© Freescale Semiconductor, Inc., 2009. All rights reserved.
Freescale Semiconductor
Data Sheet: Technical Data MCF5208EC
Rev. 3, 9/2009
Freescale reserves the right to change the detail specifications as may be required to permit
improvements in the design of its products.
Table of Contents
The MCF5207 and MCF5208 devices are
highly-integrated, 32-bit microprocessors based on the
version 2 ColdFire microarchitecture. Both devices
contain a 16-Kbyte internal SRAM, an 8-Kbyte
configurable cache, a 2-bank SDR/DDR SDRAM
controller, a 16-channel DMA controller, up to three
UARTs, a queued SPI, a low-power management
modeule, and other peripherals that enable the MCF5207
and MCF5208 for use in industrial control and
connectivity applications. The MCF5208 device also
features a 10/100 Mbps fast ethernet controller.
This document provides detailed information on power
considerations, DC/AC electrical characteristics, and AC
timing specifications of the MCF5207 and MCF5208
microprocessors. It was written from the perspective of
the MCF5208 device. See the following section for a
summary of differences between the two devices.
MCF5208 ColdFire®
Microprocessor Data Sheet
Supports MCF5207 & MCF5208
by: Microcontroller Solutions Group
1 MCF5207/8 Device Configurations......................2
2 Ordering Information ...........................................2
3 Signal Descriptions..............................................3
4 Mechanicals and Pinouts ....................................8
5 Electrical Characteristics.............. .. ... .............. ..17
6 Revision History ........................ .............. ... .. ... ..43
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
MCF5207/8 Device Configurations
Freescale Semiconductor2
1 MCF5207/8 Device Configurations
The following table compares the two devices described in this document:
2 Ordering Information
Table 1. MCF5207 & MCF5208 Configurations
Module MCF5207 MCF5208
Version 2 ColdFire Core with EMAC
(Enhanced Multiply-Accumulate Unit) ••
Core (System) Clock up to 166.67 MHz
Peripheral and External Bus Clock
(Core clock ÷ 2)
up to 83.33 MHz
Performance (Dhrystone/2.1 MIPS) up to 159
Instruction/Data Cache 8 Kbytes
Static RAM (SRAM) 16 Kbytes
SDR/DDR SDRAM Controller
Fast Ethernet Controller (FEC)
Low-Power Management Module
UARTs 3 3
I2C•
QSPI
32-bit DMA Timers 4 4
Watchdog Timer (WDT)
Periodic Interrupt Timers (PIT) 4 4
Edge Port Module (EPORT)
Interrupt Controllers (INTC) 1 1
16-channel Direct Memory Access (DMA)
Fle xBus External Interf ace
General Purpose I/O Module (GPIO)
JTAG - IEEE® 1149.1 Test Access Port
Package 144 LQFP
144 MAPBGA 160 QFP
196 MAPBGA
Ta ble 2. Orderable Part Numbers
Freescale Part
Number Description Speed Temperature
MCF5207CAG166 MCF5207 RISC Microprocessor, 144 LQFP 166.67 MHz –40° to +85° C
MCF5207CVM166 MCF5207 RISC Microprocessor, 144 MAPBGA 166.67 MHz –40° to +85° C
MCF5208CAB166 MCF5208 RISC Microprocessor, 160 QFP 166.67 MHz –40° to +85° C
MCF5208CVM166 MCF5208 RISC Microprocessor, 196 MAPBGA 166.67 MHz –40° to +85° C
Signal Descriptions
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 3
3 Signal Descriptions
The following table lists all the MCF5208 pins grouped by function. The Dir column is the direction for
the primary function of the pin only . Refer to Section 4, “Mechanicals and Pinouts” for package diagrams.
For a more detailed discussion of the MCF5208 signals, consult the MCF5208 Reference Manual
(MCF5208RM).
NOTE
In this table and throughout this document, a single signal within a group is
designated without square brackets (i.e., A23), while designations for
multiple signals within a group use brackets (i.e., A[23:21]) and is meant to
include all signals within the two bracketed numbers when these numbers
are separated by a colon.
NOTE
The primary functionality of a pin is not necessarily its default functionality .
Pins that are muxed with GPIO default to their GPIO functionality.
Table 3. MCF5207/8 Signal Information and Muxing
Signal Name GPIO Alternate 1 Alternate 2
Dir.1
Voltage
Domain
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
Reset
RESET2 I EVDD 82 J10 90 J14
RSTOUT O EVDD 74 M12 82 N14
Clock
EXTAL I EVDD 78 K12 86 L14
XTAL O EVDD 80 J12 88 K14
FB_CLK O SDVDD 34 L1 40 N1
Mode Selection
RCON2 I EVDD 144 C4 160 C3
DRAMSEL I EVDD 79 H10 87 K11
FlexBus
A[23:22] FB_CS[5:4] O SDVDD 118, 117 B9, A10 126, 125 B11, A11
A[21:16] O SDVDD 116–114,
112, 108,
107
C9, A11,
B10, A12,
C11, B11
124, 123,
122, 120,
116, 115
B12, A12,
A13, B13,
B14, C13
A[15:14] SD_BA[1:0]3—O
SDVDD 106, 105 B12, C12 114, 113 C14, D12
A[13:11] SD_A[13:11]3—O
SDVDD 10 4–102 D11, E10,
D12 112, 111,
110 D13, D14,
E11
A10 O SDVDD 101 C10 109 E12
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Signal Descriptions
Freescale Semiconductor4
A[9:0] SD_A[9:0]3—O
SDVDD 100–91 E11, D9,
E12, F10,
F11, E9,
F12, G10,
G12, F9
108–99 E13, E14,
F11–F14,
G11–G14
D[31:16] SD_D[31:16]4I/O SDVDD 21–28,
40–47 F1, F2, G1,
G2, G4, G3,
H1, H2, K3,
L2, L3, K2,
M3, J4, M4,
K4
27–34,
46–53 J4–J1,
K4–K1, M3,
N3, M4, N4,
P4, L5, M5,
N5
D[15:0] FB_D[31:16]4I/O SDVDD 8–15, 51–58 B2, B1, C2,
C1, D2, D1,
E2, E1, L5,
K5, L6, J6,
M6, J7, L7,
K7
16–23,
57–64 F3–F1,
G4–G1, H1,
N6, P6, L7,
M7, N7, P7,
N8, P8
BE/BWE[3:0] PBE[3:0] SD_DQM[3:0]3 O SDVDD 20, 48, 18,
50 F4, L4, E3,
J5 26, 54, 24,
56 H2, P5, H4,
M6
OE PBUSCTL3 O SDVDD 60 J8 66 M8
TA2PBUSCTL2 I SDVDD 90 G11 98 H14
R/W PBUSCTL1 O SDVDD 59 K6 65 L8
TS PBUSCTL0 DACK0 —O
SDVDD 4B3 12 E3
Chip Selects
FB_CS[3:2] PCS[3:2] O SDVDD 119, 120 D7, A9 C11, A10
FB_CS1 PCS1 SD_CS1 —O
SDVDD 121 C8 127 B10
FB_CS0 ——O
SDVDD 122 B8 128 C10
SDRAM Controller
SD_A10 O SDVDD 37 M1 43 N2
SD_CKE O SDVDD 6C314E1
SD_CLK O SDVDD 31 J1 37 L1
SD_CLK ——O
SDVDD 32 K1 38 M1
SD_CS0 ——O
SDVDD 7A1 15 F4
SD_DQS[3:2] O SDVDD 19, 49 F3, M5 25, 55 H3, L6
SD_SCAS ——O
SDVDD 38 M2 44 P2
SD_SRAS ——O
SDVDD 39 J2 45 P3
SD_SDR_DQS O SDVDD 29 H3 35 L3
SD_WE ——O
SDVDD 5D313E2
Table 3. MCF5207/8 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Dir.1
Voltage
Domain
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
Signal Descriptions
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 5
External Interrupts Port5
IRQ72PIRQ72 I EVDD 134 A5 142 C7
IRQ42PIRQ42DREQ02 I EVDD 133 C6 141 D7
IRQ12PIRQ12 I EVDD 132 B6 140 D8
FEC
FEC_MDC PFECI2C3 I2C_SCL2U2TXD OEVDD 148 D6
FEC_MDIO PFECI2C2 I2C_SDA2U2RXD I/O EVDD 147 C6
FEC_TXCLK PFECH7 I EVDD 157 B3
PFECH6 U1RTS OEVDD 142 A2
FEC_TXEN PFECH6 U1RTS OEVDD 158 A2
FEC_TXD0 PFECH5 O EVDD 3 B1
FEC_COL PFECH4 I EVDD 7 D3
FEC_RXCLK PFECH3 I EVDD 154 B4
FEC_RXDV PFECH2 I EVDD 153 A4
FEC_RXD0 PFECH1 I EVDD 152 D5
FEC_CRS PFECH0 I EVDD 8 D2
FEC_TXD[3:1] PFECL[7:5] O EVDD 6–4 C1, C2, B2
PFECL4 U0RTS OEVDD 141 D5
FEC_TXER PFECL4 U0RTS OEVDD 156 A3
FEC_RXD[3:2] PFECL[3:2] I EVDD 149–150 A5, B5
PFECL1 U1CTS IEVDD 139 B4
FEC_RXD1 PFECL1 U1CTS IEVDD 151 C5
PFECL0 U0CTS IEVDD 140 E4
FEC_RXER PFECL0 U0CTS IEVDD 155 C4
Note: The MCF5207 does not contain an FEC module. How ev er , the U ART0 and U AR T1 control signals (as well as their GPIO signals)
are available by setting the appropriate FEC GPIO port registers.
I2C
I2C_SDA2PFECI2C02U2RXD2I/O EVDD —D1
I2C_SCL2PFECI2C12U2TXD2I/O EVDD —E4
DMA
DACK0 and DREQ0 do not have a dedicated bond pads. Please refer to the following pins for muxing:
TS and QSPI_CS2 for DACK0, IRQ4 and QSPI_DIN for DREQ0.
Table 3. MCF5207/8 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Dir.1
Voltage
Domain
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Signal Descriptions
Freescale Semiconductor6
QSPI
QSPI_CS2 PQSPI3 DACK0 U2RTS OEVDD 126 A8 132 D10
QSPI_CLK PQSPI0 I2C_SCL2 O EVDD 127 C7 133 A9
QSPI_DOUT PQSPI1 I2C_SDA2 O EVDD 128 A7 134 B9
QSPI_DIN PQSPI2 DREQ02U2CTS IEVDD 129 B7 135 C9
Note: The QSPI_CS1 and QSPI_CS0 signals are available on the U1CTS, U1RTS, U0CTS, or U0RTS pins for the 196 and 160-pin
packages.
UARTs
U1CTS PUARTL7 DT1IN QSPI_CS1 IEVDD 136 D9
U1RTS PUARTL6 DT1OUT QSPI_CS1 OEVDD 137 C8
U1TXD PUARTL5 O EVDD 131 A6 139 A8
U1RXD PUARTL4 I EVDD 130 D6 138 B8
U0CTS PUARTL3 DT0IN QSPI_CS0 IEVDD —76N12
U0RTS PUARTL2 DT0OUT QSPI_CS0 OEVDD —77P12
U0TXD PUARTL1 O EVDD 71 L10 79 P13
U0RXD PUARTL0 I EVDD 70 M10 78 N13
Note: The UART2 signals are multiplexed on the DMA Timers, QSPI, FEC, and I2C pins. For the MCF5207 devi ces, the UART0 and
UART1 control signals are multiplexed internally on the FEC signals.
DMA Timers
DT3IN PTIMER3 DT3OUT U2CTS IEVDD 135 B5 143 B7
DT2IN PTIMER2 DT2OUT U2RTS IEVDD 136 C5 144 A7
DT1IN PTIMER1 DT1OUT U2RXD IEVDD 137 A4 145 A6
DT0IN PTIMER0 DT0OUT U2TXD IEVDD 138 A3 146 B6
BDM/JTAG6
JTAG_EN7 I EVDD 83 J1191J13
DSCLK TRST2 I EVDD 76 K11 84 L12
PSTCLK TCLK2 O EVDD 64 M7 70 P9
BKPT TMS2 I EVDD 75 L12 83 M14
DSI TDI2 I EVDD 77 H9 85 K12
DSO TDO O EVDD 69 M9 75 M12
DDATA[3:0] O EVDD K9, L9, M11,
M8 —P11, N11,
M11, P10
PST[3:0] O EVDD L11, L8,
K10, K8 N10, M10,
L10, L9
Table 3. MCF5207/8 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Dir.1
Voltage
Domain
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
Signal Descriptions
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 7
ALLPST O EVDD 67 73
Test
TEST7 I EVDD 109 ——C12
PLL_TEST I EVDD ——M13
Power Supplies
EVDD 1, 33, 63, 66,
72, 81, 87,
125
E5–E6, F5,
G8–G9,
H7–H8
2, 9, 69, 72,
80, 89, 95,
131
E5–E7, F5,
F6, G5, H10,
J9, J10,
K8–K10,
K13, M9
IVDD 30, 68, 84,
113, 143 D4, D8, H4,
H11, J9 36, 74, 92,
121, 159 J12, D4,
D11, H11,
L4, L11,
PLL_VDD 86 H12 94 H13
SD_VDD 3, 17, 35, 61,
89, 110, 123 E7–E8, F8,
G5, H5–H6,
J3
11, 39, 41,
67, 97, 118,
129
E8–E10, F9,
F10, G10,
H5, J5, J6,
K5–K7, L2
VSS 2, 16, 36, 62,
65, 73, 88,
111, 124
D10, F6–F7,
G6–G7 1, 10, 42, 68,
71, 81, 96,
117, 119,
130
A1, A14,
F7–F8,
G6–G9,
H6–H9,
J7–J8, L13,
M2, N9, P1,
P14
PLL_VSS 85 —93H12
NOTES:
1Refers to pin’s primary function.
2Pull-up enabled internally on this signal for this mode.
3The SDRAM functions of these signals are not programmable by the user. They are dynamically switched by the processor when
accessing SDRAM memory space and are included here for completeness.
4Primary functiona lity selected by asserting the DRAMSEL signal (SDR mode). Alternate functionality selected by negating the
DRAMSEL signal (DDR mode). The GPIO module is not responsible for assigning these pins.
5GPIO functionality is determined by the edge port module. The GPIO module is only responsible f or assigning the alternate functions.
6If JTA G_EN is asserted, these pins default to Alternate 1 (JTAG) functionality. The GPIO module is not responsible for assigning
these pins.
7Pull-down enabled internally on this sign al for this mode.
Table 3. MCF5207/8 Signal Information and Muxing (continued)
Signal Name GPIO Alternate 1 Alternate 2
Dir.1
Voltage
Domain
MCF5207
144
LQFP
MCF5207
144
MAPBGA
MCF5208
160
QFP
MCF5208
196
MAPBGA
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Mechanicals and Pinouts
Freescale Semiconductor8
4 Mechanicals and Pinouts
Drawings in this section show the pinout and the packaging and mechanical characteristics of the
MCF5207 and MCF5208 devices.
NOTE
The mechanical drawings are the latest revisions at the time of publication
of this document. The most up-to-date mechanical drawings can be found at
the product summary page located at http://www.freescale.com/coldfire.
4.1 Pinout—144 LQFP
Figure 1 shows a pinout of the MCF5207CAG166 device.
Figure 1. MCF520 7CAG166 Pinout Top View (144 LQFP)
RCON
IVDD
U1RTS
U0RTS
U0CTS
U1CTS
DT0IN
DT1IN
DT2IN
DT3IN
IRQ7
IRQ4
IRQ1
U1TXD
U1RXD
QSPI_DIN
QSPI_DOUT
QSPI_CLK
QSPI_CS2
EVDD
VSS
SD_VDD
FB_CS0
FB_CS1
FB_CS2
FB_CS3
A23
A22
A21
A20
A19
IVDD
A18
VSS
SD_VDD
TEST
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
EVDD 1 108 A17
EVSS 2 107 A16
SD_VDD 3 106 A15
TS 4105 A14
SD_WE 5104 A13
SD_CKE 6 103 A12
SD_CS 7102 A11
D15 8 101 A10
D14 9 100 A9
D13 10 99 A8
D12 11 98 A7
D11 12 97 A6
D10 13 96 A5
D9 14 95 A4
D8 15 94 A3
EVSS 16 93 A2
SD_VDD 17 92 A1
BE/BWE1 18 91 A0
SD_DQS3 19 90 TA
BE/BWE3 20 89 SD_VDD
D31 21 88 VSS
D30 22 87 EVDD
D29 23 86 PLL_VDD
D28 24 85 PLL_VSS
D27 25 84 IVDD
D26 26 83 JTAG_EN
D25 27 82 RESET
D24 28 81 EVDD
SD_SDR_DQS 29 80 XTAL
IVDD 30 79 DRAMSEL
SD_CLK 31 78 EXTAL
SD_CLK 32 77 TDI/DSI
SD_VDD 33 76 TRST/DSCLK
FB_CLK 34 75 TMS/BKPT
SD_VDD 35 74 RSTOUT
VSS 36 73 VSS
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
SD_A10
SD_CAS
SD_RAS
D23
D22
D21
D20
D19
D18
D17
D16
BE/BWE2
SD_DQS2
BE/BWE0
D7
D6
D5
D4
D3
D2
D1
D0
R/W
OE
SD_VDD
VSS
EVDD
TCLK/PSTCLK
VSS
EVDD
ALL_PST
IVDD
TDO/DSO
U0RXD
U0TXD
EVDD
Mechanicals and Pinouts
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 9
4.2 Package Dimensions—144 LQFP
Figure 2 and Figure 3 show MCF5207CAB166 package dimensions.
Figure 2. MCF5207CAB166 Package Dimensions (Sheet 1 of 2)
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Mechanicals and Pinouts
Freescale Semiconductor10
Figure 3. MCF5207CAB166 Package Dimensions (Sheet 2 of 2)
View A Section A-A
Rotated 90× CW
144 Places
View B
Mechanicals and Pinouts
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 11
4.3 Pinout—144 MAPBGA
The pinout of the MCF5207CVM166 device is shown below.
123456789101112
A SD_CS U1RTS DT0IN DT1IN IRQ7 U1TXD QSPI_
DOUT QSPI_CS2 FB_CS2 A22 A20 A18 A
BD14 D15 TS U1CTS DT3IN IRQ1 QSPI_
DIN FB_CS0 A23 A19 A16 A15 B
CD12 D13 SD_CKE RCON DT2IN IRQ4 QSPI_
CLK FB_CS1 A21 A10 A17 A14 C
DD10 D11 SD_WE IVDD U0RTS U1RXD FB_CS3 IVDD A8 VSS A13 A11 D
ED8 D9 BE/BWE1 U0CTS EVDD EVDD SD_VDD SD_VDD A4 A12 A9 A7 E
FD31 D30 SD_DQS3 BE/BWE3 EVDD VSS VSS SD_VDD A0 A6 A5 A3 F
GD29 D28 D26 D27 SD_VDD VSS VSS EVDD EVDD A2 TA A1 G
HD25 D24 SD_SDR_
DQS IVDD SD_VDD SD_VDD EVDD EVDD TDI/DSI DRAM
SEL IVDD PLL_VDD H
J SD_CLK SD_RAS SD_VDD D18 BE/BWE0 D4 D2 OE IVDD RESET JTAG_EN XTAL J
K SD_CLK D20 D23 D16 D6 R/W D0 PST0 DDATA3 PST1 TRST/
DSCLK EXTAL K
LFB_CLK D22 D21 BE/BWE2 D7 D5 D1 PST2 DDATA2 U0TXD PST3 TMS/
BKPT L
M SD_A10 SD_CAS D19 D17 SD_DQS2 D3 TCLK/
PSTCLK DDATA0 TDO/DSO U0RXD DDATA1 RSTOUT M
123456789101112
Figure 4. MCF5207CVM166 Pinout Top View (144 MAPBGA)
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Mechanicals and Pinouts
Freescale Semiconductor12
4.4 Package Dimensions—144 MAPBGA
Figure 5 shows the MCF5207CAB166 package dimensions.
Figure 5. MCF5207CAB166 Package Dimensions (144 MAPBGA)
Mechanicals and Pinouts
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 13
4.5 Pinout—160 QFP
Figure 6 shows a pinout of the MCF5208CAB166 device.
Figure 6. MCF5208CAB166 Pinout Top View (160 QFP)
RCON
IVDD
FEC_TXEN
FEC_TXCLK
FEC_TXER
FEC_RXER
FEC_RXCLK
FEC_RXDV
FEC_RXD0
FEC_RXD1
FEC_RXD2
FEC_RXD3
FEC_MDC
FEC_MDIO
DT0IN
DT1IN
DT2IN
DT3IN
IRQ7
IRQ4
IRQ1
U1TXD
U1RXD
U1RTS
U1CTS
QSPI_DIN
QSPI_DOUT
QSPI_CLK
QSPI_CS2
EVDD
VSS
SD_VDD
FB_CS0
FB_CS1
A23
A22
A21
A20
A19
IVDD
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
VSS 1 120 A18
EVDD 2 119 VSS
FEC_TXD0 3 118 SD_VDD
FEC_TXD1 4 117 VSS
FEC_TXD2 5 116 A17
FEC_TXD3 6 115 A16
FEC_COL 7 114 A15
FEC_CRS 8 113 A14
EVDD 9 112 A13
VSS 10 111 A12
SD_VDD 11 110 A11
TS 12 109 A10
SD_WE 13 108 A9
SD_CKE 14 107 A8
SD_CS 15 106 A7
D15 16 105 A6
D14 17 104 A5
D13 18 103 A4
D12 19 102 A3
D11 20 101 A2
D10 21 100 A1
D9 22 99 A0
D8 23 98 TA
BE/BWE1 24 97 SD_VDD
SD_DQS3 25 96 VSS
BE/BWE3 26 95 EVDD
D31 27 94 PLL_VDD
D30 28 93 PLL_VSS
D29 29 92 IVDD
D28 30 91 JTAG_EN
D27 31 90 RESET
D26 32 89 EVDD
D25 33 88 XTAL
D24 34 87 DRAMSEL
SD_SDR_DQS 35 86 EXTAL
IVDD 36 85 TDI/DSI
SD_CLK 37 84 TRST/DSCLK
SD_CLK 38 83 TMS/BKPT
SD_VDD 39 82 RSTOUT
FB_CLK 40 81 VSS
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
SD_VDD
VSS
SD_A10
SD_CAS
SD_RAS
D23
D22
D21
D20
D19
D18
D17
D16
BE/BWE2
SD_DQS2
BE/BWE0
D7
D6
D5
D4
D3
D2
D1
D0
R/W
OE
SD_VDD
VSS
EVDD
TCLK/PSTCLK
VSS
EVDD
ALL_PST
IVDD
TDO/DSO
U0CTS
U0RTS
U0RXD
U0TXD
EVDD
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Mechanicals and Pinouts
Freescale Semiconductor14
4.6 Package Dimensions—160 QFP
The package dimensions of the MCF5208CAB166 device are shown in the figures below.
Figure 7. MCF5208CAB166 Package Dimensions (Sheet 1 of 2)
Top View
Mechanicals and Pinouts
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 15
Figure 8. MCF5208CAB166 Package Dimensions (Sheet 2 of 2)
DETAIL A SECTION B-B
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Mechanicals and Pinouts
Freescale Semiconductor16
4.7 Pinout—196 MAPBGA
Figure 9 shows a pinout of the MCF5208CVM166 device.
1234567891011121314
AVSS FEC_
TXEN FEC_
TXER FEC_
RXDV FEC_
RXD3 DT1IN DT2IN U1TXD QSPI_
CLK FB_CS2 A22 A20 A19 VSS A
BFEC_
TXD0 FEC_
TXD1 FEC_
TXCLK FEC_
RXCLK FEC_
RXD2 DT0IN DT3IN U1RXD QSPI_
DOUT FB_CS1 A23 A21 A18 A17 B
CFEC_
TXD3 FEC_
TXD2 RCON FEC_
RXER FEC_
RXD1 FEC_
MDIO IRQ7 U1RTS QSPI_
DIN FB_CS0 FB_CS3 TEST A16 A15 C
D I2C_SDA FEC_
CRS FEC_
COL IVDD FEC_
RXD0 FEC_
MDC IRQ4 IRQ1 U1CTS QSPI_
CS2 IVDD A14 A13 A12 D
E SD_CKE SD_WE TS I2C_SCL EVDD EVDD EVDD SD_VDD SD_VDD SD_VDD A11 A10 A9 A8 E
FD13 D14 D15 SD_CS EVDD EVDD VSS VSS SD_VDD SD_VDD A7 A6 A5 A4 F
GD9 D10 D11 D12 EVDD VSS VSS VSS VSS SD_VDD A3 A2 A1 A0 G
HD8 BE/
BWE3 SD_
DQS3 BE/
BWE1 SD_VDD VSS VSS VSS VSS EVDD IVDD PLL_
VSS PLL_
VDD TA H
JD28 D29 D30 D31 SD_VDD SD_VDD VSS VSS EVDD EVDD NC IVDD JTAG_
EN RESET J
KD24 D25 D26 D27 SD_VDD SD_VDD SD_VDD EVDD EVDD EVDD DRAM
SEL TDI/
DSI EVDD XTAL K
L SD_CLK SD_VDD SD_SDR
_DQS IVDD D18 SD_
DQS2 D5 R/W PST0 PST1 IVDD TRST/
DSCLK VSS EXTAL L
M SD_CLK VSS D23 D21 D17 BE/
BWE0 D4 OE EVDD PST2 DDATA1 TDO/
DSO PLL_
TEST TMS/
BKPT M
NFB_CLKSD_A10 D22 D20 D16 D7 D3 D1 VSS PST3 DDATA2 U0CTS U0RXD RSTOUT N
PVSS SD_CAS SD_RAS D19 BE/
BWE2 D6 D2 D0 TCLK/
PSTCLK DDATA0 DDATA3 U0RTS U0TXD VSS P
1234567891011121314
Figure 9. MCF5208CVM166 Pinout Top View (196 MAPBGA)
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 17
4.8 Package Dimensions—196 MAPBGA
The package dimensions for the MCF5208CVM166 device is shown below.
Figure 10. MCF5208CVM166 Package Dimensions (196 MAPBGA)
5 Electrical Characteristics
5.1 Maximum Ratings
Table 4. Absolute Maximum Ratings1, 2
Rating Symbol Value Unit
Core Supply Voltage IVDD – 0.5 to +2.0 V
CMOS Pad Supply Vo ltage EVDD – 0.3 to +4.0 V
DDR/Memor y Pad Supply Voltage SDVDD – 0.3 to +4.0 V
PLL Supply Voltage PLLVDD – 0.3 to +2.0 V
Digital Input Voltage 3VIN – 0.3 to +3.6 V
Instantaneous Maximum Current
Single pin limit (applies to all pins) 3, 4, 5 ID25 mA
Top View
Bottom View
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor18
5.2 Thermal Characteristics
Table 5 lists thermal resistance values
Operating Temperature Range (P ackaged) TA
(TL - TH)– 40 to 85 °C
Storage Temperature Range Tstg – 55 to 150 °C
NOTES:
1Functional operating condition s are given in Section 5.4, “DC Electrical Specifications”.
Absolute maximum ratings are stress ratings only, and functional operation at the maxima is
not guaranteed. Continued operation at these levels may affect device reliability or cause
permanent damage to the device.
2This device contains circuitry protecting against damage due to high static voltage or
electrical fields; howe ver, it is advised that normal precautions be taken to av oid application of
any v oltages higher than maximum-rated voltages to this high-impedance circuit. Reliability of
operation is enhanced if unused inputs are ti ed to an appropria te logic voltage level (VSS or
EVDD).
3Input must be current limited to the value specified. To determine the value of the requi red
current-limiting resistor, calculate resistance values for positive and negative clamp voltages,
then use the larger of the two values.
4All functional non-supply pins are internall y cla mp ed to VSS and EVDD.
5Power supply must maintain regulation within operating EVDD range during instantaneous
and operating maximum current conditions. If positive injection current (Vin > EVDD) is greater
than IDD, the injection current ma y flow out of EVDD and could result in external power supply
going out of regulation. Ensure external EVDD load shunts current greater than maximum
injection current. This is the greatest risk when the MCU is not consuming power (ex; no
clock). Power supply must maintain regulation within operating EVDD range during
instantaneous and operating maximum current conditions.
Table 5. Thermal Characteristics
Characteristic Symbol 196MBGA 144MBGA 160QFP 144LQFP Unit
Junction to ambient, natural convection Four layer board
(2s2p) θJMA 471,2
NOTES:
1θJMA and Ψjt parameters are simulated in conformance with EIA/JESD Standard 51-2 for natural convection. Freescale
recommends the use of θJmA and power dissipation specifications in the system design to pre vent device junction temperatures
from exceeding the rated specification. System designers should be aware that device junction temperatures can be significantly
influenced by board layout and surrounding devices . Conformance to the device junction temperature specification can be
verified by physical measurement in the customer’s system using the Ψjt parameter, the device power dissipation, and the
method described in EIA/JESD Standard 51-2.
2Per JEDEC JESD51-6 with the board horizontal.
471,2 491,2 651,2 °C / W
Junction to ambient (@200 ft/min) Four layer board
(2s2p) θJMA 431,2 431,2 441,2 581,2 °C / W
Junction to board θJB 363363403503°C / W
Junction to case θJC 224224394194°C / W
Junction to top of package Ψjt 61,5 61,5 121,6 51,7 °C / W
Maximum operating junction te mperature Tj105 105 105 105 oC
Table 4. Absolute Maximum Ratings1, 2 (continued)
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 19
The average chip-junction temperature (TJ) in °C can be obtained from:
Eqn. 1
Where:
TA= Ambient Temp erature, °C
QJMA = Package Th ermal Resistance, Junction-to-Ambient, ×C/W
PD=P
INT + PI/O
PINT =I
DD × IVDD, Watts - Chip Intern al Power
PI/O = Power Diss ipation on Input a nd Output Pins — User Determined
For most applications PI/O < PINT and can be ignored. An approximate relationship between PD and TJ (if
PI/O is neglected) is:
Eqn. 2
Solving equations 1 and 2 for K gives:
Eqn. 3
where K is a constant pertaining to the particular part. K can be determined from Equation 3 by measuring
PD (at equilibrium) for a known TA. Using this value of K, the values of PD and TJ can be obtained by
solving Equation 1 and Equation 2 iteratively for any value of TA.
5.3 ESD Protection
3Thermal resistance between the die and the printed circuit board in conformance with JEDEC JESD51-8. Board temperature is
measured on the top surface of the board near the package.
4Ther mal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
5Ther mal characterization paramete r indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
6Ther mal characterization paramete r indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
7Ther mal characterization paramete r indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written in conformance
with Psi-JT.
Table 6. ESD Protection Characteristics1, 2
NOTES:
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for
Automotive Grade Integrated Circuits.
Characteristics Symbol Value Unit
ESD Target for Human Body Model HBM 2000 V
PDK
TJ273°C+()
---------------------------------
=
KP
DTA273°C×()QJMA PD
2
×+×=
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor20
5.4 DC Electrical Specifications
2A device is defined as a failure if, after exposure to ESD pulses, the device no longer
meets the device specification requirements. Complete DC parametric and functional
testing is performed per applicable de vice specification at room temperature f ollowed by
hot temperature, unless specified otherwise in the device specification.
Table 7. DC Electrical Spec ifications
Characteristic Symbol Min Max Unit
Core Supply Voltage IVDD 1.4 1.6 V
PLL Supply Voltage PLLVDD 1.4 1.6 V
CMOS Pad Supply Voltage EVDD 3.0 3.6 V
SDRAM and FlexBus Supply Voltage
Mobile DDR/Bus Pad Supply Voltage (nominal 1.8V)
DDR/Bus Pad Supply Vo ltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVDD 1.70
2.25
3.0
1.95
2.75
3.6
V
CMOS Input High Voltage EVIH 2EV
DD +0.3 V
CMOS Input Low Voltage EVIL VSS - 0.3 0.8 V
CMOS Output High Voltage
IOH = –5.0 mA EVOH EVDD - 0.4 V
CMOS Output Low Voltage
IOL = 5.0 mA EVOL —0.4V
SDRAM and FlexBus Input High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Vo ltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIH 1.35
1.7
2
SDVDD +0.3
SDVDD +0.3
SDVDD +0.3
V
SDRAM and FlexBus Input Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Vo ltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
SDVIL VSS - 0.3
VSS - 0.3
VSS - 0.3
0.45
0.8
0.8
V
SDRAM and FlexBus Output High Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Vo ltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOH = –5.0 mA for all modes
SDVOH SDVDD -0.35
2.1
2.4
V
SDRAM and FlexBus Output Low Voltage
Mobile DDR/Bus Input High Voltage (nominal 1.8V)
DDR/Bus Pad Supply Vo ltage (nominal 2.5V)
SDR/Bus Pad Supply Voltage (nominal 3.3V)
IOL = 5.0 mA for all modes
SDVOL
0.3
0.3
0.5
V
Input Leakage Current
Vin = IVDD or VSS, Input-only pins Iin –1.0 1.0 μA
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 21
5.4.1 PLL Power Filtering
To further enhance noise isolation, an external filter is strongly recommended for PLL analog VDD pins.
The filter shown in Figure 11 should be connected between the board VDD and the PLLVDD pins. The
resistor and capacitors should be placed as close to the dedicated PLLVDD pin as possible.
Figure 11. System PLL VDD Power Filter
5.4.2 Supply Voltage Sequencing and Separation Cautions
The relationship between SDVDD and EVDD is non-critical during power -up and power-down sequences.
SDVDD (2.5V or 3.3V) and EVDD are specified relative to IVDD.
5.4.2.1 Power Up Sequence
If EVDD/SDVDD are powered up with IVDD at 0 V, the sense circuits in the I/O pads cause all pad output
drivers connected to the EVDD/SDVDD to be in a high impedance state. There is no limit on how long after
EVDD/SDVDD powers up before IVDD must power up. IVDD should not lead the EVDD, SDVDD, or
PLLVDD by more than 0.4 V during power ramp-up or there will be high current in the internal ESD
protection diodes. The rise times on the power supplies should be slower than 500 us to avoid turning on
the internal ESD protection clamp diodes.
5.4.2.2 Power Down Sequence
If IVDD/PLLVDD are powered down first, sense circuits in the I/O pads cause all output drivers to be in a
high impedance state. There is no limit on how long after IVDD and PLLVDD power down before EVDD
or SDVDD must power down. IVDD should not lag EVDD, SDVDD, or PLLVDD going low by more than
Weak Internal Pull Up Devi ce Current, tested at VIL Max.1IAPU -10 - 130 μA
Input Capacitance 2
All input-only pins
All input/output (three-state) pins
Cin
7
7
pF
NOTES:
1Refer to the signals section for pins having weak internal pull-up devices.
2This parameter is characterized before qualification rather than 100% tested.
Table 7. DC Electrical Specifications (continued)
Characteristic Symbol Min Max Unit
Board VDD 10 Ω
0.1 µF
PLL VDD Pin
10 µF
GND
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor22
0.4 V during power down or there is an undesired high current in the ESD protection diodes. There are no
requirements for the fall times of the power supplies.
The recommended power down sequence is:
1. Drop IVDD/PLLVDD to 0 V.
2. Drop EVDD/SDVDD supplies.
5.5 Current Consumption
All of the below current consumption data is lab data measured on a single device using an evaluation
board. Table 8 shows the typical current consumption in low-power modes at various fsys/2 frequencies.
Current measurements are taken after executing a STOP instruction.
Table 8. Current Consumption in Low-Power Mode1,2
NOTES:
1All values are measured with a 3.30V EVDD, 2.50V SDVDD, and 1.5V IVDD power supplies. Tests performed at
room temperature with pins configured for high drive strength.
2Ref er to the Power Management chapter in the MCF5208 Reference Man ual for more information on low-pow er
modes.
Mode Voltage
(V)
Typical3 (mA)
3All peripheral clocks except UART0, FlexBus, INTC, reset controller, PLL, and Edge Port off before entering
low-power mode. All code executed from flash.
Peak4 (mA)
4Peak current measured while running a while(1) loop with all modules active.
44 MHz 56 MHz 64 MHz 72 MHz 83.33 MHz 83.33 MHz
Stop Mode 3
(Stop 11)5
3.3 1.33
2.5 15.19
1.5 0.519
Stop Mode 2
(Stop 10)5
3.3 1.93
2.5 15.19
1.5 1.25
Stop Mode 1
(Stop 01)5
3.3 1.83
2.5 15.23
1.5 8.24 10.22 9.55 10.61 12.1 12.1
Stop Mode 0
(Stop 00)5
3.3 2.23 2.33 2.41 2.5 2.61 2.61
2.5 16.2 16.47 16.62 16.91 17.24 17.24
1.5 8.32 10.32 9.66 10.73 12.25 12.25
Wait/Doze
3.3 2.23 2.33 2.41 2..5 2.6 4.07
2.5 16.2 16.48 16.62 16.91 17.24 18.77
1.5 11.53 14.36 14.29 15.92 18.21 35.45
Run
3.3 6.79 9.02 14.56 19.54 29.12 30.43
2.5 16.17 16.48 16.64 16.89 17.23 18.76
1.5 16.29 20.36 21.13 23.57 27.0 44.1
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 23
The figure below illustrates the power consumption in a graphical format.
Figure 12. Current Consumption in Low-Power Modes
5See the description of the low-pow er control register (LCPR) in the MCF5208 Reference Manual for more
information on stop modes 0–3.
Table 9. Typical Active Current Consumption Specifications1
fsys/2 Freq uency Voltage
(V)
Typical2 Active (mA) Peak3 Active
(mA)
SRAM Flash
1 MHz
3.3 2.042.122.28
2.5 15.24 15.32 15.24
1.5 1.301.411.49
2 MHz
3.3 2.232.403.57
2.5 15.26 15.42 15.26
1.5 1.711.922.09
4 MHz
3.3 2.602.953.58
2.5 15.30 15.61 15.30
1.5 2.492.953.29
44 MHz
3.3 7.61 17.67 25.34
2.5 16.13 19.49 16.95
1.5 24.04 28.72 39.02
48 MHz
3.3 8.16 26.21 34.45
2.5 16.28 20.06 17.17
1.5 26.05 31.13 42.30
0
50
100
150
200
250
44 48 56 64 72 83.33 83.33(peak)
fsy s/2 (MHz)
Power Cons umption (mW)
S top 0 - F l ash
S top 1 - F l ash
S top 2 - F l ash
S top 3 - F l ash
W ai t/Doze - F l ash
Run - F l ash
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor24
5.6 Oscillator and PLL Electrical Characteristics
56 MHz
3.3 10.09 30.71 38.97
2.5 16.43 20.71 17.65
1.5 30.07 35.90 47.90
64 MHz
3.3 15.72 31.37 42.10
2.5 16.56 21.08 17.95
1.5 32.19 38.72 53.50
72 MHz
3.3 20.97 31.40 48.80
2.5 16.87 21.70 18.20
1.5 35.90 43.20 59.50
83.33 MHz
3.3 31.37 25.83 48.60
2.5 17.21 22.80 18.83
1.5 41.10 49.40 67.50
NOTES:
1All values are measured with a 3.30V EVDD, 2.50V SDVDD, and 1.5V IVDD power
supplies. Tests performed at room temperature with pins configured for high drive
strength.
2CPU polling a status register. All peripheral clocks except UART0, FlexBus, INTC,
reset controller, PLL, and edge port disabled.
3Peak current measured while running a while(1) loop with all modules active.
Table 10. PLL Electrical Characteristics
Num Characteristic Symbol Min.
Value Max.
Value Unit
1 PLL Reference Frequency Range
Crystal reference
External reference fref_crystal
fref_ext
12
12 251
401MHz
MHz
2 Core frequency
CLKOUT Frequency2fsys
fsys/2
488 x 10-6
244 x 10-6 166.66
83.33 MHz
MHz
3 Crystal Start-up Time3, 4 tcst —10ms
4 EXTAL Input High Voltage
Crystal Mode5
All other modes (External, Limp) VIHEXT
VIHEXT
VXTAL + 0.4
EVDD/2 + 0.4
V
V
5 EXTAL Input Low Voltage
Crystal Mode5
All other modes (External, Limp) VILEXT
VILEXT
VXTAL - 0.4
EVDD/2 - 0.4 V
V
7 PLL Lock Time 3, 6 tlpll 50000 CLKIN
8 Duty Cycle of reference 3 tdc 40 60 %
Table 9. Typical Active Current Consumption Specifications1 (continued)
fsys/2 Freq uency Voltage
(V)
Typical2 Active (mA) Peak3 Active
(mA)
SRAM Flash
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 25
5.7 External Interface Timing Characteristics
Table 11 lists processor bus input timings.
NOTE
All processor bus timings are synchronous; that is, input setup/hold and
output delay with respect to the rising edge of a reference clock. The
reference clock is the FB_CLK output.
9 XTAL Current IXTAL 13mA
10 Total on-chip stray capacitance on XTAL CS_XTAL 1.5 pF
11 Total on-chip stray capacitance on EXTAL CS_EXTAL 1.5 pF
12 Crystal capacitiv e load CLSee crystal
spec
13 Discrete load capacitance for XTAL CL_XTAL 2*CL -
CS_XTAL -
CPCB_XTAL7
pF
14 Discrete load capacitance for EXTAL CL_EXTAL 2*CL -
CS_EXTAL -
CPCB_EXTAL7
pF
17 CLKOUT Per iod Jitter, 3, 4, 7, 8, 9 Measured at fSYS Max
Peak-to-peak Jitter (Clock edge to clock edge)
Long Ter m Jitter
Cjitter
10
TBD % fsys/2
% fsys/2
18 Frequency Modulation Range Limit 3, 10, 11
(fsysMax must not be exceeded) Cmod 0.8 2.2 %fsys/2
19 VCO Frequency. fvco = (fref * PFD)/4 fvco 350 540 MHz
NOTES:
1The maximum allowable input clock frequency when booting with the PLL enabled is 24 MHz. For higher input clock
frequencies, the processor must boot in LIMP mode to avoi d violating the maximum allowable CPU frequency.
2All internal registers retain data at 0 Hz.
3This parameter is guaranteed by characterization before qualification rather than 100% tested.
4Proper PC board layout proced ures must be followed to achieve specifications.
5This parameter is guaranteed by design rather than 100% tested.
6This specification is the PLL lock time only and does not include oscillator start-up time.
7CPCB_EXTAL and CPCB_XTAL are the me asured PCB stray capacitances on EXTAL and XTAL, respectively.
8Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal.
Noise injected into the PLL circuitry via PLL VDD, EVDD, and V SS and variation in crystal oscillator frequency increase
the Cjitter percentage for a given interval.
9Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of Cjitter+Cmod.
10 Modulation percentage applies over an inte rval of 10μs, or equivale ntly the modulation rate is 100KHz.
11 Modulation range determined by hardware design.
Table 10. PLL Electrical Characteristics (continued)
Num Characteristic Symbol Min.
Value Max.
Value Unit
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor26
All other timing relationships can be derived from these values. Timings
listed in Table 11 are shown in Figure 14 and Figure 15.
Figure 13. General Input Timing Requirements
5.7.1 FlexBus
FlexBus is a multi-function external bus interface provided to interface to slave-only devices up to a
maximum bus frequency of 83.33 MHz. It can be directly connected to asynchronous or synchronous
devices such as external boot ROMs, flash memories, gate-array logic, or other simple target (slave)
devices with little or no additional circuitry . For asynchronous devices, a simple chip-select based interface
can be used. The FlexBus interface has six general purpose chip-selects (FB_CS[5:0]) that can be
configured to be distributed between the FlexBus or SDRAM memory interfaces. Chip-select FB_CS[0]
can be dedicated to boot ROM access and can be programmed to be byte (8 bits), word (16 bits), or
longword (32 bits) wide. Control signal timing is compatible with common ROM/flash memories.
Invalid Invalid
FB_CLK(75MHz) TSETUP THOLD
Input Setup And Hold
1.5V
trise
Vh = VIH
Vl = VIL
1.5V1.5V Valid
tfall
Vh = VIH
Vl = VIL
Input Rise Time
Input Fall Time
* The timings are also valid for inputs sampled on the negative clock edge.
Inputs
FB_CLK FB4 FB5
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 27
5.7.1.1 FlexBus AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the system clock.
NOTE
The processor drives the data lines during the first clock cycle of the transfer
with the full 32-bit address. This may be ignored by standard connected
devices using non-multiplexed address and data buses. However, some
applications may find this feature beneficial.
The address and data busses are muxed between the FlexBus and SDRAM
controller . At the end of the read and write bus cycles the address signals are
indeterminate.
Table 11. FlexBus A C Timing Specifications
Num Characteristic Symbol Min Max Unit Notes
Frequency of Operation 83.33 Mhz fsys/2
FB1 C lock Period (FB_CLK) tFBCK 12 ns tcyc
FB2 D ata, and Control Output Valid (A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0] and OE)tFBCHDCV —7.0 ns 1
NOTES:
1Timing f o r chip s elects only applies to the FB_CS[5:0] signals. Please see Section 5.8, “SDRAM Bus” for SD_CS[1:0]
timing.
FB3 D ata, and Control Output Hold ((A[23:0], D[31:0],
FB_CS[5:0], R/W, TS, BE/BWE[3:0], and OE)tFBCHDCI 1— ns1, 2
2The FlexBus supports programming an extension of the address hold. Please consult the device reference manual for
more information.
FB4 Data Input Setup tDVFBCH 3.5 ns
FB5 Data Input Hold tDIFBCH 0— ns
FB6 Transfer Acknowledge (TA) Input Setup tCVFBCH 4— ns
FB7 Transfer Acknowledge (TA) Input Hold tCIFBCH 0— ns
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor28
Figure 14. FlexBus Read Timing
Figure 15. Flexbus Write Timing
5.8 SDRAM Bus
The SDRAM controller supports accesses to main SDRAM memory from any internal master. It supports
standard SDRAM or double data rate (DDR) SDRAM, but it does not support both at the same time. The
SDRAM controller uses SSTL2 and SSTL3 I/O drivers. Both SSTL drive modes are programmable for
Class I or Class II drive strength.
FB_CLK
FB_R/W
S0 S1 S2 S3
FB_TS
FB_A[23:0]
FB_D[31:X]
FB_CSn, FB_OE,
FB_BE/BWEn
FB_TA
DATA
ADDR[31:X]
ADDR[23:0]
FB3
FB1
FB2 FB5
FB4
FB7
FB6
FB_CLK
FB_R/W
FB_TS
FB_OE
S0 S2 S3
DATA
S1
ADDR[31:X]
FB_A[23:0]
FB_D[31:X]
ADDR[23:0]
FB_CSn, FB_BE/BWEn
FB_TA
FB3
FB1
FB2
FB7
FB6
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 29
5.8.1 SDR SDRAM AC Timing Characteristics
The following timing numbers indicate when data will be latched or driven onto the external bus, relative
to the memory bus clock, when operating in SDR mode on write cycles and relative to SD_DQS on read
cycles. The SDRAM controller is a DDR controller with an SDR mode. Because it is designed to support
DDR, a DQS pulse must remain supplied to the device for each data beat of an SDR read. The ColdFire
processor accomplishes this by asserting a signal called SD_SDR_DQS during read cycles. Take care
during board design to adhere to the following guidelines and specs with regard to the SD_SDR_DQS
signal and its usage.
Table 12. SDR Timing Specifications
Symbol Characteristic Symbol Min Max Unit Notes
Frequency of Op eration 60 83.33 MHz 1
NOTES:
1The device supports the same frequency of operation for FlexBus and SDRAM as that of the internal bus clock. Please see the
PLL chapter of the MCF5208 Reference Manual for more inf o rmation on setting the SDRAM clock rate.
SD1 Clock Period (tCK)t
SDCK 12 16.67 ns 2
2SD_CLK is one SDRAM clock in (ns).
SD3 Pulse Width High (tCKH)t
SDCKH 0.45 0.55 SD_CLK 3
3Pulse width high plus pulse width low cannot exceed min and max clock period.
SD4 Pulse Width Low (tCKL)t
SDCKL 0.45 0.55 SD_CLK 3
SD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_BA, SD_CS[1:0] - Output Valid (tCMV)tSDCHACV —0.5×SD_CLK
+1.0 ns
SD6 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_BA, SD_CS[1:0] - Output Hold (tCMH)tSDCHACI 2.0 ns
SD7 SD_SDR_DQS Output Valid (tDQSOV)t
DQSOV —Self timedns
4
4SD_DQS is designed to pulse 0.25 clock bef ore the rising edge of the memory clock. This is a guideline only. Subtle variation from
this guideline is expected. SD_DQS only pulses during a read cycle and one pulse occurs for each data beat.
SD8 SD_DQS[3:2] input setup relative to SD_CLK (tDQSIS)t
DQVSDCH 0.25 × SD_CLK 0.40 ×SD_CLK ns 5
5SDR_DQS is designed to pulse 0.25 clock before the rising edge of the memory clock. This spec is a guideline only. Subtle
va riation from this guideline is expected. SDR_DQS only pulses during a read cycle and one pulse occurs for each data beat.
SD9 SD_DQS[3:2] input hold relative to SD_CLK (tDQSIH)t
DQISDCH Does not apply. 0.5 SD_CLK fixed width. 6
6The SDR_DQS pulse is designed to be 0.5 clock in width. The timing of the rising edge is most important. The falling edge does
not affect the memory controller.
SD10 Data (D[31:0]) Input Setup relative to SD_CLK
(reference only) (tDIS)tDVSDCH 0.25 × SD_CLK ns 7
7Because a read cycle in SDR mode continues using the DQS circuit within the de vice, it is most critical that the data valid window
be centered 1/4 clk after the rising edge of DQS. Ensuring that this happens results in successful SDR reads. The input setup spec
is provided as guidance.
SD11 Data Input Hold relative to SD_CLK (reference only)
(tDIH)tDISDCH 1.0 ns
SD12 Data (D[31:0]) and Data Mask(SD_DQM[3:0]) Output
Valid (tDV)tSDCHDMV —0.75×SD_CLK
+ 0.5 ns
SD13 Data (D[31:0]) and Data Mask (SD_DQM[3:0]) Output
Hold (tDH)tSDCHDMI 1.5 ns
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor30
Figure 16. SDR Write Timing
Figure 17. SDR Read Timing
SD_CLK
SDDM
D[31:0]
A[23:0]
SD_BA[1:0]
CMD
ROW
SD1
SD4
COL
SD5
WD1 WD2 WD3 WD4
SD12
SD11
SD_CSn
SD_RAS
SD_WE
SD_CAS
SD2
SD3
SD_CLK
SD_CSn,
SDDM
D[31:0]
A[23:0],
SD_RAS,
SD_BA[1:0]
CMD
ROW
SD1
SD4
COL
WD1 WD2 WD3 WD4
SD9
3/4 MCLK
SD_SDR_DQS
SD_DQS[3:2]
Delayed
SD10
SD7
Board Delay
SD8
Board Delay
SD6
tDQS
Reference
SD_CLK
from
Memories
(Measured at Output Pin)
(Measured at Input Pin)
SD5
NOTE: Data driven from memories relative
to dela yed memory clock.
SD_WE
SD_CAS,
SD2
SD3
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 31
5.8.2 DDR SDRAM AC Timing Characteristics
When using the SDRAM controller in DDR mode, the following timing numbers must be followed to
properly latch or drive data onto the memory bus. All timing numbers are relative to the four DQS byte
lanes. The following timing numbers are subject to change at anytime, and are only provided to aid in early
board design. Please contact your local Freescale representative if questions develop.
Table 13. DDR Timing Specifications
Num Characteristic Symbol Min Max Unit Notes
Frequency of Operation 60 83.33 Mhz 1
NOTES:
1The frequency of operation is 2x or 4x the FB_CLK frequency of operation. FlexBus and SDRAM clock operate at the same
frequency as the internal bus clock.
DD1 Clock Period (SD_CLK) tDDCK 12 16.67 ns 2
2SD_CLK is one SDRAM clock in (ns).
DD2 Pulse Width High tDDCKH 0.45 0.55 SD_CLK 3
3Pulse width high plus pulse width low cannot e xceed min and max clock period.
DD3 Pulse Width Low tDDCKL 0.45 0.55 SD_CLK 3
DD4 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Valid tSDCHACV —0.5×SD_CLK
+1.0 ns 4
4Command output valid should be 1/2 the memory bus clock (SD_CLK) plus some minor adjustments for process, temperature, and
voltage variations.
DD5 Address, SD_CKE, SD_CAS, SD_RAS, SD_WE,
SD_CS[1:0] - Output Hold tSDCHACI 2.0 ns
DD6 Write Command to first DQS Latch ing Transition tCMDVDQ 1.25 SD_CLK
DD7 Data and Data Mask Output Setup (DQ-->DQS)
Relative to DQS (DDR Write Mode) tDQDMV 1.5 ns 5
6
5This specification relates to the required input setup time of today’s DDR memories. The device’s output setup should be larger
than the input setup of the DDR memories. If it is not larger, the input setup on the memory is in violation.
MEM_DATA[31:24] is relative to MEM_ DQS[3], MEM_DATA[23:16] is relative to MEM_DQS[2], MEM_DATA[15:8] is relative to
MEM_DQS[1], and MEM_[7:0] is relative MEM_DQS[0].
6The first data beat is valid bef ore the first rising edge of DQS and after the DQS write preamble. The remaining data beats are valid
f or each subsequent DQS edge.
DD8 Data and Data Mask Output Hold (DQS-->DQ)
Relative to DQS (DDR Write Mode) tDQDMI 1.0 ns 7
DD9 Input Data Skew Relative to DQS (Input Setup) tDVDQ —1ns
8
DD10 Input Data Hold Relative to DQS. tDIDQ 0.25 ×SD_CLK
+0.5ns —ns
9
DD11 DQS f alling edge from SDCLK rising (output hold time) tDQLSDCH 0.5 ns
DD12 DQS input read preamble width (tRPRE)t
DQRPRE 0.9 1.1 SD_CLK
DD13 DQS input read postamble width (tRPST)t
DQRPST 0.4 0.6 SD_CLK
DD14 DQS output write preamble width (tWPRE)t
DQWPRE 0.25 SD_CLK
DD15 DQS output write postamble width (tWPST)t
DQWPST 0.4 0.6 SD_CLK
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor32
Figure 18. DDR Write Timing
7This specification relates to the required hold time of today’s DDR memories. MEM_DATA[31:2 4] is relative to MEM_DQS[3],
MEM_DATA[23:16] is relative to MEM_ DQS[2], MEM_DATA[15:8] is relative to MEM_DQS[1], and MEM_[7:0] is relative
MEM_DQS[0].
8Data input skew is derived from each DQS clock edge . It begins with a DQS transition and ends when the last data line becomes
valid. This input skew must include DDR memory output skew and system level board skew (due to routing or other factors).
9Data input hold is derived from each DQS clock edge. It begins with a DQS transition and ends when the first data line becomes
invalid.
SD_CLK
SD_CSn, SD_WE,
DM3/DM2
D[31:24]/D[23:16]
A[13:0]
SD_RAS, SD_CAS CMD
ROW
DD1
DD5
DD4
COL
WD1 WD2 WD3 WD4
DD7
SD_DQS3/SD_DQS2
DD8
DD8
DD7
SD_CLK
DD3
DD2
DD6
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 33
Figure 19. DDR Read Timing
5.9 General Purpose I/O Timing
Table 14. GPIO Timing1
NOTES:
1GPIO spec cover: IRQn, UART and Timer pins.
Num Characteristic Symbol Min Max Unit
G1 FB_CLK Hi gh to GPIO Output Valid tCHPOV —8ns
G2 FB_CLK High to GPIO Output Invalid tCHPOI 1.5 ns
G3 GPIO Input Valid to FB_CLK High tPVCH 8—ns
G4 FB_CLK Hi gh to GPIO Input Invalid tCHPI 1.5 ns
SD_CLK
SD_CSn, SD_WE,
SD_DQS3/SD_DQS2
D[31:24]/D[23:16]
A[13:0]
SD_RAS, SD_CAS CMD
ROW
DD1
DD5
DD4
WD1 WD2 WD3 WD4
SD_DQS3/SD_DQS2
DD9
SD_CLK
DD3
DD2
D[31:24]/D[23:16] WD1 WD2 WD3 WD4
DD10
CL=2
CL=2.5
COL
DQS Read
Preamble DQS Read
Postamble
DQS Read
Preamble DQS Read
Postamble
CL = 2.5 CL = 2
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor34
Figure 20. GPIO Timing
5.10 Reset and Configuration Override Timing
Figure 21. RESET and Configuration Override Timing
Table 15. Reset and Configuration Override Timing
Num Characteristic Symbol Min Max Unit
R1 RESET Input valid to FB_CLK High tRVCH 9—ns
R2 FB_CLK High to RESET Input invalid tCHRI 1.5 ns
R3 RESET Input valid Time 1
NOTES:
1During low power STOP, the synchronizers for the RESET input are bypassed and RESET is asserted asynchronously to
the system. Thus, RESET must be held a minimum of 100 ns.
tRIVT 5—t
CYC
R4 FB_CLK High to RSTOUT Valid tCHROV —10ns
R5 RSTOUT valid to Config. Overrides valid tROVCV 0—ns
R6 Configuration Override Setup Time to RSTOUT invalid tCOS 20 tCYC
R7 Configuration Override Hold Ti me after RSTOUT invalid tCOH 0—ns
R8 RSTOUT invalid to Configuration Override High Impedance tROICZ —1t
CYC
G1
FB_CLK
GPIO Outputs
G2
G3 G4
GPIO Inputs
R1 R2
FB_CLK
RESET
RSTOUT
R3
R4
R8
R7R6R5
Configuration Overrides*:
R4
(RCON, Override pins)
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 35
NOTE
Refer to the MCF5208 Reference Manual for more information.
5.11 I2C Input/Output Timing Specifications
Table 16 and Table 17 list specifications for the I2C input and output timing parameters.
Table 16. I 2C Input Timing Specifications between I2C_SCL and I2C_SDA
Num Characteristic Min Max Unit
I1 Start condition hold time 2 tcyc
I2 Clock low period 8 tcyc
I3 I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) 1 ms
I4 Data hold time 0 ns
I5 I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) 1 ms
I6 Clock high time 4 tcyc
I7 Data setup time 0 ns
I8 Start condition setup time (for repeated start condition only) 2 tcyc
I9 Stop condition set u p ti me 2 tcyc
Table 17. I2C Output Timing Specifications between I2C_SCL and I2C_SDA
Num Characteristic Min Max Unit
I11
NOTES:
1Output numbers depend on the value programmed into the IFDR; an IFDR programmed with the
maximum frequency (IFDR = 0x20) results in minimum output timings as shown in Table A-16. The I2C
interface is designed to scale the actual data transition time to move it to the middle of the I2C_SCL low
period. The actual position is affected by the prescale and division values programmed into the IFDR;
however, the numbers given in Table A-16 are minimum values.
Start condition hold time 6 tcyc
I2 1. Clock low period 10 tcyc
I3 2
2Because I2C_SCL and I2C_SDA are open-collector-type outputs, which the processor can only activel y
drive low, the time I2C_SCL or I2C_SDA take to reach a high level depends on external signal
capacitance and pull-up resistor values.
I2C_SCL/I2C_SDA rise time (VIL = 0.5 V to VIH = 2.4 V) µs
I4 1. Data hold time 7 tcyc
I5 3
3Specified at a nominal 50-pF load.
I2C_SCL/I2C_SDA fall time (VIH = 2.4 V to VIL = 0.5 V) 3 ns
I6 1. Clock high time 10 tcyc
I7 1. Data setup time 2 tcyc
I8 1. Start condition setup time (for repeated start condition only) 20 tcyc
I9 1. Stop condition setup time 10 tcyc
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor36
Figure 22. I2C Input/Output Timings
5.12 Fast Ethernet AC Timing Specifications
MII signals use TTL signal levels compatible with devices operating at 5.0 V or 3.3 V.
5.12.1 MII Receive Signal Timing (FEC_RXD[3:0], FEC_RXDV,
FEC_RXER, and FEC_RXCLK)
The receiver functions correctly up to a FEC_RXCLK maximum frequency of 25 MHz +1%. There is no
minimum frequency requirement. In addition, the processor clock frequency must exceed twice the
FEC_RXCLK frequency.
Table 18 lists MII receive channel timings.
Figure 23 shows MII receive signal timings listed in Table 18.
Figure 23. MII Receive Signal Timing Diagram
Table 18. MII Receive Signal Timing
Num Characteristic Min Max Unit
M1 FEC_RXD[3:0], FEC_RXDV, FEC_RXER to FEC_RXCLK
setup 5— ns
M2 FEC_RXCLK to FEC_RXD[3:0], FEC_RXD V, FEC_RXER hold 5 ns
M3 FEC_RXCLK pulse width high 35% 65% FEC_RXCLK period
M4 FEC_RXCLK pulse width low 35% 65% FEC_RXCLK period
I2 I6
I1 I4 I7 I8 I9
I5
I3
I2C_SCL
I2C_SDA
M1 M2
FEC_RXCLK (input)
FEC_RXD[3:0] (inputs)
FEC_RXDV
FEC_RXER
M3
M4
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 37
5.12.2 MII Transmit Signal Timing (FEC_TXD[3:0], FEC_TXEN,
FEC_TXER, FEC_TXCLK)
Table 19 lists MII transmit channel timings.
The transmitter functions correctly up to a FEC_TXCLK maximum frequency of 25 MHz +1%. In
addition, the processor clock frequency must exceed twice the FEC_TXCLK frequency.
Figure 24 shows MII transmit signal timings listed in Table 19.
Figure 24. MII Transmit Signal Timing Diagram
5.12.3 MII Async Inputs Signal Timing (FEC_CRS and FEC_COL)
Table 20 lists MII asynchronous inputs signal timing.
Figure 25 shows MII asynchronous input timings listed in Table 20.
Figure 25. MII Async Inputs Timing Diagram
Table 19. MII Transmit Signal Timing
Num Characteristic Min Max Unit
M5 FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER
invalid 5— ns
M6 FEC_TXCLK to FEC_TXD[3:0], FEC_TXEN, FEC_TXER v alid 25 ns
M7 FEC_TXCLK pulse widt h hi gh 35% 65% FEC_TX CL K pe riod
M8 FEC_TXCLK pulse width low 35% 65% FEC_TXCLK period
Table 20. MII Async Inputs Signal Timing
Num Characteristic Min Max Unit
M9 FEC_CRS, FEC _COL minimum pulse width 1.5 F EC_ TXCLK period
M6
FEC_TXCLK (input)
FEC_TXD[3:0] (outputs)
FEC_TXEN
FEC_TXER
M5
M7
M8
FEC_CRS
M9
FEC_COL
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor38
5.12.4 MII Serial Management Channel Timing (FEC_MDIO and
FEC_MDC)
Table 21 lists MII serial management channel timings. The FEC functions correctly with a maximum
MDC frequency of 2.5 MHz.
Figure 26 shows MII serial management channel timings listed in Table 21.
Figure 26. MII Serial Management Channel Timing Diagram
Table 21. MII Serial Management Channel Timing
Num Characteristic Min Max Unit
M10 FEC_MDC falling edge to FEC_MDIO output invalid (minimum
propagation delay) 0— ns
M11 FEC_MDC falling edge to FEC_MDIO output valid (max prop delay) 25 ns
M12 FEC_MDIO (input) to FEC_MDC rising edge setup 10 ns
M13 FEC_MDIO (input) to FEC_MDC rising edge hold 0 ns
M14 FEC_MDC pulse width high 40% 60% FEC_MDC period
M15 FEC_MDC pulse width low 40% 60% FEC_MDC period
M11
FEC_MDC (output)
FEC_MDIO (output)
M12 M13
FEC_MDIO (input)
M10
M14 M15
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 39
5.13 32-Bit Timer Module AC Timing Specifications
Table 22 lists timer module AC timings.
5.14 QSPI Electrical Specifications
Table 23 lists QSPI timings.
The values in Table 23 correspond to Figure 27.
Figure 27. QSPI Timing
Table 22. Timer Module AC Timing Specifications
Name Characteristic Unit
Min Max
T1 DT0IN / DT1IN / DT2IN / DT3IN cycle time 3 tCYC
T2 DT0IN / DT1IN / DT2IN / DT3IN pulse width 1 tCYC
Table 23. QSPI Modules AC Timing Specifications
Name Characteristic Min Max Unit
QS1 QSPI_CS[3:0] to QSPI_CLK 1 510 tcyc
QS2 QSPI_CLK high to QSPI_DOUT valid. 10 ns
QS3 QSPI_CLK high to QSPI_DOUT invalid. (Output hold) 1.5 ns
QS4 QSPI_DIN to QSPI_CLK (Input setup) 9 ns
QS5 QSPI_DIN to QSPI_CLK (Input hold) 9 ns
QSPI_CS[3:0]
QSPI_CLK
QSPI_DOUT
QS5
QS1
QSPI_DIN
QS3 QS4
QS2
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor40
5.15 JTAG and Boundary Scan Timing
Figure 28. Test Clock Input Timing
Table 24. JTAG and Boundary Scan Timing
Num Characteristics1
NOTES:
1JTAG_EN is expected to be a static signal. Hence, specific timing is not associated with it.
Symbol Min Max Unit
J1 TCLK Frequency of Operation fJCYC DC 1/4 fsys/2
J2 TCLK Cycle Period tJCYC 4—t
CYC
J3 TCLK Clock Pulse Width tJCW 26 ns
J4 TCLK Rise and Fall Times tJCRF 03 ns
J5 Boundary Scan Input Data Setup Time to TCLK Rise tBSDST 4— ns
J6 Boundary Scan Input Data Hold Time after TCLK Rise tBSDHT 26 ns
J7 TCLK Low to Boundary Scan Output Data Valid tBSDV 033 ns
J8 TCLK Low to Boundary Scan Output High Z tBSDZ 033 ns
J9 TMS, TDI Input Data Setup Time to TCLK Rise tTAPBST 4— ns
J10 TMS, TDI Input Data Hold Time after TCLK Rise tTAPBHT 10 ns
J11 TCLK Low to TDO Data Valid tTDODV 026 ns
J12 TCLK Low to TDO High Z tTDODZ 08 ns
J13 TRST Assert Time tTRSTAT 100 ns
J14 TRST Setup Time (Negation) to TCLK High tTRSTST 10 ns
TCLK VIL
VIH
J3 J3
J4 J4
J2
(input)
Electrical Characteristics
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 41
Figure 29. Boundary Scan (JTAG) Timing
Figure 30. Test Access Port Timing
Figure 31. TRST Timing
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
Data Inputs
Data Outputs
Data Outputs
Data Outputs
VIL VIH
J5 J6
J7
J8
J7
Input Data Valid
Output Data Valid
Output Data Valid
TCLK
TDI
TDO
TDO
TDO
TMS
VIL VIH
J9 J10
J11
J12
J11
TCLK
TRST
J14
J13
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Electrical Characteristics
Freescale Semiconductor42
5.16 Debug AC Timing Specifications
Table 25 lists specifications for the debug AC timing parameters shown in Figure 32.
Figure 32. Real-Time Trace AC Timing
Figure 33. BDM Serial Port AC Timing
Table 25. Debug AC Timing Specification
Num Characteristic Min Max Unit
D0 PSTCLK cycle time 1 1 tSYS
D1 PSTCLK r ising to PSTDDATA valid 3.0 ns
D2 PSTCLK r ising to PSTDDATA invalid 1.5 ns
D3 DSI-to-DSCLK setup 1 PSTCLK
D41
NOTES:
1DSCLK and DSI are synchronized inter nally. D4 is measured from the synchronized
DSCLK input relative to the rising edge of PSTCLK.
DSCLK-to-DSO hold 4 PSTCLK
D5 DSCLK cycle time 5 PSTCLK
D6 BKPT assertion time 1 PSTCLK
PSTCLK
PSTDDATA[7:0]
D0
D1 D2
Past
Current
DSCLK
DSI
DSO
Next
Current
D5
D3
D4
Revision History
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 43
6 Revision History
Table 26. Revision History
Revision
Number Date Substantive Changes
0 5/23/2005 Initial Release
0.1 6/16/2005 Corrected 144QFP pinout in Figure 1. Pins 139-142 incorrectly showed
FEC functionality, which are actually UART 0/1 clear-to-send and
request-to-send signals.
Changed maximum core frequency in Table 10, spec #2, from 240MHz to
166.67MHz. Also , changed symbols in table: fcore -> fsys and fsys -> fsys/2
for consistency throughout document and reference manual.
0.2 8/26/2005 Changed ball M9 from SD_VDD to EVDD in Figure 9.
Table 3: Pin 33 for 144 LQFP package should be EVDD instead of
SD_VDD. BE/BWE[3:0] for 144 LQFP should be “20, 48, 18, 50“ instead
of “18, 20, 48, 50”
Cleaned up various electrical specifications:
Table 4: Added DDR/Memory pad supply voltage spec, changed “clock
synthesizer supply voltage” to “PLL supply voltage”, changed min PLLVDD
from -0.5 to -0.3, changed max VIN from 4.0 to 3.6, changed minimum Tstg
from -65 to -55,
Table 5: Changed TBD v alues in Tj entry to 105°C.
Table 7: Changed minimum core supply voltage from 1.35 to 1.4 and
maximum from 1.65 to 1.6, added PLL supply voltage entry, added pad
supply entries for mobile-DDR, DDR, and SDR, changed minimum input
high voltage from 0.7xEVDD to 2 and maximum from 3.65 to EVDD+0.05,
changed minimum input low v oltage from VSS-0.3 to -0.05 and maximum
from 0.35xEVDDto 0.8, added input high/low voltage entries for DDR and
mobile-DDR, removed high impedance leakage current entry, changed
minimum output high voltage from EVDD-0.5 to EVDD-0.4, added DDR/bus
output high/low voltage entries, removed load capacitance and DC
injection current entries.
Added filtering circuits and voltage sequencing sections: Section 5.4.1,
“PLL P ower Filtering, and Section 5.4.2, “Supply V oltage Sequencing and
Separation Cautions.
Remov ed “Operating Conditions” table from Section 5.6, “Oscillator and
PLL Electrical Characteristics, because it is redundant with Table 7.
Table 11: Changed minimum core frequency to TBD, removed exter nal
reference and on-chip PLL frequency specs to have only a CLKOUT
frequency spec of TBD to 83.33MHz, removed loss of reference frequency
and self-clock ed mode frequency entries, in EXTAL input high/low voltage
entries changed “All other modes (Dual controller (1:1), Bypass, External)”
to “All other modes (External, Limp)”, removed XTAL output high/low
voltage entries, removed power-up to lock time entry, remove d last 5
entries (frequency un-lock range, frequency lock range, CLKOUT pe riod
jitter, frequency modulation range limit, and ICO frequency)
0.3 9/07/2005 Corrected DRAMSEL footnote #3 in Table 3.
Updated Table 3 with 144MAPBGA pin locations.
Added 144MAPBGA ballmap to Section 4.3, “Pinout—144 MAPBGA.
Changed J12 from PLL_VDD to IVDD in Figure 9.
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Revision History
Freescale Semiconductor44
0.4 10/10/2005 Figure 1 and Table 3: Changed pin 33 from EVDD to SD_VDD
Figure 4 and Table 3: Changed ball D10 from TEST to VSS
Figure 6 and Table 3: Changed pin 39 from EVDD to SD_VDD and pin 117
from TEST to VSS
0.5 3/29/2006 Added “top view” and “bottom view” labels where appropriate to
mechanical drawings and pinouts.
Updated mechanical drawings to latest available, and added note to
Section 4, “Mechanicals and Pinouts.
0.6 7/21/2006 Corrected cross-reference to Figure 9 in Section 4.7, “Pinout—196
MAPBGA.
Corrected L3 label in Figure 9 from SD_DR_DQS to SD_SDR_DQS.
Corrected L6 label in Figure 9 from SD_DQS0 to SD_DQS2 and H3 from
SD_DQS1 to SD_DQS3.
Removed second sentence from Section 5.12.2, “MII Transmit Signal
Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK),
regarding no minimum frequency requirement for TXCLK.
Remov ed third and f ourth paragraphs from Section 5.12.2, “MII Transmit
Signal Timing (FEC_TXD[3:0], FEC_TXEN, FEC_TXER, FEC_TXCLK),
as this feature is not supported on this device.
1 3/28/2007 Removed preliminary designation from Section 5, “Electrical
Characteristics.
Updated Section 5.2, “Thermal Characteristics.
Updated Section 5.4, “DC Electrical Specifications.
Added Section 5.5, “Current Consumption.
Updated Section 5.6, “Oscillator and PLL Electr ical Characteristics.
Made some corrections to the drawings in Section 5.8, “SDRAM Bus.
Edited for grammar, punctuati on, spelling, style, and format. - JD
2 12/4/2008 Updated FlexBus read and write timing diagrams in Figure 14 an d
Figure 15.
Changed the following specs in Table 12 and Table 13:
Minimum frequency of operation from TBD to 60MHz
Maximum clock period from TBD to 16.67 ns
3 9/1/2009 Changed doc type from Advance Information to Technical Data
Table 26. Revision Histor y (continued)
Revision
Number Date Substantive Changes
Revision History
MCF5208 Cold Fire® Microprocessor Data Sheet, Rev. 3
Freescale Semiconductor 45
How to Reach Us:
Home Page:
www.freescale.com
E-mail:
support@freescale.com
USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, CH370
1300 N. Alma School Road
Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com
Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com
For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and
software i mplementers to use F reescale Semicond uctor products . There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or in tegrated circui ts based on the
information in this document.
F reescale Semiconducto r reserves the right to mak e changes without further
notice to an y products herein . F reescale Se miconductor m akes no w arra nty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the appli cation or use of a ny p roduct or circui t, and speci fically
disclaims any and all liability, including without limitation consequential or
incidental d amages . “Typical” param eters that ma y be pro vided in F r eescale
Semiconductor data sheets and/or specifications can an d do vary in diff erent
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
F reescale Semiconductor products are not designe d, intended, or authoriz ed
for use as components in systems intended for surgical implant into the body,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use F r eescale Semiconductor pr oducts for any such unintende d
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unau thorized
use, even if such claim alleges that Freescale Semiconductor was ne gligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property
of their respecti ve owners.© Freescale Semiconductor, Inc. 2009. All rights
reserved.
MCF5208EC
Rev. 3
9/2009