 1.0 ns
IB25LP 2.5V, CMOS Input Levels3, Low Power 0.9 1.1 0.6 0.8 ns
IB25LPS 2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger 0.7 0.9 0.9 1.1 ns
IB33 3.3V, CMOS Input Levels3, No Pull-up Resistor 0.4 0.5 0.6 0.7 ns
IB33S 3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 0.6 0.7 0.8 0.9 ns
Notes:
1. tINYH = I nput Pa d- t o- Y HI G H
2. tINYL = Input Pad-to-Y LOW
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3V for delays.
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°)
Macro Type Descr iption
Max. tINYH1 Max. tINYL2 Units
Std. –F Std. –F
GL25 2.5V, CMOS Input Levels3, No Pull-up Resistor 1.3 1.6 1.0 1.2 ns
GL25S 2.5V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 1.3 1.6 1.0 1.2 ns
GL25LP 2.5V, CMOS Input Levels3, Low Power 1.1 1.2 1.0 1.3 ns
GL25LPS 2.5V, CMOS Input Levels3, Low Power, Schmitt Trigger 1.3 1.6 1.0 1.1 ns
GL33 3.3V, CMOS Input Levels3, No Pull-up Resistor 1.0 1.2 1.1 1.3 ns
GL33S 3.3V, CMOS Input Levels3, No Pull-up Resistor, Schmitt Trigger 1.0 1.2 1.1 1.3 ns
PECL PPECL Input Levels 1.0 1.2 1.1 1.3 ns
Notes:
1. tINYH = I nput Pa d- t o- Y HI G H
2. tINYL = Input Pad-to-Y LOW
3. LVTTL delays are the same as CMOS delays.
4. For LP Macros, VDDP=2.3V for delays.
ProASICPLUS Flash Family FPGAs
38 v3.0
Predicted Global Routing Delay*
Global Routing Skew
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C)
Parameter Description
Max.
UnitsStd. –F
tRCKH Input Low to High (fully loaded row) 1.1 1.3 ns
tRCKL Input High to Low (fully loaded row) 1.0 1.2 ns
tRCKH Input Low to High (minimally loaded row) 0.8 1.0 ns
tRCKL Input High to Low (minimally loaded row) 0.8 1.0 ns
Note: * The t iming delay diffe rence between tile locations is l ess than 15 ps.
(Worst-Case Commercial Conditions, VDDP = 3.0V, VDD = 2.3V, TJ = 70°C)
Parameter Description
Max.
UnitsStd. –F
tRCKSWH Maximum Ske w Low to High 270 320 p s
tRCKSHH Maximum Ske w High to Low 270 320 ps
v3.0 39
ProASICPLUS Flash Family FPGAs
Module Delays
Sample Macrocell Library Listing*
(Worst-Case Commercial Conditions, VDD = 2.3V, TJ = 70º C)
Cell
Name Description
Standard –F
Maximu
m Minimum Maximu
m Minimum Units
NAND2 2-Input NAND 0.5 0.6 ns
AND2 2-Input AND 0.4 0.5 ns
NOR3 3-Input NOR 0.8 1.0 ns
MUX2L 2-1 MUX with Active Low Select 0.5 0.6 ns
OA21 2-Input OR into a 2-Input AND 0.8 1.0 ns
XOR2 2-Input Exclusive OR 0.6 0.8 ns
LDL
Active Low Latch (LH/HL)
CLK-Q LH 0.9 1.1
ns
HL 0.8 0.9
tsetup 0.7 0.8
thold 0.1 0.2
DFFL
Negative Edg e-Triggered D- type Flip- Flop (LH /HL)
CLK-Q LH 0.9 1.1
ns
HL 0.8 1.0
tsetup 0.6 0.7
thold 0.0 0.0
Note: *Intrinsic delays have a variable componen t, coupled to the input slope of the signal. These numbers assume an input slope typical of
local interconnect.
A
B
CY
A
B
50%
Y
50%
50% 50%
50% 50%
tDALH
C50% 50%
50%
50%50%
tDBLH
tDAHL tDBHL
tDCHL
tDCLH
50%
ProASICPLUS Flash Family FPGAs
40 v3.0
Recommended Operating Conditions
Sl ew Rates Measur ed at C = 30pF, No m inal Power Supplies and 25°C
Parameter Symbol
Limits
Commercial/Industrial
Maximum Clock Frequency* fCLOCK 180 MHz
Maximum RAM Frequency* fRAM 150 MHz
Maximum Rise/Fall Time on Inputs*
Schmitt Mode
Non-schmitt Mode tR/tF
tR/tF
100 ns
10 ns
Maximum LVPECL Frequency* 180 MHz
Maximum tCK Frequency (JTAG) tCK 10 MHz
Note: *–F parts will be 20% slower than standard commercial devices.
Typ e Trig. Level Rising Edge
(nS) Slew Rate
(V/ns) Falling Edge
(nS) Slew Rate
(V/ns) PCI Mod e
OB33PH 10%-90% 1.60 1.65 1.65 1.60 Yes
OB33PN 10%-90% 1.57 1.68 3.32 0.80 No
OB33PL 10%-90% 1.57 1.68 1.99 1.32 No
OB33LH 10%-90% 3.80 0.70 4.84 0.55 No
OB33LN 10%-90% 4.19 0.63 3.37 0.78 No
OB33LL 10%-90% 5.49 0.48 2.98 0.89 No
OB25HH 20%-60% 3.31 0.30 0.75 1.33 No
OB25HN 20%-60% 3.20 0.32 0.77 1.30 No
OB25HL 20%-60% 3.27 0.31 0.77 1.30 No
OB25LH 20%-60% 8.41 0.12 1.38 0.72 No
OB25LN 20%-60% 8.54 0.12 1.15 0.87 No
OB25LL 20%-60% 8.50 0.12 1.19 0.84 No
OB25LPHH 10%-90% 1.55 1.29 1.56 1.28 No
OB25LPHN 10%-90% 1.70 1.18 2.08 0.96 No
OB25LPHL 10%-90% 1.97 1.02 2.09 0.96 No
OB25LPLH 10%-90% 3.57 0.56 3.93 0.51 No
OB25LPLN 10%-90% 4.65 0.43 3.28 0.61 No
OB25LPLL 10%-90% 5.52 0.36 3.44 0.58 No
Note: Sta ndard and –F par ts .
v3.0 41
ProASICPLUS Flash Family FPGAs
Embedded Memory Specifications
This section discusses ProASICPLUS SRAM/FIFO embedded
memory and its interface signals, including timing diagram s
that show the relationships of signals as they pertain to
single embedded memory blocks (Table 11). Table8 on
page22 shows basic SRAM and FIFO configurations.
Simultaneous Read and Write to the same location must be
done with care . On such accesses the DI bus is output to the
DO bus.
Enclosed Timing Diagrams—SRAM Mode:
Synch r on ou s SRA M Rea d, A c ce ss Ti me d O utput Str o b e
(Synchronous Transparent)
Synchronous SRAM Read, Pipeline Mode Outputs
(S ynchronous Pipelined)
Asynchronous SRAM Write
Asynchronous SRAM Read, Address Controlled, RDB=0
Asynchronous SRAM Read, RDB Controlled
Synchronous SRAM Write
Embedded Memory Specifications
The difference between synchronous transparent and
pipeline modes is the timing of all the output signals from
the memory. In transparent mode, the outputs will change
within the sam e c lock c ycle to refle ct the data re que s ted b y
the currently valid access to the memory. If clock cycles are
short (high clock speed), the data requires most of the
clock cycle to change to valid values (stable signals).
Processing of this data in the same clock cycle is nearly
impossible. Most designers add registers at all outputs of
the memory to push the data processing into the next clock
cycle. An entire clock cycle can then be used to process the
data. To simplify use of this memory setup, suitable
registers have been implemented as part of the memory
primitive and are available to the user in the synchronous
pipeline mode. In this mode, the output signals will change
shortly after the second rising edge, following the initiation
of the read access.
Table 11 Memory Block SRAM Interface Signals
SRAM Signal Bits In/Out Description
WCLKS 1 IN Write clock used on synchronization on write side
RCLKS 1 IN Read clock used on synchronization on read side
RADDR<0:7> 8 IN Read address
RBLKB 1 IN True read block select (active LOW)
RDB 1 IN True read pulse (active LOW)
WADDR<0:7> 8 IN Write address
WBLKB 1 IN Write block select (active LOW)
DI<0:8> 9 IN Input data bits <0:8>, <8> can be used for parity in
WRB 1 IN Negative true write pulse
DO<0:8> 9 OUT Output data bits <0:8>, <8> can be used for parity out
RPE 1 OUT Read parity error (active HIGH)
WPE 1 OUT Write parity error (active HIGH)
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Note: Not all signals shown are used in all modes.
ProASICPLUS Flash Family FPGAs
42 v3.0
Synchronous SRAM Read, Access Timed Output Strobe (Synchronous Transparent)
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock lo w phase 3.0 ns
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
Note: –F speed grade devices are 20% slower than th e standard numbers.
RADDR
RPE
DO
RCLKS
RBD, RBLKB
New Valid Data Out
Cycle Start
Old Data Out
New Valid
Address
tRACS
tRDCS
tRDCH
tRACH tOCH
tRPCH
tCMH
tOCA
tRPCA
tCCYC
tCML
v3.0 43
ProASICPLUS Flash Family FPGAs
Synchronous SRAM Read, Pipeline Mode Outputs (Synchronous Pipelined)
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock lo w phase 3.0 ns
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RACH RADDR hold from RCLKS 0.5 ns
RACS RADDR setup to RCLKS 1.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLKS 1.0 ns
Note: –F speed grade devices are 20% slower than th e standard numbers.
RCLKS
RPE
DO New Valid Data Out
Cycle Start
New RPE Out
RADDR New Valid
Address
RDB, RBLKB
tRACS tOCA
tRPCH
tOCH tRPCA
tCML
tCMH
tCCYC
tRACH
tRDCH
tRDCS
Old Data Out
Old RPE Out
ProASICPLUS Flash Family FPGAs
44 v3.0
Asynchronous SRAM Write
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
A WRH W AD DR hold from WB 1.0 ns
AW RS WADDR setup to WB 0.5 ns
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inactive
DWRS DI setup to WB 2.5 ns PARGEN is active
WPDA WPE access from DI 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold fr om DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRMH WB high phase 3.0 ns Inactive
WRML WB low phase 3.0 ns Active
Note: –F speed grade devices are 20% slower than th e standard numbers.
WRB, WBLKB
WADDR
WPE
DI
tAWRS
tWPDA
tAWRH
tDWRS
tWRML tWRMH
tWRCYC
tWPDH
tDWRH
v3.0 45
ProASICPLUS Flash Family FPGAs
Asynchronous SRAM Read, Address Controlled, R DB=0
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ACYC Read cycle time 7.5 ns
OAA New DO access from RADDR stable 7.5 ns
OAH Old DO hold from RADDR stable 3.0 ns
RPAA New RPE access from RADDR stable 10.0 n s
RPAH Old RPE hold from RADDR stable 3.0 ns
Note: –F speed grade devices are 20% slower than th e standard numbers.
RPE
DO
RADDR
tOAH
tRPAH tOAA
tRPAAtACYC
ProASICPLUS Flash Family FPGAs
46 v3.0
Asynchronous SRAM Read, RDB Controlled
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDMH RB high phase 3.0 ns Inactive setup to new cycle
RDML RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 3.0 ns
Note: –F speed grade devices are 20% slower than th e standard numbers.
RB=(RDB+RBLKB)
RPE
DO
tORDH
tORDA
tRPRDA
tRDMLtRDCYC
tRDMH
tRPRDH
v3.0 47
ProASICPLUS Flash Family FPGAs
Synchronous SRAM Write
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock lo w phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
W ACH W AD DR hold from WCLKS 0.5 ns
WDCS WA DDR setup to WCLKS 1.0 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is active
WPCH Old WPE va lid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS WRB & WBLKB set up to WCLKS 1.0 ns
Notes:
1. On simultaneous read and write accesses to the same location DI is output to DO.
2. –F speed gra de devices are 20% slower than the standard numbers.
WCLKS
WPE
WADDR, DI
WRB, WBLKB
Cycle Start
tWRCH, tWBCH
tWRCS, tWBCS
tDCS, tWDCStWPCH
tDCH, tWACH tWPCA
tCMH tCML
tCCYC
ProASICPLUS Flash Family FPGAs
48 v3.0
Synchronous Write and Read to the Same Location
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WCLKRCLKS WCLKS to RCLKS setup time 0.1 ns
WCLKRCLKH WCLKS to RCLKS ho ld time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
Notes:
1. This beh av io r is val i d fo r Acc ess Ti me d Out pu t an d Pi pe li ne d Mod e Out pu t . The tab le sho w s th e ti min gs of an Acce ss Ti m ed O utp ut.
2. During synchronous write and syn chronous read access to the same location, the new write data will be read out if the active write clock
edge occurs before or at the same time as the active read clock edge. T he negati ve setup time insures this behavior for WCLKS and RCLKS
driven by the same design signal.
3. If WCLK S changes after the hold time, the data will be read.
4. A setup or hold time violation will result in unknown output data.
5. –F speed gra de devices are 20% slower than the standard numbers.
* New data is read if WCLKS occurs before setup time .
The data stored is read if WCLKS occurs after hold time.
RCLKS
DO
WCLKS
tWCLKRCLKH
New Data*
Last Cycle Data
tWCLKRCLKS
tOCH
tCCYC
tCMH tCML
tOCA
v3.0 49
ProASICPLUS Flash Family FPGAs
Asynchronous Write and Synchronous Read to the Same L ocation
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
WBRCLKS WB to RCL KS setup time 0.1 ns
WBRCLKH WB to RCLKS hold time 7.0 ns
OCH Old DO valid from RCLKS 3.0 ns OCA/OCH displayed for
Access Timed Output
OCA New DO valid from RCLKS 7.5 ns
DWRRCLKS DI to RCLKS setup time 0 ns
DWRH DI to WB hold time 1.5 ns
Notes:
1. This beh av io r is val i d fo r Acc ess Ti me d Out pu t an d Pi pe li ne d Mod e Out pu t . The tab le sho w s th e ti min gs of an Acce ss Ti m ed O utp ut.
2. In asynchronous write and sy nchronous read access to the same location, the new write data will be read out if the active write signal edge
occurs before or at the same time as the active read clock edge. If WB changes to low after hold time, the data will be re ad.
3. A setup or hold time violation will resul t in unknown output data.
4. –F speed gra de devices are 20% slower than the standard numbers.
* New data is read if WB occurs before setup time.
The stored data is read if WB occurs after hold time.
WB = {WRB + WBLKB}
RCLKS
DO
tBRCLKH
New Data*
Last Cycle Data
tWRCKS
tOCH
tOCA
DI
tDWRRCLKS tDWRH
tCCYC
tCMH tCML
ProASICPLUS Flash Family FPGAs
50 v3.0
Asynchronous Write and Read to the Same Location
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access from WB 3.0 ns
OWRH Old DO valid from WB 0.5 ns
RAWRS RB or RADDR from WB 5.0 ns
RAWRH RB or RADDR from WB 5.0 ns
Notes:
1. During an asynchronous read cycl e, each write operation (synch ronous or asynchron ous) to the same location will automatically trigger
a read ope ra t io n w h ich up da te s t he r ead dat a .
2. Violati on or RAWRS wi ll distur b access to the OLD data.
3. Violatio n of RA WRH will disturb access to the NEWER data.
4. –F speed gra de devices are 20% slower than the standard numbers.
RB, RADDR
OLD NEWERNEW
tORDA
tORDH
tOWRH
tRAWRH
WB = {WRB+WBLKB}
DO
tOWRA
tRAWRS
v3.0 51
ProASICPLUS Flash Family FPGAs
Synchronous Write and Asynchronous Read to the Same L ocation
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
OWRA New DO access from WCLKS 3.0 ns
OWRH Old DO valid from WCLKS 0.5 ns
RAWCLKS RB or RADDR from WCLKS 5.0 ns
RAWCLKH RB or RADDR from WCLKS 5.0 ns
Notes:
1. During an asynchronous read cycl e, each write operation (synch ronous or asynchron ous) to the same location will automatically trigger
a read ope ra t io n w h ich up da te s t he r ead dat a .
2. Violati on of RAWCLKS will distu rb access to OLD data.
3. Violatio n of RAWCLKH will disturb access to NEWER data.
4. –F speed gra de devices are 20% slower than the standard numbers.
RB, RADDR
OLD NEW NEWER
tORDA
tORDH
tRAWCLKS
tRAWCLKH
WCLKS
DO
tOWRH
tOWRA
ProASICPLUS Flash Family FPGAs
52 v3.0
Asynchronous FIFO Full and Empty Transitions
The asynchronous FIFO accepts writes and reads while not
full or not empty. When the FIFO is full, all writes are
inhibited. Conversely, when the FIFO is empty, all reads are
inhibited. A problem is created if the FIFO is written during
the transition out of full to not full or read during the
transition out of empty to not empty. The exact time at
which the write or read operation changes from inhibited to
accepted after the read (write) signal which causes the
transition from full or empty to not full or not empty is
indeterminate. This indeterminate period starts 1 ns after
the RB (WB) transition, which deactivates full or not empty
and ends 3 ns after the RB (WB) transition for slow cycles.
For fast cycles, the indeterminate period ends 3ns (7.5 ns –
RDL (WRL)) after the RB (WB) transition, whichever is
later (Table 12).
The timing diagram for write is shown in Figure 27 on
page 53. The timing diagram for read is shown in Figure 28
on page 53. For basic SRAM configurations, see Table 9 on
page 23.
Enclosed Timing Diagrams – FIFO Mode:
Asynchronous FIFO Read
Asynchronous FIFO Write
Synchronous FIFO Read, Access Timed Output
Strobe (Synchronous Transparent)
Sync hro no u s FIFO Rea d , Pi pe li ne Mo de Out p ut s
(S ync hr ono us Pi pe l ine d )
Synchronous FIFO Write
•FIFO Reset
Table 12 Memory Block FIFO Inte rface Sign als
FIFO Signal Bits In/Out Description
WCLKS 1 IN Write clock used for synchronization on write side
RCLKS 1 IN Read clock used for synchronization on read side
LEVEL <0:7>* 8 IN Direct configuration implements static flag logic
RBLKB 1 IN Read block select (active LOW)
RDB 1 IN Read pulse (active LOW)
RESET 1 IN Reset for FIFO pointers (active LOW)
WBLKB 1 IN Write block select (active LOW)
DI<0:8> 9 IN Input data bits <0:8>, <8> will be generated if PARGEN is true
WRB 1 IN Write pulse (active LOW)
FULL, EMPTY 2 OUT FIFO flags. FULL prevents write and E MPTY prevents read
EQTH, GEQTH 2 OUT EQTH is true when the FIFO holds the number of words specified by the
LEVEL signal. GEQTH is true when the FIFO holds (LEVEL) words or more
DO<0:8> 9 OUT Output data bits <0:8>
RPE 1 OUT Read parity error (active HIGH)
WPE 1 OUT Write parity error (active HIGH)
LGDEP <0:2> 3 IN Configures DEPTH of the FIFO to 2 (LGDEP+1)
PARODD 1 IN Selects odd parity generation/detect when high, even when low
Note: *LEVEL is a lway s ei ght bits ( 000 0.0 000 , 00 00. 00 01). Th at mean s f or v alu es of DEPT H gr eate r th an 25 6, n ot a ll va l ues wi ll be p ossibl e, e.g.
for D EPTH= 512, the LEVEL can only have the values 2, 4, . . ., 512. The LEVEL signal circuit will ge nerate sign als that indicate whether
the FIFO is exactly filled to the value of LEVEL (EQTH) or filled equal or higher (GEQTH) than the specified LEVEL. Since counting
starts at 0, EQTH will become true when the FI FO holds (LEVEL+1) wo rds for 512-bit FIFOs.
v3.0 53
ProASICPLUS Flash Family FPGAs
Note: –F speed grade devices are 20% slower than the standard number s.
Figur e 27 Write Timin g Diagram
Note: –F speed grade devices are 20% slower than the standard number s.
Figur e 28 Read Timing Diagram
Write acceptedWrite inhibited
FULL
RB
Write
cycle
1 ns
3 ns
WB
Read acceptedRead inhibited
EMPTY
WB
Read
cycle
1 ns
3 ns
RB
ProASICPLUS Flash Family FPGAs
54 v3.0
Asynchronous FIFO Read
TJ = 0° C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation st atus.
Symbol txxx Description Min. Max. Units Notes
ERDH,
FRDH,
THRDH
Old EMP TY, FUL L, EQTH, & GETH valid
hold time from RB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
ERDA New EMPTY access from RB 3.01ns
FRDA FULL access from RB 3.01ns
ORDA New DO access from RB 7.5 ns
ORDH Old DO valid from RB 3.0 ns
RDCYC Read cycle time 7.5 ns
RDWRS WB , clearing EMPTY, setup to
RB 3.02ns Enabling the read operation
1.0 ns Inhibiting the read operation
RDH RB high phase 3.0 ns Inactive
RDL RB low phase 3.0 ns Active
RPRDA New RPE access from RB 9.5 ns
RPRDH Old RPE valid from RB 4.0 ns
THRDA EQTH or GETH access from RB4.5 ns
Notes:
1. At fa st cycles, ERDA and FRDA = MAX (7.5 ns – RDL), 3.0 ns.
2. At fa st cycles, RDWRS (for enabling read) = MAX (7.5 ns – WRL), 3.0ns.
3. –F speed gra de devices are 20% slower than the standard numbers.
RB=(RDB+RBLKB)
RPE
RDATA
EMPTY
EQTH, GETH
FULL
(Empty inhibits read)
Cycle Start
WB
tRDWRS tERDH, tFRDH
tERDA, tFRDA
tTHRDH
tORDH
tRPRDH
tORDA
tRDL tRDH
tRPRDA
tRDL tRDH
tTHRDA
v3.0 55
ProASICPLUS Flash Family FPGAs
Asynchronous FIFO Write
TJ = 0° C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation st atus.
Symbol txxx Description Min. Max. Units Notes
DWRH DI hold from WB 1.5 ns
DWRS DI setup to WB 0.5 ns PARGEN is inactive
DWRS DI setup to WB 2.5 ns PARGEN is active
EWRH,
FWRH,
THWRH
Old EMP TY, FUL L, EQTH, & GETH valid
hold time after WB 0.5 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
EWRA EMPTY access from WB 3.01ns
FWRA New FULL access from WB 3.01ns
THWRA EQTH or GETH access from WB 4.5 ns
WPDA WPE access from DI 3.0 ns WPE is invalid while
PARGEN is active
WPDH WPE hold fr om DI 1.0 ns
WRCYC Cycle time 7.5 ns
WRRDS RB , clearing FULL, setup to
WB 3.02ns Enabling the write operation
1.0 Inhibiting the write operation
WRH WB high phase 3.0 ns Inactive
WRL WB low phase 3.0 ns Active
Notes:
1. At fas t cycl e s, E WRA , FW R A = MAX (7.5ns – WRL), 3. 0ns.
2. At fast cycles, WRRDS (for enabling writ e) = MAX (7.5ns – RDL), 3.0ns.
3. –F speed gra de devices are 20% slower than the standard numbers.
WPE
WDATA (Full inhibits write)
WB=(WRB+WBLKB)
EMPTY
EQTH, GETH
FULL
Cycle Start
RB
tWRRDS tDWRH
tWPDH
tWPDA
tDWRS
tEWRH, tFWRH
tEWRA, tFWRA tTHWRH
tTHWRA
tWRH
tWRL tWRCYC
ProASICPLUS Flash Family FPGAs
56 v3.0
Synchronous FIFO Read, Access Timed Output Strobe (Synchronous Transparent)
TJ = 0° C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation st atus.
Symbol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock lo w phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH,
FCBH,
THCBH
Old EMP TY, FUL L, EQTH, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thr esh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 7.5 ns
OCH Old DO valid from RCLKS 3.0 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 9.5 ns
RPCH Old RPE valid from RCLKS 3.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Notes:
1. At fast cycles, ECBA and FCBA = MAX (7.5ns – CMH), 3 .0ns.
2. –F speed gra de devices are 20% slower than the standard numbers.
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out (Empty Inhibits Read)
RDB
Cycle Start
tRDCH
tOCH
tRPCH
tRDCS
tECBH, tFCBH
tECBA, tFCBA
tOCA
tRPCA
tCMH tCML
tCCYC
tTHCBH
tHCBA
v3.0 57
ProASICPLUS Flash Family FPGAs
Synchronous FIFO Read, Pipeline Mode Ou tputs (Synchronous Pipelined)
TJ = 0° C to 110°C; VDD = 2.3V to 2.7V
Note: The plot shows the normal operation st atus.
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 ns
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
ECBA New EMPTY access from RCLKS 3.01ns
FCBA FULL access from RCLKS 3.01ns
ECBH, FCBH,
THCBH Old EMPTY, FULL, EQTH, & GETH valid
hold time from RCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
OCA New DO access from RCLKS 2.0 ns
OCH Old DO valid from RCLKS 0.75 ns
RDCH RDB hold from RCLKS 0.5 ns
RDCS RDB setup to RCLKS 1.0 ns
RPCA New RPE access from RCLKS 4.0 ns
RPCH Old RPE valid from RCLK S 1.0 ns
HCBA EQTH or GETH access from RCLKS 4.5 ns
Notes:
1. At fast cycles, ECBA and FCBA = MAX (7.5 ns – CMS), 3.0 ns.
2. –F speed grade devices are 20% slower than th e standard numbers.
RCLK
RPE
RDATA
EMPTY
EQTH, GETH
FULL
Old Data Out New Valid Data Out
RDB
Cycle Start
Old RPE Out New RPE Out
tECBH, tFCBH
tRDCH
tRDCS
tOCA
tECBA, tFCBA
tTHCBH
tHCBA
tCMH tCML
tCCYC
tRPCH
tOCH
tRPCA
ProASICPLUS Flash Family FPGAs
58 v3.0
Synchronous FIFO Write
Note: The plot shows the normal operation st atus.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Sym bol txxx Description Min. Max. Units Notes
CCYC Cycle time 7.5 n s
CMH Clock high phase 3.0 ns
CML Clock low phase 3.0 ns
DCH DI hold from WCLKS 0.5 ns
DCS DI setup to WCLKS 1.0 ns
FCBA New FULL access from WCLKS 3.01ns
ECBA EMPTY access from WCLKS 3.01ns
ECBH,
FCBH,
HCBH
Old EMPTY, FULL, EQTH, & GETH valid
hold time from WCLKS 1.0 ns Empty/full/thresh are invalid
from the end of hold until the
new access is complete
HCBA EQTH or GETH access from WCLKS 4.5 ns
WPCA New WPE access from WCLKS 3.0 ns WPE is invalid while
PARGEN is ac ti ve
WPCH Old WPE valid from WCLKS 0.5 ns
WRCH,
WBCH WRB & WBLKB hold from WCLKS 0.5 ns
WRCS,
WBCS W RB & WBLKB setup to WCLKS 1.0 ns
Notes:
1. At fast cycles, ECBA and FCBA = MAX (7.5ns – CMH), 3.0ns.
2. –F speed grade devices are 20% slower than th e standard numbers.
WCLKS
WPE
DI
EMPTY
EQTH, GETH
FULL
(Full Inhibits Write)
WRB, WBLKB
Cycle Start
tWRCH, tWBCH tECBH, tFCBH
tECBA, tFCBA
tHCBA
tWRCS, tWBCS
tDCS
tWPCA
tCMH tCML
tCCYC
tWPCH
tDCH
tHCBH
v3.0 59
ProASICPLUS Flash Family FPGAs
FIFO Reset
Note: *The plot shows the normal operation status.
TJ = 0°C to 110°C; VDD = 2.3V to 2.7V
Symbol txxx Description Min. Max. Units Notes
CBRSH WCLKS or RCLKS hold from RESETB 1.5 ns Synchronous mode only
CBRSS WCLKS or RC LKS setup to RESETB 1.5 ns Synchronous mode only
ERSA New EMPTY access from RESETB 3.0 ns
FRSA FULL access from RESETB 3.0 ns
RSL RESETB low phase 7.5 ns
THRSA EQTH or GETH access from RESETB 4.5 ns
WBRSH WB hold from RESETB 1.5 ns Asynchronous mode only
WBRSS WB setup to RESETB 1.5 ns Asynchronous mode only
Note: –F speed grade devices are 20% slower than th e standard numbers.
*WB = WRB + WBL RB
RESETB
EMPTY
EQTH, GETH
FULL
WB* Cycle Start
Cycle Start
WCLKS, RCLKS
tERSA, tFRSA
tTHRSA
tCBRSS
tWBRSS
tCBRSH
tWBRSH
tRSL
ProASICPLUS Flash Family FPGAs
60 v3.0
Pin Description
User Pins
I/O User Input/Output
The I/O pin functions as an input, output, tristate, or
bidirectional buffer. Input and output signal levels are
compatible with standard LVTTL and LVCMOS
specifications. Unused I/O pins are configured as inputs
with pull-up resistors.
NC No Connect
To maintain compatibility with other Actel ProASICPLUS
products, it is recommended that this pin not be connected
to the circuitry on the board.
GL Global Pin
Low skew input pin for clock or other global signals. This pin
can be configured with an internal pull-up resistor. When it
is not connected to the global network or the clock
conditioning circuit, it can be configured and used as a
normal I/O.
GLMX Global Multiplexing Pin
Low skew input pin for clock or other global signals. This pin
can be used in one of two special ways: (Please see Actel’s
ProASICPLUS Clock Cond itioning Ci rcuits application n ote
for details).
1. When the external feedback option is selected for the
PLL block, this pin is routed as the external feedback
source to the clock conditioning circuit.
2. In applications where two different signals access the
same global net (but at different times) through the use
of GLMXx and GLMXLx macros, this pin will be fixed as
one of the source pins.
This pin can be configured with an internal pull-up resistor.
When it is not connected to the global network or the clock
conditioning circuit, it can be configured and used as any
normal I/O. If not used, a global will be configured as an
input with pull-up.
Dedicated Pins
GND Ground
Common ground supply voltage.
VDD Logic Array Power Supply Pin
2.5V supply voltage.
VDDP I/O Pad Power Supply Pin
2.5V or 3.3V supply voltage.
TMS Test Mode Select
The TMS pin controls the use of boundary-scan circuitry.
This pin has an internal pull-up resistor.
TCK Tes t Clock
Clock input pin for boundary scan (maximum 10 MHz).
Actel recommends adding a nominal 20k pull-up resistor
to this pin.
TDI Test Data In
Serial input for boundary scan. A dedicated p ull-up resistor
is included to pull this pin high when not being driven.
TDO Test Data Out
Serial output for boundary scan. Acte l recommends adding a
nominal 20k pull-up resistor to this pin.
TRST Test Reset Input
Asynchronous, active low input pin for resetting
boundary-scan circuitry. This pin has an internal pull-up
resistor.
Special Function Pins
RCK Run ning Clock
A free running clock is needed during programming if the
programmer cannot guarantee that TCK will be
uninterrupted. If not used, this pin has an internal pull-up
and can be left floating.
NPECL User Negative Input
Provides high speed clock or data signals to the PLL block.
If unused, leave the pin unconnected.
PPECL User Positive Input
Provides high speed clock or data signals to the PLL block.
If unused, leave the pin unconnected.
AVDD PLL Power Supply
Analog VDD should be VDD ( core volta ge) 2.5 V (nominal) and
be decoupled from GND with suitable decoupling capacitors
to re d uc e n oi s e . Fo r m o re inf o r ma ti on , refer t o Act e l ’s Using
ProASICPLUS Clock Conditioning Circuits application note.
If the PLLs or clock conditioning circuitry are not used in a
design, AVDD should be tied high (2.5V normal).
AGND PLL Power Ground
Analog GND should be 0V and be decoupled from GND with
suitable decoupling capacitors to reduce noise. For more
information, refer to Actel’s ProASICPLUS Clock
Conditioning Circuits application note. If the PLLs or cl ock
conditioning circuitry are not used in a des ign, AGND should
be tied to GND.
VPP Programming Supply Pin
This pin may be connected to any voltage between GND and
16.5V during normal operation, or it can be left
unconnected.2 For information on using this pin during
programming, see the Performing Internal In-System
Programming Using Actel’s ProASICPLUS Devices
application note. Actel recommends floating the pin or
connecting it to VDDP.
2. There is a nom in al 4 0k pull-up resistor on VPP.
v3.0 61
ProASICPLUS Flash Family FPGAs
VPN Programming Supply Pin
This pin may be connected to any voltage between GND and –13.8V
during normal operation, or it can be left unconnected.
3
For
information on using this pin during programming, see the
Performing Internal In-System Programming Using Actel’s
ProASICPLUS Devices
application note.
Actel recommends
floating the pin or connecti n g it to G ND.
Recommended Design Practice for
VPN/VPP
Bypass capacitors are required from VPP to GND and VPN to
GND for all ProASICPLUS devices during programming.
During the erase cycle, ProASICPLUS devices may have
current surges on the VPP and VPN power supplies . The only
way to maintain the integrity of the power distribution to
the ProASICPLUS device during these current surges is to
counteract the inductance of the finite length conductors
that distribute the power to the device. This can be
accomplished by providing a sufficient amount of bypass
capacitance between the VPP and VPN pins and GND (u sing
the shortest paths possible). Without sufficient bypass
capacitance to counter act the inductance, the VPP and VPN
pins may incur a voltage spike beyond the voltage that the
device can withstand. This issue applies to all programming
configurations.
The power supply voltage limits are defined in the “Supply
Voltages” table on page 30. The solution prevents spikes
fr om d am agi ng t he Pr oA SIC PLUS devices. Bypass capacitors
are required for the VPP and VPN pads. Use a 0.01 µF to 0.1
µF ceramic capacitor with a 25V or greater rating. To filter
low-frequency noise (decoupling), us e a 4.7 µF (low ESR, <1
<, tantalum, 25V or greater rating) capacitor. The
capacitors should be located as close to the device pins as
possible (within 2.5cm is desirable). The smaller,
high-frequency capacitor should be placed closer to the
device pins than the larger low-frequency capacitor. The
same dual capacitor circuit should be used on both the VPP
and VPN pins (Figure 29).
3. There is a nomina l 40k pull-d own resi stor on VPN.
Figur e 29 ProASICPLUS VPP and VPN Capacitor Requirements
2.5cm
0.1µF
or
0.01µFProgramming
Header
or
Supplies
4.7µF
Actel
ProASIC
Device
+
+
+
_
VPP
VPN +
_
0.1µF
or
0.01µF4.7µF
PLUS
ProASICPLUS Flash Family FPGAs
62 v3.0
Package Pin Assignments
100-Pin TQFP
100-Pin TQFP
1100
v3.0 63
ProASICPLUS Flash Family FPGAs
100-Pin TQFP
Pin
Number APA075
Function APA150
Function
1GNDGND
2 I/O I/O
3 I/O I/O
4 I/O I/O
5 I/O I/O
6 I/O I/O
7 I/O I/O
8 I/O I/O
9GNDGND
10 I/O (GLMX1) I/O (GLMX1)
11 GL1 GL1
12 AGND AGND
13 NPECL1 NPECL1
14 AVDD AVDD
15 PPECL1 (I/P) PPECL1 (I/P)
16 GL2 GL2
17 VDD VDD
18 I/O I/O
19 I/O I/O
20 I/O I/O
21 I/O I/O
22 I/O I/O
23 I/O I/O
24 I/O I/O
25 GND GND
26 VDDP VDDP
27 I/O I/O
28 I/O I/O
29 I/O I/O
30 I/O I/O
31 I/O I/O
32 I/O I/O
33 I/O I/O
34 I/O I/O
35 I/O I/O
36 I/O I/O
37 VDD VDD
38 GND GND
39 VDDP VDDP
40 GND GND
41 I/O I/O
42 I/O I/O
43 I/O I/O
44 I/O I/O
45 I/O I/O
46 I/O I/O
47 TCK TCK
48 TDI TDI
49 TMS TMS
50 VDDP VDDP
51 GND GND
52 VPP VPP
53 VPN VPN
54 TDO TDO
55 TRST TRST
56 RCK RCK
57 I/O I/O
58 I/O I/O
59 I/O I/O
60 GL3 GL3
61 PPECL2 (I/P) PPECL2 (I/P)
62 AVDD AVDD
63 NPECL2 NPECL2
64 AGND AGND
65 GL4 GL4
66 I/O (GLMX2) I/O (GLMX2)
67 GND GND
68 VDD VDD
69 I/O I/O
70 I/O I/O
71 I/O I/O
72 I/O I/O
73 I/O I/O
74 I/O I/O
75 GND GND
76 VDDP VDDP
77 I/O I/O
78 I/O I/O
79 I/O I/O
80 I/O I/O
81 I/O I/O
82 I/O I/O
83 I/O I/O
84 I/O I/O
100-Pin TQFP
Pin
Number APA075
Function APA150
Function
ProASICPLUS Flash Family FPGAs
64 v3.0
85 I/O I/O
86 GND GND
87 VDDP VDDP
88 GND GND
89 VDD VDD
90 I/O I/O
91 I/O I/O
92 I/O I/O
93 I/O I/O
94 I/O I/O
95 I/O I/O
96 I/O I/O
97 I/O I/O
98 I/O I/O
99 I/O I/O
100 VDDP VDDP
100-Pin TQFP
Pin
Number APA075
Function APA150
Function
v3.0 65
ProASICPLUS Flash Family FPGAs
Package Pin Assignments
144-Pin TQFP
1144
144-Pin
TQFP
ProASICPLUS Flash Family FPGAs
66 v3.0
144-Pin TQFP
Pin Number APA075
Function
1 I/O
2 I/O
3 I/O
4 I/O
5 I/O
6 I/O
7 I/O
8 I/O
9V
DD
10 GND
11 VDDP
12 I/O
13 I/O
14 I/O
15 GL
16 GL
17 AGND
18 NPECL
19 AVDD
20 PPECL (I/P)
21 I/O (GLMX)
22 I/O
23 I/O
24 I/O
25 I/O
26 I/O
27 GND
28 VDDP
29 I/O
30 I/O
31 I/O
32 I/O
33 I/O
34 I/O
35 I/O
36 I/O
37 I/O
38 I/O
39 I/O
40 I/O
41 I/O
42 I/O
43 I/O
44 I/O
45 VDD
46 GND
47 VDDP
48 I/O
49 I/O
50 I/O
51 I/O
52 I/O
53 I/O
54 I/O
55 I/O
56 I/O
57 I/O
58 I/O
59 I/O
60 I/O
61 I/O
62 VDD
63 GND
64 VDDP
65 I/O
66 I/O
67 I/O
68 I/O
69 TCK
70 TDI
71 TMS
72 NC
73 VPP
74 VPN
75 TDO
76 TRST
77 RCK
78 I/O
79 I/O
80 I/O
81 VDDP
82 GND
83 I/O
84 I/O
144-Pin TQFP
Pin Number APA075
Function
85 I/O
86 I/O
87 I/O
88 I/O (GLMX)
89 PPECL (I/P)
90 AVDD
91 NPECL
92 AGND
93 GL
94 GL
95 I/O
96 I/O
97 I/O
98 VDDP
99 GND
100 VDD
101 I/O
102 I/O
103 I/O
104 I/O
105 I/O
106 I/O
107 I/O
108 I/O
109 I/O
110 I/O
111 I/O
112 I/O
113 I/O
114 I/O
115 I/O
116 I/O
117 VDDP
118 GND
119 VDD
120 I/O
121 I/O
122 I/O
123 I/O
124 I/O
125 I/O
126 I/O
144-Pin TQFP
Pin Number APA075
Function
127 I/O
128 I/O
129 I/O
130 I/O
131 I/O
132 I/O
133 I/O
134 VDDP
135 GND
136 VDD
137 I/O
138 I/O
139 I/O
140 I/O
141 I/O
142 I/O
143 I/O
144 I/O
144-Pin TQFP
Pin Number APA075
Function
v3.0 67
ProASICPLUS Flash Family FPGAs
Package Pin Assignments (Continued)
208-Pin PQFP
208-Pin PQFP
1208
ProASICPLUS Flash Family FPGAs
68 v3.0
208-Pin PQFP
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
1 GND GND GND GND GND GND GND
2 I/O I/O I/O I/O I/O I/O I/O
3 I/O I/O I/O I/O I/O I/O I/O
4 I/O I/O I/O I/O I/O I/O I/O
5 I/O I/O I/O I/O I/O I/O I/O
6 I/O I/O I/O I/O I/O I/O I/O
7 I/O I/O I/O I/O I/O I/O I/O
8 I/O I/O I/O I/O I/O I/O I/O
9 I/O I/O I/O I/O I/O I/O I/O
10 I/O I/O I/O I/O I/O I/O I/O
11 I/O I/O I/O I/O I/O I/O I/O
12 I/O I/O I/O I/O I/O I/O I/O
13 I/O I/O I/O I/O I/O I/O I/O
14 I/O I/O I/O I/O I/O I/O I/O
15 I/O I/O I/O I/O I/O I/O I/O
16 VDD VDD VDD VDD VDD VDD VDD
17 GND GND GND GND GND GND GND
18 I/O I/O I/O I/O I/O I/O I/O
19 I/O I/O I/O I/O I/O I/O I/O
20 I/O I/O I/O I/O I/O I/O I/O
21 I/O I/O I/O I/O I/O I/O I/O
22 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
23 I/O (GLMX1) I/O (GLMX1) I/O (GLMX1) I/O (GLM X1) I/O (GLMX1) I/O (GLMX1) I/O (GLMX1)
24 GL1 GL1 GL1 GL1 GL1 GL1 GL1
25 AGND AGND AGND AGND AGND AGND AGND
26 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1
27 AVDD AVDD AVDD AVDD AVDD AVDD AVDD
28 PPECL1 (I /P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P)
29 GND GND GND GND GND GND GND
30 GL2 GL2 GL2 GL2 GL2 GL2 GL2
31 I/O I/O I/O I/O I/O I/O I/O
32 I/O I/O I/O I/O I/O I/O I/O
33 I/O I/O I/O I/O I/O I/O I/O
34 I/O I/O I/O I/O I/O I/O I/O
35 I/O I/O I/O I/O I/O I/O I/O
36 VDD VDD VDD VDD VDD VDD VDD
37 I/O I/O I/O I/O I/O I/O I/O
38 I/O I/O I/O I/O I/O I/O I/O
39 I/O I/O I/O I/O I/O I/O I/O
40 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
41 GND GND GND GND GND GND GND
42 I/O I/O I/O I/O I/O I/O I/O
v3.0 69
ProASICPLUS Flash Family FPGAs
43 I/O I/O I/O I/O I/O I/O I/O
44 I/O I/O I/O I/O I/O I/O I/O
45 I/O I/O I/O I/O I/O I/O I/O
46 I/O I/O I/O I/O I/O I/O I/O
47 I/O I/O I/O I/O I/O I/O I/O
48 I/O I/O I/O I/O I/O I/O I/O
49 I/O I/O I/O I/O I/O I/O I/O
50 I/O I/O I/O I/O I/O I/O I/O
51 I/O I/O I/O I/O I/O I/O I/O
52 GND GND GND GND GND GND GND
53 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
54 I/O I/O I/O I/O I/O I/O I/O
55 I/O I/O I/O I/O I/O I/O I/O
56 I/O I/O I/O I/O I/O I/O I/O
57 I/O I/O I/O I/O I/O I/O I/O
58 I/O I/O I/O I/O I/O I/O I/O
59 I/O I/O I/O I/O I/O I/O I/O
60 I/O I/O I/O I/O I/O I/O I/O
61 I/O I/O I/O I/O I/O I/O I/O
62 I/O I/O I/O I/O I/O I/O I/O
63 I/O I/O I/O I/O I/O I/O I/O
64 I/O I/O I/O I/O I/O I/O I/O
65 GND GND GND GND GND GND GND
66 I/O I/O I/O I/O I/O I/O I/O
67 I/O I/O I/O I/O I/O I/O I/O
68 I/O I/O I/O I/O I/O I/O I/O
69 I/O I/O I/O I/O I/O I/O I/O
70 I/O I/O I/O I/O I/O I/O I/O
71 VDD VDD VDD VDD VDD VDD VDD
72 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
73 I/O I/O I/O I/O I/O I/O I/O
74 I/O I/O I/O I/O I/O I/O I/O
75 I/O I/O I/O I/O I/O I/O I/O
76 I/O I/O I/O I/O I/O I/O I/O
77 I/O I/O I/O I/O I/O I/O I/O
78 I/O I/O I/O I/O I/O I/O I/O
79 I/O I/O I/O I/O I/O I/O I/O
80 I/O I/O I/O I/O I/O I/O I/O
81 GND GND GND GND GND GND GND
82 I/O I/O I/O I/O I/O I/O I/O
83 I/O I/O I/O I/O I/O I/O I/O
84 I/O I/O I/O I/O I/O I/O I/O
208-Pin PQFP (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
70 v3.0
85 I/O I/O I/O I/O I/O I/O I/O
86 I/O I/O I/O I/O I/O I/O I/O
87 I/O I/O I/O I/O I/O I/O I/O
88 VDD VDD VDD VDD VDD VDD VDD
89 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
90 I/O I/O I/O I/O I/O I/O I/O
91 I/O I/O I/O I/O I/O I/O I/O
92 I/O I/O I/O I/O I/O I/O I/O
93 I/O I/O I/O I/O I/O I/O I/O
94 I/O I/O I/O I/O I/O I/O I/O
95 I/O I/O I/O I/O I/O I/O I/O
96 I/O I/O I/O I/O I/O I/O I/O
97 GND GND GND GND GND GND GND
98 I/O I/O I/O I/O I/O I/O I/O
99 I/O I/O I/O I/O I/O I/O I/O
100 I/O I/O I/O I/O I/O I/O I/O
101 TCK TCK TCK TCK TCK TCK TCK
102 TDI TDI TDI TDI TDI TDI TDI
103TMSTMSTMSTMSTMSTMSTMS
104 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
105 GND GND GND GND GND GND GND
106 VPP VPP VPP VPP VPP VPP VPP
107 VPN VPN VPN VPN VPN VPN VPN
108 TDO TDO TDO TDO TDO TDO TDO
109 TRST TRST TRST TRST TRST TRST TRST
110 RCK RCK RCK RCK RCK RCK RCK
111 I/O I/O I/O I/O I/O I/O I/O
112 I/O I/O I/O I/O I/O I/O I/O
113 I/O I/O I/O I/O I/O I/O I/O
114 I/O I/O I/O I/O I/O I/O I/O
115 I/O I/O I/O I/O I/O I/O I/O
116 I/O I/O I/O I/O I/O I/O I/O
117 I/O I/O I/O I/O I/O I/O I/O
118 I/O I/O I/O I/O I/O I/O I/O
119 I/O I/O I/O I/O I/O I/O I/O
120 I/O I/O I/O I/O I/O I/O I/O
121 I/O I/O I/O I/O I/O I/O I/O
122 GND GND GND GND GND GND GND
123 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
124 I/O I/O I/O I/O I/O I/O I/O
125 I/O I/O I/O I/O I/O I/O I/O
126 VDD VDD VDD VDD VDD VDD VDD
208-Pin PQFP (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 71
ProASICPLUS Flash Family FPGAs
127 I/O I/O I/O I/O I/O I/O I/O
128 GL3 GL3 GL3 GL3 GL3 GL3 GL3
129 PPECL2 (I/P) PPECL2 (I/P) PPECL2 (I/P) P PECL2 (I/P) PPECL2 (I/ P) PPECL2 (I /P) PPECL2 (I /P)
130 GND GND GND GND GND GND GND
131 AVDD AVDD AVDD AVDD AVDD AVDD AVDD
132 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2
133 AGND AGND AGND AGND AGND AGND AGND
134 GL4 GL4 GL4 GL4 GL4 GL4 GL4
135 I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2)
136 I/O I/O I/O I/O I/O I/O I/O
137 I/O I/O I/O I/O I/O I/O I/O
138 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
139 I/O I/O I/O I/O I/O I/O I/O
140 I/O I/O I/O I/O I/O I/O I/O
141 GND GND GND GND GND GND GND
142 VDD VDD VDD VDD VDD VDD VDD
143 I/O I/O I/O I/O I/O I/O I/O
144 I/O I/O I/O I/O I/O I/O I/O
145 I/O I/O I/O I/O I/O I/O I/O
146 I/O I/O I/O I/O I/O I/O I/O
147 I/O I/O I/O I/O I/O I/O I/O
148 I/O I/O I/O I/O I/O I/O I/O
149 I/O I/O I/O I/O I/O I/O I/O
150 I/O I/O I/O I/O I/O I/O I/O
151 I/O I/O I/O I/O I/O I/O I/O
152 I/O I/O I/O I/O I/O I/O I/O
153 I/O I/O I/O I/O I/O I/O I/O
154 I/O I/O I/O I/O I/O I/O I/O
155 I/O I/O I/O I/O I/O I/O I/O
156 GND GND GND GND GND GND GND
157 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
158 I/O I/O I/O I/O I/O I/O I/O
159 I/O I/O I/O I/O I/O I/O I/O
160 I/O I/O I/O I/O I/O I/O I/O
161 I/O I/O I/O I/O I/O I/O I/O
162 GND GND GND GND GND GND GND
163 I/O I/O I/O I/O I/O I/O I/O
164 I/O I/O I/O I/O I/O I/O I/O
165 I/O I/O I/O I/O I/O I/O I/O
166 I/O I/O I/O I/O I/O I/O I/O
167 I/O I/O I/O I/O I/O I/O I/O
168 I/O I/O I/O I/O I/O I/O I/O
208-Pin PQFP (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
72 v3.0
169 I/O I/O I/O I/O I/O I/O I/O
170 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
171 VDD VDD VDD VDD VDD VDD VDD
172 I/O I/O I/O I/O I/O I/O I/O
173 I/O I/O I/O I/O I/O I/O I/O
174 I/O I/O I/O I/O I/O I/O I/O
175 I/O I/O I/O I/O I/O I/O I/O
176 I/O I/O I/O I/O I/O I/O I/O
177 I/O I/O I/O I/O I/O I/O I/O
178 GND GND GND GND GND GND GND
179 I/O I/O I/O I/O I/O I/O I/O
180 I/O I/O I/O I/O I/O I/O I/O
181 I/O I/O I/O I/O I/O I/O I/O
182 I/O I/O I/O I/O I/O I/O I/O
183 I/O I/O I/O I/O I/O I/O I/O
184 I/O I/O I/O I/O I/O I/O I/O
185 I/O I/O I/O I/O I/O I/O I/O
186 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
187 VDD VDD VDD VDD VDD VDD VDD
188 I/O I/O I/O I/O I/O I/O I/O
189 I/O I/O I/O I/O I/O I/O I/O
190 I/O I/O I/O I/O I/O I/O I/O
191 I/O I/O I/O I/O I/O I/O I/O
192 I/O I/O I/O I/O I/O I/O I/O
193 I/O I/O I/O I/O I/O I/O I/O
194 I/O I/O I/O I/O I/O I/O I/O
195 GND GND GND GND GND GND GND
196 I/O I/O I/O I/O I/O I/O I/O
197 I/O I/O I/O I/O I/O I/O I/O
198 I/O I/O I/O I/O I/O I/O I/O
199 I/O I/O I/O I/O I/O I/O I/O
200 I/O I/O I/O I/O I/O I/O I/O
201 I/O I/O I/O I/O I/O I/O I/O
202 I/O I/O I/O I/O I/O I/O I/O
203 I/O I/O I/O I/O I/O I/O I/O
204 I/O I/O I/O I/O I/O I/O I/O
205 I/O I/O I/O I/O I/O I/O I/O
206 I/O I/O I/O I/O I/O I/O I/O
207 I/O I/O I/O I/O I/O I/O I/O
208 VDDP VDDP VDDP VDDP VDDP VDDP VDDP
208-Pin PQFP (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 73
ProASICPLUS Flash Family FPGAs
Package Pin Assignments (Continued)
456-Pin PBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
74 v3.0
456-Pin PBGA
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
A1 VDDP VDDP VDDP VDDP VDDP VDDP
A2 VDDP VDDP VDDP VDDP VDDP VDDP
A3 NC NC I/O I/O I/O I/O
A4 NC NC I/O I/O I/O I/O
A5 NC NC I/O I/O I/O I/O
A6 NC NC I/O I/O I/O I/O
A7 NC NC I/O I/O I/O I/O
A8 I/O I/O I/O I/O I/O I/O
A9 I/O I/O I/O I/O I/O I/O
A10 I/O I/O I/O I/O I/O I/O
A11 I/O I/O I/O I/O I/O I/O
A12 I/O I/O I/O I/O I/O I/O
A13 I/O I/O I/O I/O I/O I/O
A14 I/O I/O I/O I/O I/O I/O
A15 I/O I/O I/O I/O I/O I/O
A16 I/O I/O I/O I/O I/O I/O
A17 I/O I/O I/O I/O I/O I/O
A18 I/O I/O I/O I/O I/O I/O
A19 I/O I/O I/O I/O I/O I/O
A20 NC NC I/O I/O I/O I/O
A21 NC NC I/O I/O I/O I/O
A22 NC NC I/O I/O I/O I/O
A23 NC NC I/O I/O I/O I/O
A24 NC NC I/O I/O I/O I/O
A25 VDDP VDDP VDDP VDDP VDDP VDDP
A26 VDDP VDDP VDDP VDDP VDDP VDDP
B1 VDDP VDDP VDDP VDDP VDDP VDDP
B2 VDDP VDDP VDDP VDDP VDDP VDDP
B3 NC NC NC I/O I/O I/O
B4 NC NC I/O I/O I/O I/O
B5 NC NC I/O I/O I/O I/O
B6 NC NC I/O I/O I/O I/O
B7 NC NC I/O I/O I/O I/O
B8 I/O I/O I/O I/O I/O I/O
B9 I/O I/O I/O I/O I/O I/O
B10 I/O I/O I/O I/O I/O I/O
B11 I/O I/O I/O I/O I/O I/O
B12 I/O I/O I/O I/O I/O I/O
B13 I/O I/O I/O I/O I/O I/O
B14 I/O I/O I/O I/O I/O I/O
B15 I/O I/O I/O I/O I/O I/O
B16 I/O I/O I/O I/O I/O I/O
v3.0 75
ProASICPLUS Flash Family FPGAs
B17 I/O I/O I/O I/O I/O I/O
B18 I/O I/O I/O I/O I/O I/O
B19 I/O I/O I/O I/O I/O I/O
B20 NC NC I/O I/O I/O I/O
B21 NC NC I/O I/O I/O I/O
B22 NC NC I/O I/O I/O I/O
B23 NC NC I/O I/O I/O I/O
B24 NC NC I/O I/O I/O I/O
B25 VDDP VDDP VDDP VDDP VDDP VDDP
B26 VDDP VDDP VDDP VDDP VDDP VDDP
C1 VDDP VDDP VDDP VDDP VDDP VDDP
C2 NC I/O I/O I/O I/O I/O
C3 VDDP VDDP VDDP VDDP VDDP VDDP
C4 NC NC NC I/O I/O I/O
C5 NC NC I/O I/O I/O I/O
C6 NC NC I/O I/O I/O I/O
C7 I/O I/O I/O I/O I/O I/O
C8 I/O I/O I/O I/O I/O I/O
C9 I/O I/O I/O I/O I/O I/O
C10 I/O I/O I/O I/O I/O I/O
C11 I/O I/O I/O I/O I/O I/O
C12 I/O I/O I/O I/O I/O I/O
C13 I/O I/O I/O I/O I/O I/O
C14 I/O I/O I/O I/O I/O I/O
C15 I/O I/O I/O I/O I/O I/O
C16 I/O I/O I/O I/O I/O I/O
C17 I/O I/O I/O I/O I/O I/O
C18 I/O I/O I/O I/O I/O I/O
C19 I/O I/O I/O I/O I/O I/O
C20 I/O I/O I/O I/O I/O I/O
C21 NC NC I/O I/O I/O I/O
C22 NC NC I/O I/O I/O I/O
C23 NC NC I/O I/O I/O I/O
C24 VDDP VDDP VDDP VDDP VDDP VDDP
C25 NC NC NC I/O I/O I/O
C26 NC NC NC I/O I/O I/O
D1 NC NC NC I/O I/O I/O
D2 NC NC NC I/O I/O I/O
D3 NC I/O I/O I/O I/O I/O
D4 VDDP VDDP VDDP VDDP VDDP VDDP
D5 NC NC I/O I/O I/O I/O
D6 NC NC I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
76 v3.0
D7 I/O I/O I/O I/O I/O I/O
D8 I/O I/O I/O I/O I/O I/O
D9 I/O I/O I/O I/O I/O I/O
D10 I/O I/O I/O I/O I/O I/O
D11 I/O I/O I/O I/O I/O I/O
D12 I/O I/O I/O I/O I/O I/O
D13 I/O I/O I/O I/O I/O I/O
D14 I/O I/O I/O I/O I/O I/O
D15 I/O I/O I/O I/O I/O I/O
D16 I/O I/O I/O I/O I/O I/O
D17 I/O I/O I/O I/O I/O I/O
D18 I/O I/O I/O I/O I/O I/O
D19 I/O I/O I/O I/O I/O I/O
D20 I/O I/O I/O I/O I/O I/O
D21 I/O I/O I/O I/O I/O I/O
D22 NC NC I/O I/O I/O I/O
D23 VDDP VDDP VDDP VDDP VDDP VDDP
D24 NC I/O I/O I/O I/O I/O
D25 NC NC NC I/O I/O I/O
D26 NC NC NC I/O I/O I/O
E1 NC I/O I/O I/O I/O I/O
E2 NC I/O I/O I/O I/O I/O
E3 NC I/O I/O I/O I/O I/O
E4 NC I/O I/O I/O I/O I/O
E5 VDD VDD VDD VDD VDD VDD
E6 VDD VDD VDD VDD VDD VDD
E7 VDD VDD VDD VDD VDD VDD
E8 VDD VDD VDD VDD VDD VDD
E9 I/O I/O I/O I/O I/O I/O
E10 I/O I/O I/O I/O I/O I/O
E11 I/O I/O I/O I/O I/O I/O
E12 I/O I/O I/O I/O I/O I/O
E13 I/O I/O I/O I/O I/O I/O
E14 I/O I/O I/O I/O I/O I/O
E15 I/O I/O I/O I/O I/O I/O
E16 I/O I/O I/O I/O I/O I/O
E17 I/O I/O I/O I/O I/O I/O
E18 I/O I/O I/O I/O I/O I/O
E19 I/O I/O I/O I/O I/O I/O
E20 VDD VDD VDD VDD VDD VDD
E21 VDD VDD VDD VDD VDD VDD
E22 VDD VDD VDD VDD VDD VDD
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 77
ProASICPLUS Flash Family FPGAs
E23 NC I/O I/O I/O I/O I/O
E24 NC I/O I/O I/O I/O I/O
E25 NC I/O I/O I/O I/O I/O
E26 NC I/O I/O I/O I/O I/O
F1 NC I/O I/O I/O I/O I/O
F2 NC I/O I/O I/O I/O I/O
F3 NC I/O I/O I/O I/O I/O
F4 NC I/O I/O I/O I/O I/O
F5 VDD VDD VDD VDD VDD VDD
F22 VDD VDD VDD VDD VDD VDD
F23 NC I/O I/O I/O I/O I/O
F24 NC I/O I/O I/O I/O I/O
F25 NC I/O I/O I/O I/O I/O
F26 NC I/O I/O I/O I/O I/O
G1 I/O I/O I/O I/O I/O I/O
G2 I/O I/O I/O I/O I/O I/O
G3 NC I/O I/O I/O I/O I/O
G4 NC I/O I/O I/O I/O I/O
G5 VDD VDD VDD VDD VDD VDD
G22 VDD VDD VDD VDD VDD VDD
G23 NC I/O I/O I/O I/O I/O
G24 NC I/O I/O I/O I/O I/O
G25 NC I/O I/O I/O I/O I/O
G26 I/O I/O I/O I/O I/O I/O
H1 I/O I/O I/O I/O I/O I/O
H2 I/O I/O I/O I/O I/O I/O
H3 I/O I/O I/O I/O I/O I/O
H4 I/O I/O I/O I/O I/O I/O
H5 VDD VDD VDD VDD VDD VDD
H22 VDD VDD VDD VDD VDD VDD
H23 I/O I/O I/O I/O I/O I/O
H24 I/O I/O I/O I/O I/O I/O
H25 I/O I/O I/O I/O I/O I/O
H26 I/O I/O I/O I/O I/O I/O
J1 I/O I/O I/O I/O I/O I/O
J2 I/O I/O I/O I/O I/O I/O
J3 I/O I/O I/O I/O I/O I/O
J4 I/O I/O I/O I/O I/O I/O
J5 I/O I/O I/O I/O I/O I/O
J22 I/O I/O I/O I/O I/O I/O
J23 I/O I/O I/O I/O I/O I/O
J24 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
78 v3.0
J25 I/O I/O I/O I/O I/O I/O
J26 I/O I/O I/O I/O I/O I/O
K1 I/O I/O I/O I/O I/O I/O
K2 I/O I/O I/O I/O I/O I/O
K3 I/O I/O I/O I/O I/O I/O
K4 I/O I/O I/O I/O I/O I/O
K5 I/O I/O I/O I/O I/O I/O
K22 I/O I/O I/O I/O I/O I/O
K23 I/O I/O I/O I/O I/O I/O
K24 I/O I/O I/O I/O I/O I/O
K25 I/O I/O I/O I/O I/O I/O
K26 I/O I/O I/O I/O I/O I/O
L1 I/O I/O I/O I/O I/O I/O
L2 I/O I/O I/O I/O I/O I/O
L3 I/O I/O I/O I/O I/O I/O
L4 I/O I/O I/O I/O I/O I/O
L5 I/O I/O I/O I/O I/O I/O
L11 GND GND GND GND GND GND
L12 GND GND GND GND GND GND
L13 GND GND GND GND GND GND
L14 GND GND GND GND GND GND
L15 GND GND GND GND GND GND
L16 GND GND GND GND GND GND
L22 I/O I/O I/O I/O I/O I/O
L23 I/O I/O I/O I/O I/O I/O
L24 I/O I/O I/O I/O I/O I/O
L25 I/O I/O I/O I/O I/O I/O
L26 I/O I/O I/O I/O I/O I/O
M1 GL1GL1GL1GL1GL1GL1
M2 GL2GL2GL2GL2GL2GL2
M3 I/O I/O I/O I/O I/O I/O
M4 I/O I/O I/O I/O I/O I/O
M5 I/O I/O I/O I/O I/O I/O
M11 GND GND GND GND GND GND
M12 GND GND GND GND GND GND
M13 GND GND GND GND GND GND
M14 GND GND GND GND GND GND
M15 GND GND GND GND GND GND
M16 GND GND GND GND GND GND
M22 GL4 GL4 GL4 GL4 GL4 GL4
M23 I/O I/O I/O I/O I/O I/O
M24 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 79
ProASICPLUS Flash Family FPGAs
M25 I/O I/O I/O I/O I/O I/O
M26 I/O I/O I/O I/O I/O I/O
N1 I/O I/O I/O I/O I/O I/O
N2 I/O (GLMX1) I/O (GLMX)1 I/O (GLMX1) I/O (GLMX1) I/O (GLMX1) I/O (GLMX1)
N3 AGND AGND AGND AGND AGND AGND
N4 PPECL1 (I/P) PPECL1 ( I/P) PPECL1 (I /P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P)
N5 AVDD AVDD AVDD AVDD AVDD AVDD
N11 GND GND GND GND GND GND
N12 GND GND GND GND GND GND
N13 GND GND GND GND GND GND
N14 GND GND GND GND GND GND
N15 GND GND GND GND GND GND
N16 GND GND GND GND GND GND
N22 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2 NPECL2
N23 GL3 GL3 GL3 GL3 GL3 GL3
N24 AVDDAVDDAVDDAVDDAVDDAVDD
N25 I/O (GLMX2) I/O (GLMX) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2)
N26 AGND AGND AGND AGND AGND AGND
P1 I/O I/O I/O I/O I/O I/O
P2 I/O I/O I/O I/O I/O I/O
P3 I/O I/O I/O I/O I/O I/O
P4 I/O I/O I/O I/O I/O I/O
P5 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1 NPECL1
P11 GND GND GND GND GND GND
P12 GND GND GND GND GND GND
P13 GND GND GND GND GND GND
P14 GND GND GND GND GND GND
P15 GND GND GND GND GND GND
P16 GND GND GND GND GND GND
P22 I/O I/O I/O I/O I/O I/O
P23 I/O I/O I/O I/O I/O I/O
P24 I/O I/O I/O I/O I/O I/O
P25 I/O I/O I/O I/O I/O I/O
P26 PPECL2 (I/P) PPECL2 (I/P) PPECL2 (I/P) PPECL 2 (I/P) PPECL2 (I/P) PPECL2 (I/P)
R1 I/O I/O I/O I/O I/O I/O
R2 I/O I/O I/O I/O I/O I/O
R3 I/O I/O I/O I/O I/O I/O
R4 I/O I/O I/O I/O I/O I/O
R5 I/O I/O I/O I/O I/O I/O
R11 GND GND GND GND GND GND
R12 GND GND GND GND GND GND
R13 GND GND GND GND GND GND
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
80 v3.0
R14 GND GND GND GND GND GND
R15 GND GND GND GND GND GND
R16 GND GND GND GND GND GND
R22 I/O I/O I/O I/O I/O I/O
R23 I/O I/O I/O I/O I/O I/O
R24 I/O I/O I/O I/O I/O I/O
R25 I/O I/O I/O I/O I/O I/O
R26 I/O I/O I/O I/O I/O I/O
T1 I/O I/O I/O I/O I/O I/O
T2 I/O I/O I/O I/O I/O I/O
T3 I/O I/O I/O I/O I/O I/O
T4 I/O I/O I/O I/O I/O I/O
T5 I/O I/O I/O I/O I/O I/O
T11 GND GND GND GND GND GND
T12 GND GND GND GND GND GND
T13 GND GND GND GND GND GND
T14 GND GND GND GND GND GND
T15 GND GND GND GND GND GND
T16 GND GND GND GND GND GND
T22 I/O I/O I/O I/O I/O I/O
T23 I/O I/O I/O I/O I/O I/O
T24 I/O I/O I/O I/O I/O I/O
T25 I/O I/O I/O I/O I/O I/O
T26 I/O I/O I/O I/O I/O I/O
U1 I/O I/O I/O I/O I/O I/O
U2 I/O I/O I/O I/O I/O I/O
U3 I/O I/O I/O I/O I/O I/O
U4 I/O I/O I/O I/O I/O I/O
U5 I/O I/O I/O I/O I/O I/O
U22 I/O I/O I/O I/O I/O I/O
U23 I/O I/O I/O I/O I/O I/O
U24 I/O I/O I/O I/O I/O I/O
U25 I/O I/O I/O I/O I/O I/O
U26 I/O I/O I/O I/O I/O I/O
V1 I/O I/O I/O I/O I/O I/O
V2 I/O I/O I/O I/O I/O I/O
V3 I/O I/O I/O I/O I/O I/O
V4 I/O I/O I/O I/O I/O I/O
V5 I/O I/O I/O I/O I/O I/O
V22 I/O I/O I/O I/O I/O I/O
V23 I/O I/O I/O I/O I/O I/O
V24 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 81
ProASICPLUS Flash Family FPGAs
V25 I/O I/O I/O I/O I/O I/O
V26 I/O I/O I/O I/O I/O I/O
W1 I/O I/O I/O I/O I/O I/O
W2 I/O I/O I/O I/O I/O I/O
W3 I/O I/O I/O I/O I/O I/O
W4 I/O I/O I/O I/O I/O I/O
W5 VDD VDD VDD VDD VDD VDD
W22 VDD VDD VDD VDD VDD VDD
W23 I/O I/O I/O I/O I/O I/O
W24 I/O I/O I/O I/O I/O I/O
W25 I/O I/O I/O I/O I/O I/O
W26 I/O I/O I/O I/O I/O I/O
Y1 I/O I/O I/O I/O I/O I/O
Y2 I/O I/O I/O I/O I/O I/O
Y3 I/O I/O I/O I/O I/O I/O
Y4 NC I/O I/O I/O I/O I/O
Y5 VDD VDD VDD VDD VDD VDD
Y22 VDD VDD VDD VDD VDD VDD
Y23 NC I/O I/O I/O I/O I/O
Y24 NC I/O I/O I/O I/O I/O
Y25 NC I/O I/O I/O I/O I/O
Y26 NC I/O I/O I/O I/O I/O
AA1 I/O I/O I/O I/O I/O I/O
AA2 NC I/O I/O I/O I/O I/O
AA3 NC I/O I/O I/O I/O I/O
AA4 NC I/O I/O I/O I/O I/O
AA5 VDD VDD VDD VDD VDD VDD
AA22 VDD VDD VDD VDD VDD VDD
AA23 NC I/O I/O I/O I/O I/O
AA24 NC I/O I/O I/O I/O I/O
AA25 NC I/O I/O I/O I/O I/O
AA26 NC I/O I/O I/O I/O I/O
AB1 NC I/O I/O I/O I/O I/O
AB2 NC I/O I/O I/O I/O I/O
AB3 NC I/O I/O I/O I/O I/O
AB4 NC I/O I/O I/O I/O I/O
AB5 VDD VDD VDD VDD VDD VDD
AB6 VDD VDD VDD VDD VDD VDD
AB7 VDD VDD VDD VDD VDD VDD
AB8 I/O I/O I/O I/O I/O I/O
AB9 I/O I/O I/O I/O I/O I/O
AB10 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
82 v3.0
AB11 I/O I/O I/O I/O I/O I/O
AB12 I/O I/O I/O I/O I/O I/O
AB13 I/O I/O I/O I/O I/O I/O
AB14 I/O I/O I/O I/O I/O I/O
AB15 I/O I/O I/O I/O I/O I/O
AB16 I/O I/O I/O I/O I/O I/O
AB17 I/O I/O I/O I/O I/O I/O
AB18 I/O I/O I/O I/O I/O I/O
AB19 I/O I/O I/O I/O I/O I/O
AB20 VDD VDD VDD VDD VDD VDD
AB21 VDD VDD VDD VDD VDD VDD
AB22 VDD VDD VDD VDD VDD VDD
AB23 NC I/O I/O I/O I/O I/O
AB24 NC I/O I/O I/O I/O I/O
AB25 NC I/O I/O I/O I/O I/O
AB26 NC NC NC I/O I/O I/O
AC1 NC I/O I/O I/O I/O I/O
AC2 NC I/O I/O I/O I/O I/O
AC3 NC I/O I/O I/O I/O I/O
AC4 VDDP VDDP VDDP VDDP VDDP VDDP
AC5 NC NC I/O I/O I/O I/O
AC6 I/O I/O I/O I/O I/O I/O
AC7 I/O I/O I/O I/O I/O I/O
AC8 I/O I/O I/O I/O I/O I/O
AC9 I/O I/O I/O I/O I/O I/O
AC10 I/O I/O I/O I/O I/O I/O
AC11 I/O I/O I/O I/O I/O I/O
AC12 I/O I/O I/O I/O I/O I/O
AC13 I/O I/O I/O I/O I/O I/O
AC14 I/O I/O I/O I/O I/O I/O
AC15 I/O I/O I/O I/O I/O I/O
AC16 I/O I/O I/O I/O I/O I/O
AC17 I/O I/O I/O I/O I/O I/O
AC18 I/O I/O I/O I/O I/O I/O
AC19 I/O I/O I/O I/O I/O I/O
AC2 0 I/O I/O I/O I/O I/O I/O
AC21 TMS TMS TMS TMS TMS TMS
AC22TDOTDOTDOTDOTDOTDO
AC23 V DDP VDDP VDDP VDDP VDDP VDDP
AC24 RCK RCK RCK RCK RCK RCK
AC25 NC NC I/O I/O I/O I/O
AC26 NC I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 83
ProASICPLUS Flash Family FPGAs
AD1 NC NC NC I/O I/O I/O
AD2 NC I/O I/O I/O I/O I/O
AD3 VDDP VDDP VDDP VDDP VDDP VDDP
AD4 NC NC I/O I/O I/O I/O
AD5 NC NC I/O I/O I/O I/O
AD6 NC NC I/O I/O I/O I/O
AD7 I/O I/O I/O I/O I/O I/O
AD8 I/O I/O I/O I/O I/O I/O
AD9 I/O I/O I/O I/O I/O I/O
AD10 I/O I/O I/O I/O I/O I/O
AD11 I/O I/O I/O I/O I/O I/O
AD12 I/O I/O I/O I/O I/O I/O
AD13 I/O I/O I/O I/O I/O I/O
AD14 I/O I/O I/O I/O I/O I/O
AD15 I/O I/O I/O I/O I/O I/O
AD16 I/O I/O I/O I/O I/O I/O
AD17 I/O I/O I/O I/O I/O I/O
AD18 I/O I/O I/O I/O I/O I/O
AD19 I/O I/O I/O I/O I/O I/O
AD20 NC NC I/O I/O I/O I/O
AD21 TCK TCK TCK TCK TCK TCK
AD22 VPP VPP VPP VPP VPP VPP
AD23 NC NC NC I/O I/O I/O
AD24 V DDP VDDP VDDP VDDP VDDP VDDP
AD25 NC NC I/O I/O I/O I/O
AD26 NC NC I/O I/O I/O I/O
AE1 VDDP VDDP VDDP VDDP VDDP VDDP
AE2 VDDP VDDP VDDP VDDP VDDP VDDP
AE3 NC NC I/O I/O I/O I/O
AE4 NC NC I/O I/O I/O I/O
AE5 NC NC I/O I/O I/O I/O
AE6 NC NC I/O I/O I/O I/O
AE7 NC NC I/O I/O I/O I/O
AE8 I/O I/O I/O I/O I/O I/O
AE9 I/O I/O I/O I/O I/O I/O
AE10 I/O I/O I/O I/O I/O I/O
AE11 I/O I/O I/O I/O I/O I/O
AE12 I/O I/O I/O I/O I/O I/O
AE13 I/O I/O I/O I/O I/O I/O
AE14 I/O I/O I/O I/O I/O I/O
AE15 I/O I/O I/O I/O I/O I/O
AE16 I/O I/O I/O I/O I/O I/O
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
84 v3.0
AE17 I/O I/O I/O I/O I/O I/O
AE18 I/O I/O I/O I/O I/O I/O
AE19 I/O I/O I/O I/O I/O I/O
AE20 NC NC I/O I/O I/O I/O
AE21 NC NC I/O I/O I/O I/O
AE22 NC NC I/O I/O I/O I/O
AE23 VPN VPN VPN VPN VPN VPN
AE24 TRST TRST TRST TRST TRST TRST
AE25 VDDP VDDP VDDP VDDP VDDP VDDP
AE26 VDDP VDDP VDDP VDDP VDDP VDDP
AF1 VDDP VDDP VDDP VDDP VDDP VDDP
AF2 VDDP VDDP VDDP VDDP VDDP VDDP
AF3 NC NC I/O I/O I/O I/O
AF4 NC NC I/O I/O I/O I/O
AF5 NC NC I/O I/O I/O I/O
AF6 NC NC I/O I/O I/O I/O
AF7 NC NC I/O I/O I/O I/O
AF8 NC NC NC I/O I/O I/O
AF9 I/O I/O I/O I/O I/O I/O
AF10 I/O I/O I/O I/O I/O I/O
AF11 I/O I/O I/O I/O I/O I/O
AF12 I/O I/O I/O I/O I/O I/O
AF13 I/O I/O I/O I/O I/O I/O
AF14 I/O I/O I/O I/O I/O I/O
AF15 I/O I/O I/O I/O I/O I/O
AF16 I/O I/O I/O I/O I/O I/O
AF17 I/O I/O I/O I/O I/O I/O
AF18 NC NC I/O I/O I/O I/O
AF19 NC NC I/O I/O I/O I/O
AF20 NC NC I/O I/O I/O I/O
AF21 NC NC I/O I/O I/O I/O
AF22 NC NC I/O I/O I/O I/O
AF23 TDI TDI TDI TDI TDI TDI
AF24 NC NC I/O I/O I/O I/O
AF25 VDDP VDDP VDDP VDDP VDDP VDDP
AF26 VDDP VDDP VDDP VDDP VDDP VDDP
456-Pin PBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function APA750
Function APA1000
Function
v3.0 85
ProASICPLUS Flash Family FPGAs
Package Assignments (Continued)
144-FBGA (Bottom View)
1
2
34567
89
101112
A
B
C
D
E
F
G
H
J
K
L
M
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
86 v3.0
144-FBGA Pin
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function
A1 I/O I/O I/O I/O
A2 I/O I/O I/O I/O
A3 I/O I/O I/O I/O
A4 I/O I/O I/O I/O
A5 I/O I/O I/O I/O
A6 GND GND GND GND
A7 I/O I/O I/O I/O
A8 VDD VDD VDD VDD
A9 I/O I/O I/O I/O
A10 I/O I/O I/O I/O
A11 I/O I/O I/O I/O
A12 I/O I/O I/O I/O
B1 I/O I/O I/O I/O
B2 GND GND GND GND
B3 I/O I/O I/O I/O
B4 I/O I/O I/O I/O
B5 I/O I/O I/O I/O
B6 I/O I/O I/O I/O
B7 I/O I/O I/O I/O
B8 I/O I/O I/O I/O
B9 I/O I/O I/O I/O
B10 I/O I/O I/O I/O
B11 GND GND GND GND
B12 I/O I/O I/O I/O
C1 I/O I/O I/O I/O
C2 GL2 GL2 GL2 GL2
C3 I/O I/O I/O I/O
C4 VDD VDD VDD VDD
C5 I/O I/O I/O I/O
C6 I/O I/O I/O I/O
C7 I/O I/O I/O I/O
C8 I/O I/O I/O I/O
C9 I/O I/O I/O I/O
C10 I/O I/O I/O I/O
C11 I/O I/O I/O I/O
C12 I/O I/O I/O I/O
D1 I/O I/O I/O I/O
D2 I/O I/O I/O I/O
D3 I/O I/O I/O I/O
D4 I/O I/O I/O I/O
D5 I/O I/O I/O I/O
D6 I/O I/O I/O I/O
D7 I/O I/O I/O I/O
D8 I/O I/O I/O I/O
D9 I/O I/O I/O I/O
D10 I/O I/O I/O I/O
D11 I/O I/O I/O I/O
D12 I/O
(GLMX2) I/O
(GLMX2) I/O
(GLMX2) I/O
(GLMX2)
E1 VDD VDD VDD VDD
E2 I/O I/O I/O I/O
E3 I/O I/O I/O I/O
E4 VDDP VDDP VDDP VDDP
E5 I/O I/O I/O I/O
E6 VDDP VDDP VDDP VDDP
E7 VDDP VDDP VDDP VDDP
E8 AVDD AVDD AVDD AVDD
E9 VDDP VDDP VDDP VDDP
E10 VDD VDD VDD VDD
E11 NPECL2 NPECL2 NPECL2 NPECL2
E12 AGND AGND AGND AGND
F1GL1GL1GL1GL1
F2 AGND AGND AGND AGND
F3 I/O
(GLMX1) I/O
(GLMX1) I/O
(GLMX1) I/O
(GLMX1)
F4 I/O I/O I/O I/O
F5 GND GND GND GND
F6 GND GND GND GND
F7 GND GND GND GND
F8 I/O I/O I/O I/O
F9GL4GL4GL4GL4
F10 GND GND GND GND
F11 PPECL2
(I/P) PPECL2
(I/P) PPECL2
(I/P) PPECL2
(I/P)
F12 GL3 GL3 GL3 GL3
G1 PPECL1
(I/P) PPECL1
(I/P) PPECL1
(I/P) PPECL1
(I/P)
G2 GND GND GND GND
G3 AVDD AVDD AVDD AVDD
G4 NPECL1 NPECL1 NPECL1 NPECL1
G5 GND GND GND GND
G6 GND GND GND GND
G7 GND GND GND GND
G8 I/O I/O I/O I/O
G9 I/O I/O I/O I/O
144-FBGA Pin (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function
v3.0 87
ProASICPLUS Flash Family FPGAs
G10 I/O I/O I/O I/O
G11 I/O I/O I/O I/O
G12 I/O I/O I/O I/O
H1 VDD VDD VDD VDD
H2 I/O I/O I/O I/O
H3 I/O I/O I/O I/O
H4 I/O I/O I/O I/O
H5 VDD VDD VDD VDD
H6 I/O I/O I/O I/O
H7 I/O I/O I/O I/O
H8 I/O I/O I/O I/O
H9 I/O I/O I/O I/O
H10 VDDP VDDP VDDP VDDP
H11 I/O I/O I/O I/O
H12 VDD VDD VDD VDD
J1 I/O I/O I/O I/O
J2 I/O I/O I/O I/O
J3 VDDP VDDP VDDP VDDP
J4 I/O I/O I/O I/O
J5 I/O I/O I/O I/O
J6 I/O I/O I/O I/O
J7 VDD VDD VDD VDD
J8TCKTCKTCKTCK
J9 I/O I/O I/O I/O
J10 TDO TDO TDO TDO
J11 I/O I/O I/O I/O
J12 I/O I/O I/O I/O
K1 I/O I/O I/O I/O
K2 I/O I/O I/O I/O
K3 I/O I/O I/O I/O
K4 I/O I/O I/O I/O
K5 I/O I/O I/O I/O
K6 I/O I/O I/O I/O
K7 GND GND GND GND
K8 I/O I/O I/O I/O
K9 I/O I/O I/O I/O
K10 GND GND GND GND
K11 I/O I/O I/O I/O
K12 I/O I/O I/O I/O
L1 GND GND GND GND
L2 I/O I/O I/O I/O
L3 I/O I/O I/O I/O
144-FBGA Pin (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function
L4 I/O I/O I/O I/O
L5 VDDP VDDP VDDP VDDP
L6 I/O I/O I/O I/O
L7 I/O I/O I/O I/O
L8 I/O I/O I/O I/O
L9 TMS TMS TMS TMS
L10 RCK RCK RCK RCK
L11 I/O I/O I/O I/O
L12 TRST TRST TRST TRST
M1 I/O I/O I/O I/O
M2 I/O I/O I/O I/O
M3 I/O I/O I/O I/O
M4 I/O I/O I/O I/O
M5 I/O I/O I/O I/O
M6 I/O I/O I/O I/O
M7 I/O I/O I/O I/O
M8 I/O I/O I/O I/O
M9 TDI TDI TDI TDI
M10 VDDP VDDP VDDP VDDP
M11 VPP VPP VPP VPP
M12 VPN VPN VPN VPN
144-FBGA Pin (Continued)
Pin
Number APA075
Function APA150
Function APA300
Function APA450
Function
ProASICPLUS Flash Family FPGAs
88 v3.0
Package Assignments (Continued)
256-FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
16
C
E
G
J
L
N
R
D
F
H
K
M
P
T
B
A
A1 Ball Pad Corner
v3.0 89
ProASICPLUS Flash Family FPGAs
256-Pin FBGA
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
A1 GND GND GND GND
A2 I/O I/O I/O I/O
A3 I/O I/O I/O I/O
A4 I/O I/O I/O I/O
A5 I/O I/O I/O I/O
A6 I/O I/O I/O I/O
A7 I/O I/O I/O I/O
A8 I/O I/O I/O I/O
A9 I/O I/O I/O I/O
A10 I/O I/O I/O I/O
A11 I/O I/O I/O I/O
A12 I/O I/O I/O I/O
A13 I/O I/O I/O I/O
A14 I/O I/O I/O I/O
A15 I/O I/O I/O I/O
A16 GND GND GND GND
B1 I/O I/O I/O I/O
B2 I/O I/O I/O I/O
B3 I/O I/O I/O I/O
B4 I/O I/O I/O I/O
B5 I/O I/O I/O I/O
B6 I/O I/O I/O I/O
B7 I/O I/O I/O I/O
B8 I/O I/O I/O I/O
B9 I/O I/O I/O I/O
B10 I/O I/O I/O I/O
B11 I/O I/O I/O I/O
B12 I/O I/O I/O I/O
B13 I/O I/O I/O I/O
B14 I/O I/O I/O I/O
B15 I/O I/O I/O I/O
B16 I/O I/O I/O I/O
C1 I/O I/O I/O I/O
C2 I/O I/O I/O I/O
C3 I/O I/O I/O I/O
C4 I/O I/O I/O I/O
C5 I/O I/O I/O I/O
C6 I/O I/O I/O I/O
C7 I/O I/O I/O I/O
C8 I/O I/O I/O I/O
C9 I/O I/O I/O I/O
C10 I/O I/O I/O I/O
C11 I/O I/O I/O I/O
C12 I/O I/O I/O I/O
C13 I/O I/O I/O I/O
ProASICPLUS Flash Family FPGAs
90 v3.0
C14 I/O I/O I/O I/O
C15 I/O I/O I/O I/O
C16 I/O I/O I/O I/O
D1 I/O I/O I/O I/O
D2 I/O I/O I/O I/O
D3 I/O I/O I/O I/O
D4 I/O I/O I/O I/O
D5 I/O I/O I/O I/O
D6 I/O I/O I/O I/O
D7 I/O I/O I/O I/O
D8 I/O I/O I/O I/O
D9 I/O I/O I/O I/O
D10 I/O I/O I/O I/O
D11 I/O I/O I/O I/O
D12 I/O I/O I/O I/O
D13 I/O I/O I/O I/O
D14 I/O I/O I/O I/O
D15 I/O I/O I/O I/O
D16 I/O I/O I/O I/O
E1 I/O I/O I/O I/O
E2 I/O I/O I/O I/O
E3 I/O I/O I/O I/O
E4 I/O I/O I/O I/O
E5 I/O I/O I/O I/O
E6 VDDP VDDP VDDP VDDP
E7 VDDP VDDP VDDP VDDP
E8 I/O I/O I/O I/O
E9 I/O I/O I/O I/O
E1 0 VDDP VDDP VDDP VDDP
E11 VDDP VDDP VDDP VDDP
E12 I/O I/O I/O I/O
E13 I/O I/O I/O I/O
E14 I/O I/O I/O I/O
E15 I/O I/O I/O I/O
E16 I/O I/O I/O I/O
F1 I/O I/O I/O I/O
F2 I/O I/O I/O I/O
F3 I/O I/O I/O I/O
F4 I/O I/O I/O I/O
F5 VDDP VDDP VDDP VDDP
F6 GND GND GND GND
F7 VDD VDD VDD VDD
F8 VDD VDD VDD VDD
F9 VDD VDD VDD VDD
F10 VDD VDD VDD VDD
256-Pin FBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
v3.0 91
ProASICPLUS Flash Family FPGAs
F11 GND GND GND GND
F12 VDDP VDDP VDDP VDDP
F13 I/O I/O I/O I/O
F14 I/O I/O I/O I/O
F15 I/O I/O I/O I/O
F16 I/O I/O I/O I/O
G1 I/O I/O I/O I/O
G2 I/O I/O I/O I/O
G3 I/O I/O I/O I/O
G4 I/O I/O I/O I/O
G5 VDDP VDDP VDDP VDDP
G6 VDD VDD VDD VDD
G7 GND GND GND GND
G8 GND GND GND GND
G9 GND GND GND GND
G10 GND GND GND GND
G11 VDD VDD VDD VDD
G12 VDDP VDDP VDDP VDDP
G13 I/O I/O I/O I/O
G14 I/O I/O I/O I/O
G15 I/O I/O I/O I/O
G16 I/O I/O I/O I/O
H1 GL1 GL1 GL1 GL1
H2 NPECL1 NPECL 1 NPECL1 NPECL1
H3 I/O (GLMX1) I/O (GLMX1) I/O (GLMX1) I/O (GLMX1)
H4 AGND AGND AGND AGND
H5 I/O I/O I/O I/O
H6 VDD VDD VDD VDD
H7 GND GND GND GND
H8 GND GND GND GND
H9 GND GND GND GND
H10 GND GND GND GND
H11 VDD VDD VDD VDD
H12 I/O I/O I/O I/O
H13 I/O (GLMX2) I/O (GLMX2) I/O (GLMX2) I/O (GLMX2)
H14 NPECL2 NPECL 2 NPECL2 NPECL2
H15 AGND AGND AGND AGND
H16 GL4 GL4 GL4 GL4
J1 GL2 GL2 GL2 GL2
J2 PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P) PPECL1 (I/P)
J3 AVDD AVDD AVDD AVDD
J4 I/O I/O I/O I/O
J5 I/O I/O I/O I/O
J6 VDD VDD VDD VDD
J7 GND GND GND G ND
256-Pin FBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
ProASICPLUS Flash Family FPGAs
92 v3.0
J8 GND GND GND GND
J9 GND GND GND GND
J10 GND GND GND GND
J11 VDD VDD VDD VDD
J12 I/O I/O I/O I/O
J13 PPECL2 (I/P) PPECL2 (I/P) PPECL2 (I/P) PPECL2 (I/P)
J14 I/O I/O I/O I/O
J15 AVDD AVDD AVDD AVDD
J16 GL3 GL3 GL3 GL3
K1 I/O I/O I/O I/O
K2 I/O I/O I/O I/O
K3 I/O I/O I/O I/O
K4 I/O I/O I/O I/O
K5 VDDP VDDP VDDP VDDP
K6 VDD VDD VDD VDD
K7 GND GND GND GND
K8 GND GND GND GND
K9 GND GND GND GND
K10 GND GND GND GND
K11 VDD VDD VDD VDD
K1 2 VDDP VDDP VDDP VDDP
K13 I/O I/O I/O I/O
K14 I/O I/O I/O I/O
K15 I/O I/O I/O I/O
K16 I/O I/O I/O I/O
L1 I/O I/O I/O I/O
L2 I/O I/O I/O I/O
L3 I/O I/O I/O I/O
L4 I/O I/O I/O I/O
L5 VDDP VDDP VDDP VDDP
L6 GND GND GND GND
L7 VDD VDD VDD VDD
L8 VDD VDD VDD VDD
L9 VDD VDD VDD VDD
L10 VDD VDD VDD VDD
L11 GND GND GND GND
L12 VDDP VDDP VDDP VDDP
L13 I/O I/O I/O I/O
L14 I/O I/O I/O I/O
L15 I/O I/O I/O I/O
L16 I/O I/O I/O I/O
M1 I/O I/O I/O I/O
M2 I/O I/O I/O I/O
M3 I/O I/O I/O I/O
M4 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
v3.0 93
ProASICPLUS Flash Family FPGAs
M5 I/O I/O I/O I/O
M6 VDDP VDDP VDDP VDDP
M7 VDDP VDDP VDDP VDDP
M8 I/O I/O I/O I/O
M9 I/O I/O I/O I/O
M10 VDDP VDDP VDDP VDDP
M11 VDDP VDDP VDDP VDDP
M12 I/O I/O I/O I/O
M13 I/O I/O I/O I/O
M14 I/O I/O I/O I/O
M15 I/O I/O I/O I/O
M16 I/O I/O I/O I/O
N1 I/O I/O I/O I/O
N2 I/O I/O I/O I/O
N3 I/O I/O I/O I/O
N4 I/O I/O I/O I/O
N5 I/O I/O I/O I/O
N6 I/O I/O I/O I/O
N7 I/O I/O I/O I/O
N8 I/O I/O I/O I/O
N9 I/O I/O I/O I/O
N10 I/O I/O I/O I/O
N11 I/O I/O I/O I/O
N12 I/O I/O I/O I/O
N13 I/O I/O I/O I/O
N14 RCK RCK RCK RCK
N15 I/O I/O I/O I/O
N16 I/O I/O I/O I/O
P1 I/O I/O I/O I/O
P2 I/O I/O I/O I/O
P3 I/O I/O I/O I/O
P4 I/O I/O I/O I/O
P5 I/O I/O I/O I/O
P6 I/O I/O I/O I/O
P7 I/O I/O I/O I/O
P8 I/O I/O I/O I/O
P9 I/O I/O I/O I/O
P10 I/O I/O I/O I/O
P11 I/O I/O I/O I/O
P12 I/O I/O I/O I/O
P13 TCK TCK TCK TCK
P1 4 VPP VPP VPP VPP
P15 TRST T RST T RST T RST
P16 I/O I/O I/O I/O
R1 I/O I/O I/O I/O
256-Pin FBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
ProASICPLUS Flash Family FPGAs
94 v3.0
R2 I/O I/O I/O I/O
R3 I/O I/O I/O I/O
R4 I/O I/O I/O I/O
R5 I/O I/O I/O I/O
R6 I/O I/O I/O I/O
R7 I/O I/O I/O I/O
R8 I/O I/O I/O I/O
R9 I/O I/O I/O I/O
R10 I/O I/O I/O I/O
R11 I/O I/O I/O I/O
R12 I/O I/O I/O I/O
R13 I/O I/O I/O I/O
R14 TDI TDI TDI TDI
R15 VPN VPN VPN VPN
R16 TDO TDO TDO TDO
T1 GND GND GND GND
T2 I/O I/O I/O I/O
T3 I/O I/O I/O I/O
T4 I/O I/O I/O I/O
T5 I/O I/O I/O I/O
T6 I/O I/O I/O I/O
T7 I/O I/O I/O I/O
T8 I/O I/O I/O I/O
T9 I/O I/O I/O I/O
T10 I/O I/O I/O I/O
T11 I/O I/O I/O I/O
T12 I/O I/O I/O I/O
T13 I/O I/O I/O I/O
T14 I/O I/O I/O I/O
T15 TMS TMS TMS TMS
T16 GND GND GND GND
256-Pin FBGA (Continued)
Pin
Number APA150
Function APA300
Function APA450
Function APA600
Function
v3.0 95
ProASICPLUS Flash Family FPGAs
Package Assignments (Continued)
484-Pin FBGA (Bottom View)
1
3
5
791113
15 246
8
101214
22 19 18 17 16
C
E
G
J
L
N
R
D
F
H
K
M
P
AB
AA
Y
W
V
U
T
B
A
21 20
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
96 v3.0
484-Pin FBGA
Pin
Number APA450
Function APA600
Function
A1 GND GND
A2 GND GND
A3 VDDP VDDP
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 VDDP VDDP
A21 GND GND
A22 GND GND
B1 GND GND
B2 VDDP VDDP
B3 I/O I/O
B4 I/O I/O
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 VDDP VDDP
B22 GND GND
C1 VDDP VDDP
C2 NC I/O
C3 I/O I/O
C4 I/O I/O
C5 GND GND
C6 I/O I/O
C7 I/O I/O
C8 VDD VDD
C9 VDD VDD
C10 I/O I/O
C11 I/O I/O
C12 NC I/O
C13 NC I/O
C14 VDD VDD
C15 VDD VDD
C16 NC I/O
C17 I/O I/O
C18 GND GND
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 VDDP VDDP
D1 I/O I/O
D2 I/O I/O
D3 NC I/O
D4 GND GND
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
v3.0 97
ProASICPLUS Flash Family FPGAs
D19 GND GND
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
E1 I/O I/O
E2 NC I/O
E3 GND GND
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 GND GND
E21 I/O I/O
E22 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 I/O I/O
F7 I/O I/O
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 NC I/O
G1 I/O I/O
G2 I/O I/O
G3 NC I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 I/O I/O
G9 I/O I/O
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 I/O I/O
H1 I/O I/O
H2 I/O I/O
H3 VDD VDD
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 I/O I/O
H9 VDDP VDDP
H10 VDDP VDDP
H11 I/O I/O
H12 I/O I/O
H13 VDDP VDDP
H14 VDDP VDDP
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
ProASICPLUS Flash Family FPGAs
98 v3.0
H15 I/O I/O
H16 I/O I/O
H17 I/O I/O
H18 I/O I/O
H19 I/O I/O
H20 VDD VDD
H21 I/O I/O
H22 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 NC I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 I/O I/O
J8 VDDP VDDP
J9 GND GND
J10 VDD VDD
J11 VDD VDD
J12 VDD VDD
J13 VDD VDD
J14 GND GND
J15 VDDP VDDP
J16 I/O I/O
J17 I/O I/O
J18 I/O I/O
J19 I/O I/O
J20 NC I/O
J21 I/O I/O
J22 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 NC I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 VDD VDD
K10 GND GND
K11 GND GND
K12 GND GND
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
K13 GND GND
K14 VDD VDD
K15 VDDP VDDP
K16 I/O I/O
K17 I/O I/O
K18 I/O I/O
K19 I/O I/O
K20 I/O I/O
K21 I/O I/O
K22 I/O I/O
L1 NC I/O
L2 I/O I/O
L3 I/O I/O
L4 GL1 GL1
L5 NPECL1 NPECL1
L6 I/O (GLMX1) I/O (GLMX1)
L7 AGND AGND
L8 I/O I/O
L9 VDD VDD
L10 GND GND
L11 GND GND
L12 GND GND
L13 GND GND
L14 VDD VDD
L15 I/O I/O
L16 I/O (GLMX2) I/O (GLMX2)
L17 NPECL2 NPECL2
L18 AGND AGND
L19 GL4 GL4
L20 I/O I/O
L21 I/O I/O
L22 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 GL2 GL2
M5 PPECL1 (I/P) PPECL1 (I/P)
M6 AVDD AVDD
M7 I/O I/O
M8 I/O I/O
M9 VDD VDD
M10 GND GND
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
v3.0 99
ProASICPLUS Flash Family FPGAs
M11 GND GND
M12 GND GND
M13 GND GND
M14 VDD VDD
M15 I/O I/O
M16 PPECL2 (I/P) PPECL2 (I/P)
M17 I/O I/O
M18 AVDD AVDD
M19 GL3 GL3
M20 I/O I/O
M21 I/O I/O
M22 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 NC I/O
N4 I/O I/O
N5 I/O I/O
N6 I/O I/O
N7 I/O I/O
N8 VDDP VDDP
N9 VDD VDD
N10 GND GND
N11 GND GN D
N12 GND GND
N13 GND GND
N14 VDD VDD
N15 VDDP VDDP
N16 I/O I/O
N17 I/O I/O
N18 I/O I/O
N19 I/O I/O
N20 NC I/O
N21 I/O I/O
N22 I/O I/O
P1 I/O I/O
P2 I/O I/O
P3 I/O I/O
P4 I/O I/O
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 VDDP VDDP
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
P9 GND GND
P10 VDD VDD
P11 VDD VDD
P12 VDD VDD
P13 VDD VDD
P14 GND GND
P15 VDDP VDDP
P16 I/O I/O
P17 I/O I/O
P18 I/O I/O
P19 I/O I/O
P20 NC I/O
P21 I/O I/O
P22 I/O I/O
R1 I/O I/O
R2 I/O I/O
R3 VDD VDD
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 I/O I/O
R8 I/O I/O
R9 VDDP VDDP
R10 VDDP VDDP
R11 I/O I/O
R12 I/O I/O
R13 VDDP VDDP
R14 VDDP VDDP
R15 I/O I/O
R16 I/O I/O
R17 I/O I/O
R18 I/O I/O
R19 I/O I/O
R20 VDD VDD
R21 I/O I/O
R22 I/O I/O
T1 I/O I/O
T2 I/O I/O
T3 NC I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
ProASICPLUS Flash Family FPGAs
100 v3.0
T7 I/O I/O
T8 I/O I/O
T9 I/O I/O
T10 I/O I/O
T11 I/O I/O
T12 I/O I/O
T13 I/O I/O
T14 I/O I/O
T15 I/O I/O
T16 I/O I/O
T17 RCK RCK
T18 I/O I/O
T19 I/O I/O
T20 NC I/O
T21 I/O I/O
T22 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 I/O I/O
U8 I/O I/O
U9 I/O I/O
U10 I/O I/O
U11 I /O I/O
U12 I/O I/O
U13 I/O I/O
U14 I/O I/O
U15 I/O I/O
U16 TCK TCK
U17 VPP VPP
U18 TRST TRST
U19 I/O I/O
U20 NC I/O
U21 I/O I/O
U22 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 GND GND
V4 I/O I/O
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 I/O I/O
V9 I/O I/O
V10 I/O I/O
V11 I/O I/O
V12 I/O I/O
V13 I/O I/O
V14 I/O I/O
V15 I/O I/O
V16 I/O I/O
V17 TDI TDI
V18 VPN VPN
V19 TDO TDO
V20 GND GND
V21 NC I/O
V22 I/O I/O
W1 NC I/O
W2 I/O I/O
W3 I/O I/O
W4 GND GND
W5 I/O I/O
W6 I/O I/O
W7 I/O I/O
W8 I/O I/O
W9 I/O I/O
W10 I/O I/O
W11 I/O I/O
W12 I/O I/O
W13 I/O I/O
W14 I/O I/O
W15 I/O I/O
W16 I/O I/O
W17 I/O I/O
W1 8 TMS TMS
W1 9 GN D GND
W2 0 NC I / O
W2 1 NC I / O
W22 I/O I/O
Y1 VDDP VDDP
Y2 I/O I/O
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
v3.0 101
ProASICPLUS Flash Family FPGAs
Y3 I/O I/O
Y4 I/O I/O
Y5 GND GND
Y6 I/O I/O
Y7 I/O I/O
Y8 VDD VDD
Y9 VDD VDD
Y10 I/O I/O
Y11 I/O I/O
Y12 I/O I/O
Y13 I/O I/O
Y14 VDD VDD
Y15 VDD VDD
Y16 I/O I/O
Y17 I/O I/O
Y18 GND GND
Y19 I/O I/O
Y20 I/O I/O
Y21 NC I/O
Y22 VDDP VDDP
AA1 GND GND
AA2 VDDP VDDP
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 NC I/O
AA19 NC I/O
AA20 I/O I/O
AA21 VDDP VDDP
AA22 GND GND
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
AB1 GND GND
AB2 GND GND
AB3 VDDP VDDP
AB4 I/O I/O
AB5 I/O I/O
AB6 I/O I/O
AB7 I/O I/O
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 I/O I/O
AB12 I/O I/O
AB13 I/O I/O
AB14 I/O I/O
AB15 I/O I/O
AB16 I/O I/O
AB17 I/O I/O
AB18 NC I/O
AB19 I/O I/O
AB2 0 VDDP VDDP
AB2 1 GND GND
AB2 2 GND GND
484-Pin FBGA (Continued)
Pin
Number APA450
Function APA600
Function
ProASICPLUS Flash Family FPGAs
102 v3.0
Package Pin Assignments (Continued)
676-Pin FBGA (Bottom View)
12356789101115 14 13 121617181920212223 4242526
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
A1 Ball Pad Corner
v3.0 103
ProASICPLUS Flash Family FPGAs
676-FBGA Pin
Pin
Number APA600
Function APA750
Function
A1 GND GND
A2 GND GND
A3 I/O I/O
A4 I/O I/O
A5 I/O I/O
A6 I/O I/O
A7 I/O I/O
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 I/O I/O
A25 GND GND
A26 GND GND
B1 GND GND
B2 GND GND
B3 GND GND
B4 GND GND
B5 I/O I/O
B6 I/O I/O
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 GND GND
B26 GND GND
C1 GND GND
C2 GND GND
C3 GND GND
C4 GND GND
C5 I/O I/O
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 I/O I/O
D1 I/O I/O
D2 I/O I/O
D3 GND GND
D4 I/O I/O
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Flash Family FPGAs
104 v3.0
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
E1 I/O I/O
E2 I/O I/O
E3 I/O I/O
E4 I/O I/O
E5 I/O I/O
E6 I/O I/O
E7 I/O I/O
E8 I/O I/O
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 I/O I/O
E25 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
E26 I/O I/O
F1 I/O I/O
F2 I/O I/O
F3 I/O I/O
F4 I/O I/O
F5 GND GND
F6 I/O I/O
F7 NC NC
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 I/O I/O
F26 I/O I/O
G1 I/O I/O
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 I/O I/O
G6 I/O I/O
G7 I/O I/O
G8 VDD VDD
G9 NC NC
G10 I/O I/O
G11 NC NC
G12 I/O I/O
G13 NC NC
G14 I/O I/O
G15 NC NC
G16 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
v3.0 105
ProASICPLUS Flash Family FPGAs
G17 NC NC
G18 I/O I/O
G19 VDDP VDDP
G20 NC NC
G21 I/O I/O
G22 I/O I/O
G23 I/O I/O
G24 I/O I/O
G25 I/O I/O
G26 I/O I/O
H1 I/O I/O
H2 I/O I/O
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 VDDP VDDP
H8 VDD VDD
H9 VDDP VDDP
H10 VDDP VDDP
H11 VDDP VDDP
H12 VDDP VDDP
H13 VDDP VDDP
H14 VDDP VDDP
H15 VDDP VDDP
H16 VDDP VDDP
H17 VDDP VDDP
H18 VDDP VDDP
H19 VDD VDD
H20 VDD VDD
H21 I/O I/O
H22 I/O I/O
H23 I/O I/O
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 NC NC
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
J8 VDDP VDDP
J9 VDD VDD
J10 VDD VDD
J11 VDD VDD
J12 VDD VDD
J13 VDD VDD
J14 VDD VDD
J15 VDD VDD
J16 VDD VDD
J17 VDD VDD
J18 VDD VDD
J19 VDDP VDDP
J20 NC NC
J21 I/O I/O
J22 I/O I/O
J23 I/O I/O
J24 I/O I/O
J25 I/O I/O
J26 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 VDDP VDDP
K9 VDD VDD
K10 GND GND
K11 GND GND
K12 GND GND
K13 GND GND
K14 GND GND
K15 GND GND
K16 GND GND
K17 GND GND
K18 VDD VDD
K19 VDDP VDDP
K20 I/O I/O
K21 I/O I/O
K22 I/O I/O
K23 I/O I/O
K24 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Flash Family FPGAs
106 v3.0
K25 I/O I/O
K26 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 NC NC
L8 VDDP VDDP
L9 VDD VDD
L10 GND GND
L11 GND GND
L12 GND GND
L13 GND GND
L14 GND GND
L15 GND GND
L16 GND GND
L17 GND GND
L18 VDD VDD
L19 VDDP VDDP
L20 NC NC
L21 I/O I/O
L22 I/O I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 VDDP VDDP
M9 VDD VDD
M10 GND GND
M11 GND GND
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
M16 GND GND
M17 GND GND
M18 VDD VDD
M19 VDDP VDDP
M20 I/O I/O
M21 I/O I/O
M22 I/O I/O
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
N1 GL1 GL1
N2 AGND AGND
N3 I/O (GLMX1) I/O (GLMX1)
N4 I/O I/O
N5 NPECL1 NPECL1
N6 I/O I/O
N7 NC NC
N8 VDDP VDDP
N9 VDD VDD
N10 GND GND
N11 GND GND
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
N17 GND GND
N18 VDD VDD
N19 VDDP VDDP
N20 NC NC
N21 I/O I/O
N22 GL3 GL3
N23 I/O I/O
N24 NPECL2 NPECL2
N25 GL4 GL4
N26 I/O I/O
P1 GL2 GL2
P2 AVDD AVDD
P3 I/O I/O
P4 I/O I/O
P5 PPECL1 (I /P) PPECL1 (I/P)
P6 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
v3.0 107
ProASICPLUS Flash Family FPGAs
P7 I/O I/O
P8 VDDP VDDP
P9 VDD VDD
P10 GND GND
P11 GND GND
P12 GND GND
P13 GND GND
P14 GND GND
P15 GND GND
P16 GND GND
P17 GND GND
P18 VDD VDD
P19 VDDP VDDP
P20 I/O I/O
P21 I/O I/O
P22 I/O (GLMX2) I/O (GLMX2)
P23 I/O I/O
P24 PPECL2 (I/P) PPECL2 (I/P)
P25 AVDD AVDD
P26 AGND AGND
R1 I/O I/O
R2 I/O I/O
R3 I/O I/O
R4 I/O I/O
R5 I/O I/O
R6 I/O I/O
R7 NC NC
R8 VDDP VDDP
R9 VDD VDD
R10 GND GND
R11 GND GND
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 VDD VDD
R19 VDDP VDDP
R20 NC NC
R21 I/O I/O
R22 I/O I/O
R23 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
R24 I/O I/O
R25 I/O I/O
R26 I/O I/O
T1 I/O I/O
T2 I/O I/O
T3 I/O I/O
T4 I/O I/O
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 VDDP VDDP
T9 VDD VDD
T10 GND GND
T11 GND GND
T12 GND GND
T13 GND GND
T14 GND GND
T15 GND GND
T16 GND GND
T17 GND GND
T18 VDD VDD
T19 VDDP VDDP
T20 I/O I/O
T21 I/O I/O
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 NC NC
U8 VDDP VDDP
U9 VDD VDD
U10 GND GND
U11 GND GND
U12 GND GND
U13 GND GND
U14 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Flash Family FPGAs
108 v3.0
U15 GND GND
U16 GND GND
U17 GND GND
U18 VDD VDD
U19 VDDP VDDP
U20 NC NC
U21 I/O I/O
U22 I/O I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 VDDP VDDP
V9 VDD VDD
V10 VDD VDD
V11 VDD VDD
V12 VDD VDD
V13 VDD VDD
V14 VDD VDD
V15 VDD VDD
V16 VDD VDD
V17 VDD VDD
V18 VDD VDD
V19 VDDP VDDP
V20 I/O I/O
V21 I/O I/O
V22 I/O I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
W6 I/O I/O
W7 VDD VDD
W8 VDD VDD
W9 VDDP VDDP
W10 VDDP VDDP
W11 VDDP VDDP
W12 VDDP VDDP
W13 VDDP VDDP
W14 VDDP VDDP
W15 VDDP VDDP
W16 VDDP VDDP
W17 VDDP VDDP
W18 VDDP VDDP
W19 VDD VDD
W20 VDDP VDDP
W21 I/O I/O
W22 I/O I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 VDDP VDDP
Y9 NC NC
Y10 I/O I/O
Y11 NC NC
Y12 I/O I/O
Y13 NC NC
Y14 I/O I/O
Y15 NC NC
Y16 I/O I/O
Y17 NC NC
Y18 I/O I/O
Y19 VDD VDD
Y20 VPP VPP
Y21 I/O I/O
Y22 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
v3.0 109
ProASICPLUS Flash Family FPGAs
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 GND GND
AA7 I/O I/O
AA8 I/O I/O
AA9 I/O I/O
AA10 I/O I/O
AA11 I/O I/O
AA12 I/O I/O
AA13 I/O I/O
AA14 I/O I/O
AA15 I/O I/O
AA16 I/O I/O
AA17 I/O I/O
AA18 I/O I/O
AA19 I/O I/O
AA20 I/O I/O
AA21 TDO TDO
AA22 GND GND
AA23 GND GND
AA24 I/O I/O
AA25 I/O I/O
AA26 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 GND GND
AB7 GND GND
AB8 I/O I/O
AB9 I/O I/O
AB10 I/O I/O
AB11 I/O I/O
AB12 I/O I/O
AB13 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
AB14 I/O I/O
AB15 I/O I/O
AB16 I/O I/O
AB17 I/O I/O
AB18 I/O I/O
AB19 I/O I/O
AB20 I/O I/O
AB21 TCK TCK
AB22 TRST TRST
AB23 I/O I/O
AB24 I/O I/O
AB25 I/O I/O
AB26 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 GND GND
AC6 I/O I/O
AC7 I/O I/O
AC8 I/O I/O
AC9 GND GND
AC10 I/O I/O
AC11 I/O I/O
AC12 I/O I/O
AC13 I/O I/O
AC14 I/O I/O
AC15 I/O I/O
AC16 I/O I/O
AC17 I/O I/O
AC18 I/O I/O
AC19 I/O I/O
AC20 I/O I/O
AC21 I/O I/O
AC22 TMS TMS
AC23 RCK RCK
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AD1 I/O I/O
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
ProASICPLUS Flash Family FPGAs
110 v3.0
AD5 I/O I/O
AD6 I/O I/O
AD7 I/O I/O
AD8 I/O I/O
AD9 I/O I/O
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 I/O I/O
AD23 TDI TDI
AD24 VPN VPN
AD25 I/O I/O
AD26 I/O I/O
AE1 GND GND
AE2 GND GND
AE3 GND GND
AE4 I/O I/O
AE5 I/O I/O
AE6 I/O I/O
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
AE22 I/O I/O
AE23 I/O I/O
AE24 I/O I/O
AE25 GND GND
AE26 GND GND
AF1 GND GND
AF2 GND GND
AF3 GND GND
AF4 GND GND
AF5 I/O I/O
AF6 I/O I/O
AF7 I/O I/O
AF8 I/O I/O
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 I/O I/O
AF25 GND GND
AF26 GND GND
676-FBGA Pin (Continued)
Pin
Number APA600
Function APA750
Function
v3.0 111
ProASICPLUS Flash Family FPGAs
Package Pin Assignments (Continued)
896-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AG
AH
AJ
AK
1234567891011
12131415161718192021222324252627282930
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
112 v3.0
896 FBGA Pin
Pin
Number APA750
Function APA1000
Function
A2 GND GND
A3 GND GND
A4 I/O I/O
A5 GND GND
A6 I/O I/O
A7 GND GND
A8 I/O I/O
A9 I/O I/O
A10 I/O I/O
A11 I/O I/O
A12 I/O I/O
A13 I/O I/O
A14 I/O I/O
A15 I/O I/O
A16 I/O I/O
A17 I/O I/O
A18 I/O I/O
A19 I/O I/O
A20 I/O I/O
A21 I/O I/O
A22 I/O I/O
A23 I/O I/O
A24 GND GND
A25 I/O I/O
A26 GND GND
A27 I/O I/O
A28 GND GND
A29 GND GND
B1 GND GND
B2 GND GND
B3 I/O I/O
B4 VDD VDD
B5 I/O I/O
B6 VDD VDD
B7 I/O I/O
B8 I/O I/O
B9 I/O I/O
B10 I/O I/O
B11 I/O I/O
B12 I/O I/O
B13 I/O I/O
B14 I/O I/O
B15 I/O I/O
B16 I/O I/O
B17 I/O I/O
B18 I/O I/O
B19 I/O I/O
B20 I/O I/O
B21 I/O I/O
B22 I/O I/O
B23 I/O I/O
B24 I/O I/O
B25 VDD VDD
B26 I/O I/O
B27 VDD VDD
B28 I/O I/O
B29 GND GN D
B30 GND GND
C1 GND GND
C2 I/O I/O
C3 VDD VDD
C4 I/O I/O
C5 VDDP VDDP
C6 I/O I/O
C7 I/O I/O
C8 I/O I/O
C9 I/O I/O
C10 I/O I/O
C11 I/O I/O
C12 I/O I/O
C13 I/O I/O
C14 I/O I/O
C15 I/O I/O
C16 I/O I/O
C17 I/O I/O
C18 I/O I/O
C19 I/O I/O
C20 I/O I/O
C21 I/O I/O
C22 I/O I/O
C23 I/O I/O
C24 I/O I/O
C25 I/O I/O
C26 VDDP VDDP
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 113
ProASICPLUS Flash Family FPGAs
C27 I/O I/O
C28 VDD VDD
C29 NC I/O
C30 GND GND
D1 I/O I/O
D2 VDD VDD
D3 I/O I/O
D4 GND GND
D5 I/O I/O
D6 I/O I/O
D7 I/O I/O
D8 I/O I/O
D9 I/O I/O
D10 I/O I/O
D11 I/O I/O
D12 I/O I/O
D13 I/O I/O
D14 I/O I/O
D15 I/O I/O
D16 I/O I/O
D17 I/O I/O
D18 I/O I/O
D19 I/O I/O
D20 I/O I/O
D21 I/O I/O
D22 I/O I/O
D23 I/O I/O
D24 I/O I/O
D25 I/O I/O
D26 I/O I/O
D27 GND GND
D28 I/O I/O
D29 VDD VDD
D30 I/O I/O
E1 GND GND
E2 I/O I/O
E3 VDDP VDDP
E4 I/O I/O
E5 VDD VDD
E6 I/O I/O
E7 VDDP VDDP
E8 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
E9 I/O I/O
E10 I/O I/O
E11 I/O I/O
E12 I/O I/O
E13 I/O I/O
E14 I/O I/O
E15 I/O I/O
E16 I/O I/O
E17 I/O I/O
E18 I/O I/O
E19 I/O I/O
E20 I/O I/O
E21 I/O I/O
E22 I/O I/O
E23 I/O I/O
E24 VDDP VDDP
E25 I/O I/O
E26 VDD VDD
E27 I/O I/O
E28 VDDP VDDP
E29 I/O I/O
E30 GND GND
F1 I/O I/O
F2 VDD VDD
F3 I/O I/O
F4 I/O I/O
F5 I/O I/O
F6 GND GND
F7 I/O I/O
F8 I/O I/O
F9 I/O I/O
F10 I/O I/O
F11 I/O I/O
F12 I/O I/O
F13 I/O I/O
F14 I/O I/O
F15 I/O I/O
F16 I/O I/O
F17 I/O I/O
F18 I/O I/O
F19 I/O I/O
F20 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
114 v3.0
F21 I/O I/O
F22 I/O I/O
F23 I/O I/O
F24 I/O I/O
F25 GN D GND
F26 I/O I/O
F27 I/O I/O
F28 I/O I/O
F29 VDD VDD
F30 I/O I/O
G1 GND GND
G2 I/O I/O
G3 I/O I/O
G4 I/O I/O
G5 VDDP VDDP
G6 I/O I/O
G7 VDD VDD
G8 I/O I/O
G9 VDDP VDDP
G10 I/O I/O
G11 I/O I/O
G12 I/O I/O
G13 I/O I/O
G14 I/O I/O
G15 I/O I/O
G16 I/O I/O
G17 I/O I/O
G18 I/O I/O
G19 I/O I/O
G20 I/O I/O
G21 I/O I/O
G22 VDDP VDDP
G23 I/O I/O
G24 VDD VDD
G25 I/O I/O
G26 VDDP VDDP
G27 I/O I/O
G28 I/O I/O
G29 I/O I/O
G30 GND GND
H1 I/O I/O
H2 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
H3 I/O I/O
H4 I/O I/O
H5 I/O I/O
H6 I/O I/O
H7 I/O I/O
H8 GND GND
H9 NC I/O
H10 NC I/O
H11 NC I/O
H12 NC I/O
H13 NC I/O
H14 NC I/O
H15 NC I/O
H16 NC I/O
H17 NC I/O
H18 NC I/O
H19 NC I/O
H20 NC I/O
H21 NC I/O
H22 NC I/O
H23 GND GND
H24 I/O I/O
H25 I/O I/O
H26 I/O I/O
H27 I/O I/O
H28 I/O I/O
H29 I/O I/O
H30 I/O I/O
J1 I/O I/O
J2 I/O I/O
J3 I/O I/O
J4 I/O I/O
J5 I/O I/O
J6 I/O I/O
J7 VDDP VDDP
J8 I/O I/O
J9 VDD VDD
J10 NC I/O
J11 NC I/O
J12 NC I/O
J13 NC I/O
J14 NC I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 115
ProASICPLUS Flash Family FPGAs
J15 NC I/O
J16 NC I/O
J17 NC I/O
J18 NC I/O
J19 NC I/O
J20 NC I/O
J21 NC I/O
J22 VDD VDD
J23 I/O I/O
J24 VDDP VDDP
J25 I/O I/O
J26 I/O I/O
J27 I/O I/O
J28 I/O I/O
J29 I/O I/O
J30 I/O I/O
K1 I/O I/O
K2 I/O I/O
K3 I/O I/O
K4 I/O I/O
K5 I/O I/O
K6 I/O I/O
K7 I/O I/O
K8 I/O I/O
K9 NC I/O
K10 VDD VDD
K11 NC I/O
K12 VDDP VDDP
K13 VDDP VDDP
K14 VDDP VDDP
K15 VDDP VDDP
K16 VDDP VDDP
K17 VDDP VDDP
K18 VDDP VDDP
K19 VDDP VDDP
K20 NC I/O
K21 VDD VDD
K22 NC I/O
K23 I/O I/O
K24 I/O I/O
K25 I/O I/O
K26 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
K27 I/O I/O
K28 I/O I/O
K29 I/O I/O
K30 I/O I/O
L1 I/O I/O
L2 I/O I/O
L3 I/O I/O
L4 I/O I/O
L5 I/O I/O
L6 I/O I/O
L7 I/O I/O
L8 I/O I/O
L9 NC I/O
L10 NC I/O
L11 VDD VDD
L12 VDD VDD
L13 VDD VDD
L14 VDD VDD
L15 VDD VDD
L16 VDD VDD
L17 VDD VDD
L18 VDD VDD
L19 VDD VDD
L20 VDD VDD
L21 NC I/O
L22 NC I/O
L23 I/O I/O
L24 I/O I/O
L25 I/O I/O
L26 I/O I/O
L27 I/O I/O
L28 I/O I/O
L29 I/O I/O
L30 I/O I/O
M1 I/O I/O
M2 I/O I/O
M3 I/O I/O
M4 I/O I/O
M5 I/O I/O
M6 I/O I/O
M7 I/O I/O
M8 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
116 v3.0
M9 NC I/O
M10 VDDP VDDP
M11 VDD VDD
M12 GND GND
M13 GND GND
M14 GND GND
M15 GND GND
M16 GND GND
M17 GND GND
M18 GND GND
M19 GND GND
M20 VDD VDD
M21 VDDP VDDP
M22 NC I/O
M23 I/O I/O
M24 I/O I/O
M25 I/O I/O
M26 I/O I/O
M27 I/O I/O
M28 I/O I/O
M29 I/O I/O
M30 I/O I/O
N1 I/O I/O
N2 I/O I/O
N3 I/O I/O
N4 I/O I/O
N5 I/O I/O
N6 I/O I/O
N7 I/O I/O
N8 I/O I/O
N9 NC I/O
N10 VDDP VDDP
N11 VDD VDD
N12 GND GND
N13 GND GND
N14 GND GND
N15 GND GND
N16 GND GND
N17 GND GND
N18 GND GND
N19 GND GND
N20 VDD VDD
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
N21 VDDP VDDP
N22 NC I/O
N23 I/O I/O
N24 I/O I/O
N25 I/O I/O
N26 I/O I/O
N27 I/O I/O
N28 I/O I/O
N29 I/O I/O
N30 I/O I/O
P1 I/O I/O
P2 I/O I/O
P3 I/O I/O
P4 I/O I/O
P5 I/O I/O
P6 I/O I/O
P7 I/O I/O
P8 I/O I/O
P9 I/O I/O
P10 VDDP VDDP
P11 VDD VDD
P12 GND GN D
P13 GND GN D
P14 GND GN D
P15 GND GN D
P16 GND GN D
P17 GND GN D
P18 GND GN D
P19 GND GN D
P20 VDD VDD
P21 VDDP VDDP
P22 I/O I/O
P23 I/O I/O
P24 I/O I/O
P25 I/O I/O
P26 I/O I/O
P27 I/O I/O
P28 I/O I/O
P29 I/O I/O
P30 I/O I/O
R1 I/O I/O
R2 I/O (GLMX1) I/O (GLMX1)
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 117
ProASICPLUS Flash Family FPGAs
R3 AGND AGND
R4 NPECL1 NPECL1
R5 GL1 GL1
R6 I/O I/O
R7 I/O I/O
R8 I/O I/O
R9 NC I/O
R10 VDDP VDDP
R11 VDD VDD
R12 GND GND
R13 GND GND
R14 GND GND
R15 GND GND
R16 GND GND
R17 GND GND
R18 GND GND
R19 GND GND
R20 VDD VDD
R21 VDDP VDDP
R22 I/O I/O
R23 I/O I/O
R24 I/O I/O
R25 I/O I/O
R26 I/O I/O
R27 NPECL2 NPECL2
R28 AGND AGND
R29 I/O (GLMX2) I/O (GLMX2)
R30 I/O I/O
T1 I/O I/O
T2 AVDD AVDD
T3 GL2 GL2
T4 PPECL1 (I/P) PPECL1 (I/P)
T5 I/O I/O
T6 I/O I/O
T7 I/O I/O
T8 I/O I/O
T9 I/O I/O
T10 VDDP VDDP
T11 VDD VDD
T12 GND GND
T13 GND GND
T14 GND GND
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
T15 GND GND
T16 GND GND
T17 GND GND
T18 GND GND
T19 GND GND
T20 VDD VDD
T21 VDDP VDDP
T22 I/O I/O
T23 I/O I/O
T24 I/O I/O
T25 I/O I/O
T26 PPECL2 (I/P) PPECL2 (I/P)
T27 GL4 GL4
T28 GL3 GL3
T29 AVD D AVDD
T30 I/O I/O
U1 I/O I/O
U2 I/O I/O
U3 I/O I/O
U4 I/O I/O
U5 I/O I/O
U6 I/O I/O
U7 I/O I/O
U8 I/O I/O
U9 NC I/O
U10 VDDP VDDP
U11 VDD VDD
U12 GND GND
U13 GND GND
U14 GND GND
U15 GND GND
U16 GND GND
U17 GND GND
U18 GND GND
U19 GND GND
U20 VDD VDD
U21 VDDP VDDP
U22 NC I/O
U23 I/O I/O
U24 I/O I/O
U25 I/O I/O
U26 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
118 v3.0
U27 I/O I/O
U28 I/O I/O
U29 I/O I/O
U30 I/O I/O
V1 I/O I/O
V2 I/O I/O
V3 I/O I/O
V4 I/O I/O
V5 I/O I/O
V6 I/O I/O
V7 I/O I/O
V8 I/O I/O
V9 NC I/O
V10 VDDP VDDP
V11 VDD VDD
V12 GND GND
V13 GND GND
V14 GND GND
V15 GND GND
V16 GND GND
V17 GND GND
V18 GND GND
V19 GND GND
V20 VDD VDD
V21 VDDP VDDP
V22 NC I/O
V23 I/O I/O
V24 I/O I/O
V25 I/O I/O
V26 I/O I/O
V27 I/O I/O
V28 I/O I/O
V29 I/O I/O
V30 I/O I/O
W1 I/O I/O
W2 I/O I/O
W3 I/O I/O
W4 I/O I/O
W5 I/O I/O
W6 I/O I/O
W7 I/O I/O
W8 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
W9 NC I/O
W10 VDDP VDDP
W11 VDD VDD
W12 GND GND
W13 GND GND
W14 GND GND
W15 GND GND
W16 GND GND
W17 GND GND
W18 GND GND
W19 GND GND
W20 VDD VDD
W21 VDDP VDDP
W22 NC I/O
W23 I/O I/O
W24 I/O I/O
W25 I/O I/O
W26 I/O I/O
W27 I/O I/O
W28 I/O I/O
W29 I/O I/O
W30 I/O I/O
Y1 I/O I/O
Y2 I/O I/O
Y3 I/O I/O
Y4 I/O I/O
Y5 I/O I/O
Y6 I/O I/O
Y7 I/O I/O
Y8 I/O I/O
Y9 NC I/O
Y10 NC I/O
Y11 VDD VDD
Y12 VDD VDD
Y13 VDD VDD
Y14 VDD VDD
Y15 VDD VDD
Y16 VDD VDD
Y17 VDD VDD
Y18 VDD VDD
Y19 VDD VDD
Y20 VDD VDD
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 119
ProASICPLUS Flash Family FPGAs
Y21 NC I/O
Y22 NC I/O
Y23 I/O I/O
Y24 I/O I/O
Y25 I/O I/O
Y26 I/O I/O
Y27 I/O I/O
Y28 I/O I/O
Y29 I/O I/O
Y30 I/O I/O
AA1 I/O I/O
AA2 I/O I/O
AA3 I/O I/O
AA4 I/O I/O
AA5 I/O I/O
AA6 I/O I/O
AA7 I/O I/O
AA8 I/O I/O
AA9 NC I/O
AA10 VDD VDD
AA11 NC I/O
AA12 VDDP VDDP
AA13 VDDP VDDP
AA14 VDDP VDDP
AA15 VDDP VDDP
AA16 VDDP VDDP
AA17 VDDP VDDP
AA18 VDDP VDDP
AA19 VDDP VDDP
AA20 NC I/O
AA2 1 VDD VDD
AA22 NC I/O
AA23 I/O I /O
AA24 I/O I /O
AA25 I/O I /O
AA26 I/O I /O
AA27 I/O I /O
AA28 I/O I /O
AA29 I/O I /O
AA30 I/O I/O
AB1 I/O I/O
AB2 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
AB3 I/O I/O
AB4 I/O I/O
AB5 I/O I/O
AB6 I/O I/O
AB7 VDDP VDDP
AB8 I/O I/O
AB9 VDD VDD
AB10 NC I/O
AB11 NC I/O
AB12 NC I/O
AB13 NC I/O
AB14 NC I/O
AB15 NC I/O
AB16 NC I/O
AB17 NC I/O
AB18 NC I/O
AB19 NC I/O
AB20 NC I/O
AB21 NC I/O
AB22 VDD VDD
AB23 I/O I/O
AB24 VDDP VDDP
AB25 I/O I/O
AB26 I/O I/O
AB27 I/O I/O
AB28 I/O I/O
AB29 I/O I/O
AB30 I/O I/O
AC1 I/O I/O
AC2 I/O I/O
AC3 I/O I/O
AC4 I/O I/O
AC5 I/O I/O
AC6 I/O I/O
AC7 I/O I/O
AC8 GND GND
AC9 NC I/O
AC10 NC I/O
AC11 NC I/O
AC12 NC I/O
AC13 NC I/O
AC14 NC I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
120 v3.0
AC15 NC I/O
AC16 NC I/O
AC17 NC I/O
AC18 NC I/O
AC19 NC I/O
AC20 NC I/O
AC21 NC I/O
AC22 NC I/O
AC23 GND GND
AC24 I/O I/O
AC25 I/O I/O
AC26 I/O I/O
AC27 I/O I/O
AC28 I/O I/O
AC29 I/O I/O
AC30 I/O I/O
AD1 GND GND
AD2 I/O I/O
AD3 I/O I/O
AD4 I/O I/O
AD5 VDDP VDDP
AD6 I/O I/O
AD7 VDD VDD
AD8 I/O I/O
AD9 VDDP VDDP
AD10 I/O I/O
AD11 I/O I/O
AD12 I/O I/O
AD13 I/O I/O
AD14 I/O I/O
AD15 I/O I/O
AD16 I/O I/O
AD17 I/O I/O
AD18 I/O I/O
AD19 I/O I/O
AD20 I/O I/O
AD21 I/O I/O
AD22 VDDP VDDP
AD23 TCK TCK
AD24 VDD VDD
AD25 TRST TRST
AD26 VDDP VDDP
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
AD27 I/O I/O
AD28 I/O I/O
AD29 I/O I/O
AD30 GN D GN D
AE1 I/O I/O
AE2 VDD VDD
AE3 I/O I/O
AE4 I/O I/O
AE5 I/O I/O
AE6 GND GND
AE7 I/O I/O
AE8 I/O I/O
AE9 I/O I/O
AE10 I/O I/O
AE11 I/O I/O
AE12 I/O I/O
AE13 I/O I/O
AE14 I/O I/O
AE15 I/O I/O
AE16 I/O I/O
AE17 I/O I/O
AE18 I/O I/O
AE19 I/O I/O
AE20 I/O I/O
AE21 I/O I/O
AE22 I/O I/O
AE23 I/O I/O
AE24 I/O I/O
AE25 GND GND
AE26 I/O I/O
AE27 I/O I/O
AE28 I/O I/O
AE29 VDD VDD
AE30 I/O I/O
AF1 GND GND
AF2 I/O I/O
AF3 VDDP VDDP
AF4 I/O I/O
AF5 VDD VDD
AF6 I/O I/O
AF7 VDDP VDDP
AF8 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 121
ProASICPLUS Flash Family FPGAs
AF9 I/O I/O
AF10 I/O I/O
AF11 I/O I/O
AF12 I/O I/O
AF13 I/O I/O
AF14 I/O I/O
AF15 I/O I/O
AF16 I/O I/O
AF17 I/O I/O
AF18 I/O I/O
AF19 I/O I/O
AF20 I/O I/O
AF21 I/O I/O
AF22 I/O I/O
AF23 I/O I/O
AF24 VDDP VDDP
AF25 I/O I/O
AF26 VDD VDD
AF27 TDO TDO
AF28 VDDP VDDP
AF29 VPN VPN
AF30 GND GND
AG1 I/O I/O
AG2 VDD VDD
AG3 I/O I/O
AG4 GND GND
AG5 I/O I/O
AG6 I/O I/O
AG7 I/O I/O
AG8 I/O I/O
AG9 I/O I/O
AG10 I/O I/O
AG11 I/O I/O
AG12 I/O I/O
AG13 I/O I/O
AG14 I/O I/O
AG15 I/O I/O
AG16 I/O I/O
AG17 I/O I/O
AG18 I/O I/O
AG19 I/O I/O
AG20 I/O I/O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
AG21 I/O I/O
AG22 I/O I/O
AG23 I/O I/O
AG24 I/O I/O
AG25 I/O I/O
AG26 I/O I/O
AG27 GND GND
AG28 RCK RCK
AG29 VDD VDD
AG30 I/O I/O
AH1 GND GND
AH2 I/O I/O
AH3 VDD VDD
AH4 I/O I/O
AH5 VDDP VDDP
AH6 I/O I/O
AH7 I/O I/O
AH8 I/O I/O
AH9 I/O I/O
AH10 I/O I/O
AH11 I/O I/O
AH12 I/O I/O
AH13 I/O I/O
AH14 I/O I/O
AH15 I/O I/O
AH16 I/O I/O
AH17 I/O I/O
AH18 I/O I/O
AH19 I/O I/O
AH20 I/O I/O
AH21 I/O I/O
AH22 I/O I/O
AH23 I/O I/O
AH24 I/O I/O
AH25 I/O I/O
AH26 VDDP VDDP
AH27 TDI TDI
AH28 VDD VDD
AH29 VPP VPP
AH30 GND GND
AJ1 GND GND
AJ2 GND GND
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
ProASICPLUS Flash Family FPGAs
122 v3.0
AJ3 I/O I/O
AJ4 VDD VDD
AJ5 I/O I/O
AJ6 VDD VDD
AJ7 I/O I/O
AJ8 I/O I/O
AJ9 I/O I/O
AJ10 I/O I/O
AJ11 I/O I/O
AJ12 I/O I/O
AJ13 I/O I/O
AJ14 I/O I/O
AJ15 I/O I/O
AJ16 I/O I/O
AJ17 I/O I/O
AJ18 I/O I/O
AJ19 I/O I/O
AJ20 I/O I/O
AJ21 I/O I/O
AJ22 I/O I/O
AJ23 I/O I/O
AJ24 I/O I/O
AJ25 VDD VDD
AJ26 I/O I/O
AJ27 VDD VDD
AJ28 TMS TMS
AJ29 GND GND
AJ30 GND GND
AK2 GND GND
AK3 GND GND
AK4 I/O I/O
AK5 GND GND
AK6 I/O I/O
AK7 GND GND
AK8 I/O I/O
AK9 I/O I/O
AK10 I/O I/O
AK11 I/O I/O
AK12 I/O I /O
AK13 I/O I /O
AK14 I/O I /O
AK15 I/O I /O
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
AK16 I/O I/O
AK17 I/O I/O
AK18 I/O I/O
AK19 I/O I/O
AK20 I/O I/O
AK21 I/O I/O
AK22 I/O I/O
AK23 I/O I/O
AK24 GND GND
AK25 I/O I/O
AK26 GND GND
AK27 I/O I/O
AK28 GND GND
AK29 GND GND
896 FBGA Pin (Continued)
Pin
Number APA750
Function APA1000
Function
v3.0 123
ProASICPLUS Flash Family FPGAs
Package Pin Assignments (Continued)
1152-Pin FBGA (Bottom View)
A
B
C
D
E
F
G
H
J
K
L
M
N
P
R
T
U
V
W
Y
AA
AB
AC
AD
AE
AF
AGAG
AH
AJ
AK
1234567891011121314151617181920212324252627
28293031323334
AL
AM
AN
AO
22
AP
A1 Ball Pad Corner
ProASICPLUS Flash Family FPGAs
124 v3.0
1152 FBGA Pin
Pin
Number APA1000
Function
A2 NC
A3 GND
A4 GND
A5 GND
A6 I/O
A7 VDD
A8 VDD
A9 VDD
A10 VDD
A11 I/O
A12 GND
A13 I/O
A14 VDDP
A15 VDDP
A16 I/O
A17 GND
A18 GND
A19 I/O
A20 VDDP
A21 VDDP
A22 I/O
A23 GND
A24 I/O
A25 VDD
A26 VDD
A27 VDD
A28 VDD
A29 I/O
A30 GND
A31 GND
A32 GND
A33 NC
B1 NC
B2 NC
B3 GND
B4 GND
B5 GND
B6 NC
B7 I/O
B8 NC
B9 I/O
B10 NC
B11 I/O
B12 GND
B13 I/O
B14 VDDP
B15 VDDP
B16 I/O
B17 GND
B18 GND
B19 I/O
B20 VDDP
B21 VDDP
B22 I/O
B23 GND
B24 I/O
B25 NC
B26 I/O
B27 NC
B28 I/O
B29 NC
B30 GND
B31 GND
B32 GND
B33 NC
B34 NC
C1 GND
C2 GND
C3 NC
C4 GND
C5 GND
C6 I/O
C7 GND
C8 I/O
C9 GND
C10 I/O
C11 I/O
C12 I/O
C13 I/O
C14 I/O
C15 I/O
C16 I/O
C17 I/O
C18 I/O
C19 I/O
C20 I/O
C21 I/O
C22 I/O
C23 I/O
C24 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
C25 I/O
C26 GND
C27 I/O
C28 GND
C29 I/O
C30 GND
C31 GND
C32 NC
C33 GND
C34 GND
D1 GND
D2 GND
D3 GND
D4 GND
D5 I/O
D6 VDD
D7 I/O
D8 VDD
D9 I/O
D10 I/O
D11 I/O
D12 I/O
D13 I/O
D14 I/O
D15 I/O
D16 I/O
D17 I/O
D18 I/O
D19 I/O
D20 I/O
D21 I/O
D22 I/O
D23 I/O
D24 I/O
D25 I/O
D26 I/O
D27 VDD
D28 I/O
D29 VDD
D30 I/O
D31 GND
D32 GND
D33 GND
D34 GND
E1 GND
1152 FBGA Pin
Pin
Number APA1000
Function
E2 GND
E3 GND
E4 I/O
E5 VDD
E6 I/O
E7 VDDP
E8 I/O
E9 I/O
E10 I/O
E11 I/O
E12 I/O
E13 I/O
E14 I/O
E15 I/O
E16 I/O
E17 I/O
E18 I/O
E19 I/O
E20 I/O
E21 I/O
E22 I/O
E23 I/O
E24 I/O
E25 I/O
E26 I/O
E27 I/O
E28 VDDP
E29 I/O
E30 VDD
E31 I/O
E32 GND
E33 GND
E34 GND
F1 I/O
F2 NC
F3 I/O
F4 VDD
F5 I/O
F6 GND
F7 I/O
F8 I/O
F9 I/O
F10 I/O
F11 I/O
F12 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
v3.0 125
ProASICPLUS Flash Family FPGAs
F13 I/O
F14 I/O
F15 I/O
F16 I/O
F17 I/O
F18 I/O
F19 I/O
F20 I/O
F21 I/O
F22 I/O
F23 I/O
F24 I/O
F25 I/O
F26 I/O
F27 I/O
F28 I/O
F29 GND
F30 I/O
F31 VDD
F32 I/O
F33 NC
F34 NC
G1 VDD
G2 I/O
G3 GND
G4 I/O
G5 VDDP
G6 I/O
G7 VDD
G8 I/O
G9 VDDP
G10 I/O
G11 I/O
G12 I/O
G13 I/O
G14 I/O
G15 I/O
G16 I/O
G17 I/O
G18 I/O
G19 I/O
G20 I/O
G21 I/O
G22 I/O
G23 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
G24 I/O
G25 I/O
G26 VDDP
G27 I/O
G28 VDD
G29 I/O
G30 VDDP
G31 I/O
G32 GND
G33 I/O
G34 VDD
H1 VDD
H2 NC
H3 I/O
H4 VDD
H5 I/O
H6 I/O
H7 I/O
H8 GND
H9 I/O
H10 I/O
H11 I/O
H12 I/O
H13 I/O
H14 I/O
H15 I/O
H16 I/O
H17 I/O
H18 I/O
H19 I/O
H20 I/O
H21 I/O
H22 I/O
H23 I/O
H24 I/O
H25 I/O
H26 I/O
H27 GND
H28 I/O
H29 I/O
H30 I/O
H31 VDD
H32 I/O
H33 NC
H34 VDD
1152 FBGA Pin
Pin
Number APA1000
Function
J1 VDD
J2 I/O
J3 GND
J4 I/O
J5 I/O
J6 I/O
J7 VDDP
J8 I/O
J9 VDD
J10 I/O
J11 VDDP
J12 I/O
J13 I/O
J14 I/O
J15 I/O
J16 I/O
J17 I/O
J18 I/O
J19 I/O
J20 I/O
J21 I/O
J22 I/O
J23 I/O
J24 VDDP
J25 I/O
J26 VDD
J27 I/O
J28 VDDP
J29 I/O
J30 I/O
J31 I/O
J32 GND
J33 I/O
J34 VDD
K1 VDD
K2 NC
K3 I/O
K4 I/O
K5 I/O
K6 I/O
K7 I/O
K8 I/O
K9 I/O
K10 GND
K11 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
K12 I/O
K13 I/O
K14 I/O
K15 I/O
K16 I/O
K17 I/O
K18 I/O
K19 I/O
K20 I/O
K21 I/O
K22 I/O
K23 I/O
K24 I/O
K25 GND
K26 I/O
K27 I/O
K28 I/O
K29 I/O
K30 I/O
K31 I/O
K32 I/O
K33 NC
K34 VDD
L1 I/O
L2 I/O
L3 I/O
L4 I/O
L5 I/O
L6 I/O
L7 I/O
L8 I/O
L9 VDDP
L10 I/O
L11 VDD
L12 I/O
L13 I/O
L14 I/O
L15 I/O
L16 I/O
L17 I/O
L18 I/O
L19 I/O
L20 I/O
L21 I/O
L22 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
ProASICPLUS Flash Family FPGAs
126 v3.0
L23 I/O
L24 VDD
L25 I/O
L26 VDDP
L27 I/O
L28 I/O
L29 I/O
L30 I/O
L31 I/O
L32 I/O
L33 I/O
L34 I/O
M1 GND
M2 GND
M3 I/O
M4 I/O
M5 I/O
M6 I/O
M7 I/O
M8 I/O
M9 I/O
M10 I/O
M11 I/O
M12 VDD
M13 I/O
M14 VDDP
M15 VDDP
M16 VDDP
M17 VDDP
M18 VDDP
M19 VDDP
M20 VDDP
M21 VDDP
M22 I/O
M23 VDD
M24 I/O
M25 I/O
M26 I/O
M27 I/O
M28 I/O
M29 I/O
M30 I/O
M31 I/O
M32 I/O
M33 GND
1152 FBGA Pin
Pin
Number APA1000
Function
M34 GND
N1 I/O
N2 I/O
N3 I/O
N4 I/O
N5 I/O
N6 I/O
N7 I/O
N8 I/O
N9 I/O
N10 I/O
N11 I/O
N12 I/O
N13 VDD
N14 VDD
N15 VDD
N16 VDD
N17 VDD
N18 VDD
N19 VDD
N20 VDD
N21 VDD
N22 VDD
N23 I/O
N24 I/O
N25 I/O
N26 I/O
N27 I/O
N28 I/O
N29 I/O
N30 I/O
N31 I/O
N32 I/O
N33 I/O
N34 I/O
P1 VDDP
P2 VDDP
P3 I/O
P4 I/O
P5 I/O
P6 I/O
P7 I/O
P8 I/O
P9 I/O
P10 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
P11 I/O
P12 VDDP
P13 VDD
P14 GND
P15 GND
P16 GND
P17 GND
P18 GND
P19 GND
P20 GND
P21 GND
P22 VDD
P23 VDDP
P24 I/O
P25 I/O
P26 I/O
P27 I/O
P28 I/O
P29 I/O
P30 I/O
P31 I/O
P32 I/O
P33 VDDP
P34 VDDP
R1 VDDP
R2 VDDP
R3 I/O
R4 I/O
R5 I/O
R6 I/O
R7 I/O
R8 I/O
R9 I/O
R10 I/O
R11 I/O
R12 VDDP
R13 VDD
R14 GND
R15 GND
R16 GND
R17 GND
R18 GND
R19 GND
R20 GND
R21 GND
1152 FBGA Pin
Pin
Number APA1000
Function
R22 VDD
R23 VDDP
R24 I/O
R25 I/O
R26 I/O
R27 I/O
R28 I/O
R29 I/O
R30 I/O
R31 I/O
R32 I/O
R33 VDDP
R34 VDDP
T1 I/O
T2 I/O
T3 I/O
T4 I/O
T5 I/O
T6 I/O
T7 I/O
T8 I/O
T9 I/O
T10 I/O
T11 I/O
T12 VDDP
T13 VDD
T14 GND
T15 GND
T16 GND
T17 GND
T18 GND
T19 GND
T20 GND
T21 GND
T22 VDD
T23 VDDP
T24 I/O
T25 I/O
T26 I/O
T27 I/O
T28 I/O
T29 I/O
T30 I/O
T31 I/O
T32 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
v3.0 127
ProASICPLUS Flash Family FPGAs
T33 I/O
T34 I/O
U1 GND
U2 GND
U3 I/O
U4 I/O
(GLMX1)
U5 AGND
U6 NPECL1
U7 GL1
U8 I/O
U9 I/O
U10 I/O
U11 I/O
U12 VDDP
U13 VDD
U14 GND
U15 GND
U16 GND
U17 GND
U18 GND
U19 GND
U20 GND
U21 GND
U22 VDD
U23 VDDP
U24 I/O
U25 I/O
U26 I/O
U27 I/O
U28 I/O
U29 NPECL2
U30 AGND
U31 I/O
(GLMX2)
U32 I/O
U33 GND
U34 GND
V1 GND
V2 GND
V3 I/O
V4 AVDD
V5 GL2
V6 PPECL1
(I/P)
1152 FBGA Pin
Pin
Number APA1000
Function
V7 I/O
V8 I/O
V9 I/O
V10 I/O
V11 I/O
V12 VDDP
V13 VDD
V14 GND
V15 GND
V16 GND
V17 GND
V18 GND
V19 GND
V20 GND
V21 GND
V22 VDD
V23 VDDP
V24 I/O
V25 I/O
V26 I/O
V27 I/O
V28 PPECL2
(I/P)
V29 GL4
V30 GL3
V31 AVDD
V32 I/O
V33 GND
V34 GND
W1 I/O
W2 I/O
W3 I/O
W4 I/O
W5 I/O
W6 I/O
W7 I/O
W8 I/O
W9 I/O
W10 I/O
W11 I/O
W12 VDDP
W13 VDD
W14 GND
W15 GND
W16 GND
1152 FBGA Pin
Pin
Number APA1000
Function
W17 GND
W18 GND
W19 GND
W20 GND
W21 GND
W22 VDD
W23 VDDP
W24 I/O
W25 I/O
W26 I/O
W27 I/O
W28 I/O
W29 I/O
W30 I/O
W31 I/O
W32 I/O
W33 I/O
W34 I/O
Y1 VDDP
Y2 VDDP
Y3 I/O
Y4 I/O
Y5 I/O
Y6 I/O
Y7 I/O
Y8 I/O
Y9 I/O
Y10 I/O
Y11 I/O
Y12 VDDP
Y13 VDD
Y14 GND
Y15 GND
Y16 GND
Y17 GND
Y18 GND
Y19 GND
Y20 GND
Y21 GND
Y22 VDD
Y23 VDDP
Y24 I/O
Y25 I/O
Y26 I/O
Y27 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
Y28 I/O
Y29 I/O
Y30 I/O
Y31 I/O
Y32 I/O
Y33 VDDP
Y34 VDDP
AA1 VDDP
AA2 VDDP
AA3 I/O
AA4 I/O
AA5 I/O
AA6 I/O
AA7 I/O
AA8 I/O
AA9 I/O
AA10 I/O
AA11 I/O
AA12 VDDP
AA13 VDD
AA14 GND
AA15 GND
AA16 GND
AA17 GND
AA18 GND
AA19 GND
AA20 GND
AA21 GND
AA22 VDD
AA23 VDDP
AA24 I/O
AA25 I/O
AA26 I/O
AA27 I/O
AA28 I/O
AA29 I/O
AA30 I/O
AA31 I/O
AA32 I/O
AA33 VDDP
AA34 VDDP
AB1 I/O
AB2 I/O
AB3 I/O
AB4 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
ProASICPLUS Flash Family FPGAs
128 v3.0
AB5 I/O
AB6 I/O
AB7 I/O
AB8 I/O
AB9 I/O
AB10 I/O
AB11 I/O
AB12 I/O
AB13 VDD
AB14 VDD
AB15 VDD
AB16 VDD
AB17 VDD
AB18 VDD
AB19 VDD
AB20 VDD
AB21 VDD
AB22 VDD
AB23 I/O
AB24 I/O
AB25 I/O
AB26 I/O
AB27 I/O
AB28 I/O
AB29 I/O
AB30 I/O
AB31 I/O
AB32 I/O
AB33 I/O
AB34 I/O
AC1 GND
AC2 GND
AC3 I/O
AC4 I/O
AC5 I/O
AC6 I/O
AC7 I/O
AC8 I/O
AC9 I/O
AC10 I/O
AC11 I/O
AC12 VDD
AC13 I/O
AC14 VDDP
AC15 VDDP
1152 FBGA Pin
Pin
Number APA1000
Function
AC16 VDDP
AC17 VDDP
AC18 VDDP
AC19 VDDP
AC20 VDDP
AC21 VDDP
AC22 I/O
AC23 VDD
AC24 I/O
AC25 I/O
AC26 I/O
AC27 I/O
AC28 I/O
AC29 I/O
AC30 I/O
AC31 I/O
AC32 I/O
AC33 GND
AC34 GND
AD1 I/O
AD2 I/O
AD3 I/O
AD4 I/O
AD5 I/O
AD6 I/O
AD7 I/O
AD8 I/O
AD9 VDDP
AD10 I/O
AD11 VDD
AD12 I/O
AD13 I/O
AD14 I/O
AD15 I/O
AD16 I/O
AD17 I/O
AD18 I/O
AD19 I/O
AD20 I/O
AD21 I/O
AD22 I/O
AD23 I/O
AD24 VDD
AD25 I/O
AD26 VDDP
1152 FBGA Pin
Pin
Number APA1000
Function
AD27 I/O
AD28 I/O
AD29 I/O
AD30 I/O
AD31 I/O
AD32 I/O
AD33 I/O
AD34 I/O
AE1 VDD
AE2 NC
AE3 I/O
AE4 I/O
AE5 I/O
AE6 I/O
AE7 I/O
AE8 I/O
AE9 I/O
AE10 GND
AE11 I/O
AE12 I/O
AE13 I/O
AE14 I/O
AE15 I/O
AE16 I/O
AE17 I/O
AE18 I/O
AE19 I/O
AE20 I/O
AE21 I/O
AE22 I/O
AE23 I/O
AE24 I/O
AE25 GND
AE26 I/O
AE27 I/O
AE28 I/O
AE29 I/O
AE30 I/O
AE31 I/O
AE32 I/O
AE33 NC
AE34 VDD
AF1 VDD
AF2 I/O
AF3 GND
1152 FBGA Pin
Pin
Number APA1000
Function
AF4 I/O
AF5 I/O
AF6 I/O
AF7 VDDP
AF8 I/O
AF9 VDD
AF10 I/O
AF11 VDDP
AF12 I/O
AF13 I/O
AF14 I/O
AF15 I/O
AF16 I/O
AF17 I/O
AF18 I/O
AF19 I/O
AF20 I/O
AF21 I/O
AF22 I/O
AF23 I/O
AF24 VDDP
AF25 TCK
AF26 VDD
AF27 TRST
AF28 VDDP
AF29 I/O
AF30 I/O
AF31 I/O
AF32 GND
AF33 I/O
AF34 VDD
AG1 VDD
AG2 NC
AG3 I/O
AG4 VDD
AG5 I/O
AG6 I/O
AG7 I/O
AG8 GND
AG9 I/O
AG10 I/O
AG11 I/O
AG12 I/O
AG13 I/O
AG14 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
v3.0 129
ProASICPLUS Flash Family FPGAs
AG15 I/O
AG16 I/O
AG17 I/O
AG18 I/O
AG19 I/O
AG20 I/O
AG21 I/O
AG22 I/O
AG23 I/O
AG24 I/O
AG25 I/O
AG26 I/O
AG27 GND
AG28 I/O
AG29 I/O
AG30 I/O
AG31 VDD
AG32 I/O
AG33 NC
AG34 VDD
AH1 VDD
AH2 I/O
AH3 GND
AH4 I/O
AH5 VDDP
AH6 I/O
AH7 VDD
AH8 I/O
AH9 VDDP
AH10 I/O
AH11 I/O
AH12 I/O
AH13 I/O
AH14 I/O
AH15 I/O
AH16 I/O
AH17 I/O
AH18 I/O
AH19 I/O
AH20 I/O
AH21 I/O
AH22 I/O
AH23 I/O
AH24 I/O
AH25 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
AH26 VDDP
AH27 I/O
AH28 VDD
AH29 TDO
AH30 VDDP
AH31 VPN
AH32 GND
AH33 I/O
AH34 VDD
AJ1 I/O
AJ2 NC
AJ3 I/O
AJ4 VDD
AJ5 I/O
AJ6 GND
AJ7 I/O
AJ8 I/O
AJ9 I/O
AJ10 I/O
AJ11 I/O
AJ12 I/O
AJ13 I/O
AJ14 I/O
AJ15 I/O
AJ16 I/O
AJ17 I/O
AJ18 I/O
AJ19 I/O
AJ20 I/O
AJ21 I/O
AJ22 I/O
AJ23 I/O
AJ24 I/O
AJ25 I/O
AJ26 I/O
AJ27 I/O
AJ28 I/O
AJ29 GND
AJ30 RCK
AJ31 VDD
AJ32 I/O
AJ33 NC
AJ34 NC
AK1 GND
AK2 GND
1152 FBGA Pin
Pin
Number APA1000
Function
AK3 GND
AK4 I/O
AK5 VDD
AK6 I/O
AK7 VDDP
AK8 I/O
AK9 I/O
AK10 I/O
AK11 I/O
AK12 I/O
AK13 I/O
AK14 I/O
AK15 I/O
AK16 I/O
AK17 I/O
AK18 I/O
AK19 I/O
AK20 I/O
AK21 I/O
AK22 I/O
AK23 I/O
AK24 I/O
AK25 I/O
AK26 I/O
AK27 I/O
AK28 VDDP
AK29 TDI
AK30 VDD
AK31 VPP
AK32 GND
AK33 GND
AK34 GND
AL1 GND
AL2 GND
AL3 GND
AL4 GND
AL5 I/O
AL6 VDD
AL7 I/O
AL8 VDD
AL9 I/O
AL10 I/O
AL11 I/O
AL12 I/O
AL13 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
AL14 I/O
AL15 I/O
AL16 I/O
AL17 I/O
AL18 I/O
AL19 I/O
AL20 I/O
AL21 I/O
AL22 I/O
AL23 I/O
AL24 I/O
AL25 I/O
AL26 I/O
AL27 VDD
AL28 I/O
AL29 VDD
AL30 TMS
AL31 GND
AL32 GND
AL33 GND
AL34 GND
AM1 GND
AM2 GND
AM3 NC
AM4 GND
AM5 GND
AM6 I/O
AM7 GND
AM8 I/O
AM9 GND
AM10 I/O
AM11 I/O
AM12 I/O
AM13 I/O
AM14 I/O
AM15 I/O
AM16 I/O
AM17 I/O
AM18 I/O
AM19 I/O
AM20 I/O
AM21 I/O
AM22 I/O
AM23 I/O
AM24 I/O
1152 FBGA Pin
Pin
Number APA1000
Function
ProASICPLUS Flash Family FPGAs
130 v3.0
AM25 I/O
AM26 GND
AM27 I/O
AM28 GND
AM29 I/O
AM30 GND
AM31 GND
AM32 NC
AM33 GND
AM34 GND
AN1 NC
AN2 NC
AN3 GND
AN4 GND
AN5 GND
AN6 NC
AN7 I/O
AN8 NC
AN9 I/O
AN10 NC
AN11 I/O
AN12 GND
AN13 I/O
AN14 VDDP
AN15 VDDP
AN16 I/O
AN17 GND
AN18 GND
AN19 I/O
AN20 VDDP
AN21 VDDP
AN22 I/O
AN23 GND
AN24 I/O
AN25 NC
AN26 I/O
AN27 NC
AN28 I/O
AN29 NC
AN30 GND
AN31 GND
AN32 GND
AN33 NC
AN34 NC
AP2 NC
1152 FBGA Pin
Pin
Number APA1000
Function
AP3 GND
AP4 GND
AP5 GND
AP6 I/O
AP7 VDD
AP8 VDD
AP9 VDD
AP10 VDD
AP11 I/O
AP12 GND
AP13 I/O
AP14 VDDP
AP15 VDDP
AP16 I/O
AP17 GND
AP18 GND
AP19 I/O
AP20 VDDP
AP21 VDDP
AP22 I/O
AP23 GND
AP24 I/O
AP25 VDD
AP26 VDD
AP27 VDD
AP28 VDD
AP29 I/O
AP30 GND
AP31 GND
AP32 GND
AP33 NC
1152 FBGA Pin
Pin
Number APA1000
Function
v3.0 131
ProASICPLUS Flash Family FPGAs
List of Changes
The following table lists critical changes that were made in the current version of the document.
Previ o us versi on Ch anges in cur rent version (A dvance d v3.0) Page
v2.0
The “Pro ASICPLUS Product Profile” t able on page 1 was updated. page 1
The “Ordering Information” section on page 3 was updated. page 3
The “Plastic Device Resources” table on pa ge 3 was updated. page 3
The “Pro duct Availability” table on page 4 was updated. page 4
Table 2 on page 10 was update d. page 10
Figure 8 on page 10 is new. page 10
Fig ure 11 on page 12 is new. page 12
The Introduction in the “ProASICPLUS Clock Management System” section on page 15 was
updated. page 15
The “Phys i cal Impl ementatio n” sectio n on page 15 was updated. page 15
The “Func tional Description” section on page 15 was updated. page 15
Figure 14 on page 16 through Figure 20 on page 20 were updated. page 16 to page 20
The “PLL El ectrical Specifications” table on page 21 was updated. page 21
Figure 25 on page 25 was updated. page 25
The “Calculating T ypical Power Dissipation” section on page 28 was updated. page 28
The “Sup pl y Volt ages” tabl e on page 30 was updated. page 30
The “DC Electrical Speci fications (VDDP = 3.3V ±0.3V and VD D 2.5V ±0.2V)1” table on page 32
was updated. page 32
The “Tristate Buffer Delays” table on page 35 was updated. page 35
The “Output Buffer Del ays” section on page 36 was updated. page 36
The“Input Bu ffer Delays” secti on on page 37 was updated. page 37
“Global Routing Skew” table on page 38 was updated. page 38
The“Sampl e Macrocell Library Listing*” table on page 39 was upda ted. page 39
The “Pin Description” section on p age 60 was updated. page 60
The following pins have bee n changed in the “100-Pin TQFP” table on page 63:
Pin Number Function Pin Number Function
10 I/O (GLMX1) 60 GL3
11 GL 1 61 P PE C L 2 (I /P )
13 NPECL1 63 NPECL2
15 PPE C L1 (I /P) 65 GL 4
16 GL2 66 I/O (GLMX2)
page 63
“144-Pin TQFP” table on page 65 is new. page 65
The following pins have bee n changed in the “208-Pin PQFP” table on page 68:
Pin Number Function Pin Number Function
23 I/O (GLMX1) 128 GL3
24 GL1 129 PPECL2 (I/P)
26 NPECL1 132 NPECL2
28 PPE C L1 (I /P) 134 GL4
30 GL2 135 I/O (GLMX2)
page 68
The following pins have bee n changed in the “456-Pin PBGA” table on page 74:
Pin Number Function Pin Number Function
M1 GL1 N22 NPECL2
M2 GL2 N23 GL3
M22 GL4 N25 I/O (GLMX2)
N2 I/O (GLMX1) P5 NPECL1
N4 PPECL1 (I/P) P26 PPECL2 (I/P)
page 74
ProASICPLUS Flash Family FPGAs
132 v3.0
v2.0 (continued)
The following pins have bee n changed in the “144-FBGA Pi n” tabl e on page 86:
Pin Number Function Pin Number Function
C2 GL2 F9 GL4
D12 I/O (GLMX2 )F11 PPECL2 (I/P
E11 NPECL2 F12 GL3
F1 GL 1 G1 P PE C L 1 (I/P)
F3 I/O (GLMX1) G4 NPECL1
page 86
The following pins have bee n changed in the “256-Pin FBGA” table on page 89:
Pin Number Function Pin Number Function
H1 GL1 H16 GL4
H2 NPECL1 J1 GL2
H3 I/O (GLMX1) J2 PPECL1 (I/P)
H13 I/O (GLMX2) J13 PPECL2 ( I/P)
H14 NPECL2 J16 GL3
page 89
The following pins have bee n changed in the“484-Pi n FBGA” table on page 96:
Pin Number Function Pin Number Function
L4 GL1 L19 GL4
L5 NPECL1 M4 GL2
L6 I/O (GLMX1) M5 PPECL1 (I/P)
L16 I/O (GLMX2) M16 PPECL2 ( I/P)
L17 NPECL2 M19 GL3
page 96
The following pins have bee n changed in the “676-FBGA Pi n” tabl e on page 103:
Pin Number Function Pin Number Function
N1 GL1 N25 GL4
N3 I/O (GLMX1) P1 GL2
N5 NPECL1 P5 PPECL1 (I/P)
N22 GL3 P22 I/O (GLMX 2)
N24 NPECL2 P24 PPECL2 (I/P)
page 103
The following pins have bee n changed in the “896 FBGA Pin” table on page 112:
Pin Number Function Pin Number Function
R2 I/O (GLMX1) T3 GL2
R4 NPECL1 T4 P PECL1 (I/P)
R5 GL1 T26 PPECL2 (I/P)
R27 NPECL2 T27 GL4
R29 I/O (GLMX2) T28 GL3
page 112
The following pins have bee n changed in the “1152 FBGA Pin” table on page 124:
Pin Number Function Pin Number Function
U4 I/O (GLMX 1) U29 NPECL2
U6 NPECL1 U31 I/O (GLMX2)
U7 GL1 V28 PPECL2 (I/P)
V5 GL2 V29 GL4
V6 PPECL1 (I/P ) V30 GL3
page 124
Previ o us versi on Changes in cur rent version (A dvance d v3.0) Page
ProASICPLUS Flash Family FPGAs
v3.0 133
Advanced v0.7
The “Pro duct Availability” table on page 4 was updated. page 4
The “A r r ay C o or d i nates s ection on pag e 10 and Table 2 are new. page 10
The “Power-up Sequencing” section on page 12 is ne w. page 12
Table 4 on page 11 was updated. page 11
The “Timing Cont rol and Characteristics” section on page 15 was upda ted. Physical
Implementation, Functional Description, Lock Sig nal, and PLL Configuration Opt ions are new. page 15 to page 16
Figure 14 on page 17 was updated. page 17
Figure 15 on page 18 was updated. page 18
Sample Implementations, Adjust able Clock Delay , and th e “Cloc k Skew Minimi zatio n” sec tion on
page 16 are new. page 16
Figure 16, Figure 17, Figure 18, Figure 19, and Figure 20 are new. page 19 to page 21
The “PLL El ectrical Specifications” table on page 22 is new . page 22
The “Des i gn Environment” section on page 27 was updated. page 27
Figure 26 on page 27 was updated. page 27
The “Calculating T ypical Power Dissipation” section on page 29 was updated. page 29
The “DC El ectrical Specific ations (VDDP = 2.5V ±0.2V)1 table on page 32 was updated. page 32
The “DC Electrical Speci fications (VDDP = 3.3V ±0.3V and VD D 2.5V ±0.2V)1” table on page 33
was updated. page 33
The “DC Specifications (3.3V PCI Operation)1” table on page 34 was updated. page 34
The “Tristate Buffer Delays” section on page 36 (the figure and table) have been updated. page 36
The “Output Buffer Dela ys” secti on on page 37 (the fi gure and table) have been updated. page 37
The “In put Buffer De lays” table on page 38 was updated. page 38
The “Global Input Buffer D el ays” table on page 38 was updated. page 38
The “Pre di cted Global Routing Del ay*” table on page 39 was updated. page 39
The “Global Routi ng Skew” table on page 39 was updated. page 39
The “Sample Macrocell Library Listing*” table on page 40 was updated. page 40
The “Pin Description” section on page 61 was updated. GLMX is new. page 61
The “Rec ommended Design Practice for VPN/VPP” section on page 62 was updated. page 62
Pin AK31 of FG1152 for the APA1000 changed to VPP. page 128
(Advanced v0.6)
The “Features an d Benefits” section on pa ge 1 were updated. page 1
The “Pro ASICPLUS Product Profile” t able on page 1 was updated. page 1
The “Ordering Information” section on page 3 was updated. page 3
The “Plastic Device Resources” table o n page 3 was updated. page 3
The “Product Plan” table on page 4 was updated. page 4
Table 1 on page 10 was updated. page 10
Figure 12 on page 15 was updated. page 15
The “Des i gn Environment” section on page 23 was upd ated. page 23
The “Package Thermal Characteristics” table on page 24 was updated. page 24
The “Calculating Power Dissipation” section on page 25 was updated. page 25
The “Absolute Maximum Ratings*” table on page 26 wa s updated. page 26
The “Pro grammi ng and Storage and Operating Temperatu r e Li mits” tabl e on page 26 was
updated. page 26
The “Sup pl y Voltages” table on page 26 was updated. page 26
The “Rec ommended Operatin g C onditions” t able on page 26 was updated. page 26
The “DC Electrical Sp ecifications (VDDP = 2. 5V ±0.2V) 1 ” tab l e on pag e 27 was updated. page 27
The “DC Electrical Sp ecifications (VDDP = 3.3V ±0.3V and VDD 2.5V ±0.2V)1” table on page 28
was updated. page 28
The “Sync hronous Write and Read to the Same Location” figure on page 44 was updated. page 44
The “Asy nchronous Write and Synchronous Read t o the Same Location” fi gure on pag e 45 was
updated. page 45
The “Asy nchronous FIFO Read” figure on page 50 was updated. page 50
The “Pin Description” section on p age 57 has been updated. page 57
The “Rec ommended Design Practice for VPN/VPP” section on page 57 is n ew. page 57
The “100-Pin TQFP” figure on page 62 is new. page 62
The “484 -Pin FBGA” f i gure on page 96 is new. page 96
Advan ced v0.5 The desc ri ption for the VPN pin has changed. page 57
Previ o us versi on Ch anges in cur rent version (A dvance d v3.0) Page
ProASICPLUS Flash Family FPGA
134 v3.0
Datasheet Categories
In order to provide the latest information to designers, some datasheets are published before data has been fully
characterized. Datasheets are designated as “Product Brief,” “Advanced,” “Production.” The definition of these categories
are as follows:
Product Brief
The product brief is a modified version of an advanced datasheet containing general product information. This brief
summarizes specific device and family information for un released products.
Advanced
This datasheet version contains initial es timated information based on simulation, other products, devices, or speed grades.
This information ca n be used as estimates, but not for production.
Unmarked (production)
This datasheet version contains information that is considered to be final.
Advanced v0.4
The “Plastic Device Resources” table on page 3 has been updated. page 3
Figure 12 and Figure 13 on page 15 have been updated. page 15
The “Tristate Buffer Delays” table on page 31 has been updated. page 31
The “Output Buffer Delays” table on p age 32 has been updated. page 32
The “Input Buffer Delays” table on page 33 has been updated. page 33
The “Global Input Buffer Delays” table on page 34 has been updated. page 34
The “456-Pin PBGA” table on page 74 has been updated. page 74
The “676-FBGA Pin” table on page 103 has been updated. page 103
Advanced v0.3
The “ProASICPLUS Product Profile” figure on page 1 has been changed. page 1
The “Plastic Device Resources” figure on page 3 has been updated. page 3
The Supply Voltages table on page 10 has been updated. page 10
WDATA has ben changed to DI, and RDATA has been changed to DO to make them
consistent with the signal names found in the Mac ro Library Guid e.
Figure 13 on page 19 and Figure 14 on page 20 have been updated. page 19
and page 20
The “Design Environment” figure on page 23 and Figure 18 on page 23 have been
updated. page 23
and page 23
The table in the “Packag e Thermal Characteristics” section on page 24 has been updated. page 24
The “Cal cu lating Powe r Dissipation ” section o n page 25 is new. page 25
The “Programming and Storage and Operating Temperature Limits” section on page 26 is
new. page 26
The “Supply Voltages” section on page 26 has been updated. page 26
The “DC Electrical S p ecifications (VDDP = 2.5V ±0.2V)1” table on page 27 was updated. page 27
The “DC Electrical S p ecifications (VDDP = 3.3V ±0.3V and VDD 2.5V ±0.2V)1” table on
page 28 was updated. page 28
The “AC Specifications (3.3V PCI Revision 2.2 Operation)” table on page 30 was updated. page 30
The “Clock Conditioning Circuit” section on page 14 was updated. page 14
Figure 12 on page 15 was updated. page 15
Figure 13 on page 15 is new. page 15
Tables 5, 6, and 7 from Advanced v0.3 were removed.
The “Memory Block SRAM Interface Signals” figure on page 19 was updated. page 19
The “Memory Block FIFO Interface Signals” figure on page 48 was updated. page 48
All pinout tables have been updated, and several packages are new:
208-Pin PQ FP – APA150, APA 300, APA 450, APA 600
456-Pin PBGA – APA150, APA300, APA450, APA600
144-Pin FBG A – APA150, APA 300, APA 450
256-Pin FB GA – APA150, APA 300, APA 450, APA 600
676-Pin FBG A – APA 600
Advanced v0.1 Figure 15 on page 21 has been updated page 21
Previ o us versi on Changes in cur rent version (A dvance d v3.0) Page
Actel and the Actel logo ar e regi stered trademarks of Act el Corporation.
All other trademarks are the property of their owners.
http://www.actel.com
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540
Actel Europe Ltd.
Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel:
+44 (0)1276 401450
Fax:
+44 (0)1276 401490
Actel Japan
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
Actel Hong Kong
39th Floor
One Pacific Place
88 Queensway
Admiralty, Hong Kong
Tel: 852-22735712
5172161-8/5.03