1C2M0045170P Rev. A, 05-2019
C2M0045170P
Silicon Carbide Power MOSFET
C2MTM MOSFET Technology
N-Channel Enhancement Mode
Features
Optimized package with separate driver source pin
8mm of creepage distance between drain and source
High Blocking Voltage with Low On-Resistance
High Speed Switching with Low Capacitances
Easy to Parallel and Simple to Drive
Halogen Free, RoHS Compliant
Benets
Reduce switching losses and minimize gate ringing
Higher system efciency
Reduce cooling requirements
Increase power density
Increase system switching frequency
Applications
1500V Solar Inverters
Switch Mode Power Supplies
High Voltage DC/DC converters
Pulsed Power Applications
Package
V
DS
1700 V
I
D
@
25˚C
72 A
R
DS(on)
45 m
Maximum Ratings (TC = 25 ˚C unless otherwise specied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 1700 V VGS = 0 V, ID = 100 μA
VGSmax Gate - Source Voltage (dynamic) -10/+25 V AC (f >1 Hz) Note: 1
VGSop Gate - Source Voltage (Static) -5/+20 V Static Note: 2
IDContinuous Drain Current
72
AVGS =20 V, TC = 25˚C Fig. 19
48 VGS =20 V, TC = 100˚C
ID(pulse) Pulsed Drain Current 160 A Pulse width tP limited by Tjmax Fig. 22
PDPower Dissipation 520 W TC=25˚C, TJ = 150 ˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -40 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
Note (1): When using MOSFET Body Diode VGSmax = -5V/+25V
Note (2): MOSFET can also safely operate at 0/+20V
Part Number Package Marking
C2M0045170P TO-247-4 Plus C2M0045170P
Drain
(Pin 1, TAB)
Power
Source
(Pin 2)
Driver
Source
(Pin 3)
Gate
(Pin 4)
1
D
TAB
Drain
2 3 4
S S G
2C2M0045170P Rev. A, 05-2019
Electrical Characteristics (TC = 25˚C unless otherwise specied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-Source Breakdown Voltage 1700 V VGS = 0 V, ID = 100 μA
VGS(th) Gate Threshold Voltage 2.0 2.6 4 VVDS = VGS, ID = 18mA Fig. 11
1.8 VVDS = VGS, ID = 18mA, TJ = 150 °C
IDSS Zero Gate Voltage Drain Current 2 100 μA VDS = 1700 V, VGS = 0 V
IGSS Gate-Source Leakage Current 600 nA VGS = 20 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 45 59 mΩ VGS = 20 V, ID = 50 A Fig.
4,5,6
90 VGS = 20 V, ID = 50 A, TJ = 150 °C
gfs Transconductance 21.7 SVDS= 20 V, IDS= 50 A Fig. 7
24.4 VDS= 20 V, IDS= 50 A, TJ = 150 °C
Ciss Input Capacitance 3672
pF
VGS = 0 V
VDS = 1000 V
f = 1 MHz
VAC = 25 mV
Fig.
17,18
Coss Output Capacitance 171
Crss Reverse Transfer Capacitance 6.7
Eoss Coss Stored Energy 105 μJ Fig 16
EON Turn-On Switching Energy (SiC Diode FWD) 0.67
mJ
VDS = 1200 V, VGS = -5/20 V,
ID = 50A, RG(ext) = 2.5Ω, L= 105 μH,
TJ = 150 °C, using SiC Diode as FWD
Fig. 26,
29b
EOFF Turn Off Switching Energy (SiC Diode FWD) 0.31
EON Turn-On Switching Energy (Body Diode FWD) 2.8
mJ
VDS = 1200 V, VGS = -5/20 V,
ID = 50A, RG(ext) = 2.5Ω, L= 105 μH,
TJ = 150 °C, using MOSFET as FWD
Fig. 26,
29a
EOFF Turn Off Switching Energy (Body Diode FWD) 0.35
td(on) Turn-On Delay Time 35
ns
VDD = 1200 V, VGS = -5/20 V
ID = 50 A,
RG(ext) = 2.5 Ω, Timing relative to VDS
Inductive load
Fig. 27,
29
trRise Time 13
td(off) Turn-Off Delay Time 46
tfFall Time 10
RG(int) Internal Gate Resistance 1.3 f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 44
nC
VDS = 1200 V, VGS = -5/20 V
ID = 50 A
Per IEC60747-8-4 pg 21
Fig. 12Qgd Gate to Drain Charge 57
QgTotal Gate Charge 188
Reverse Diode Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage 4.1 V VGS = - 5 V, ISD = 25 A Fig. 8, 9,
10
Note 1
3.6 V VGS = - 5 V, ISD = 25 A, TJ = 150 °C
ISContinuous Diode Forward Current 72 A TC= 25 °C, VGS = - 5 V Note 1
trr Reverse Recovery Time 44 ns
VGS = - 5 V, ISD = 50 A , VR = 1200 V
dif/dt = 3000 A/µs Note 1Qrr Reverse Recovery Charge 2 µC
Irrm Peak Reverse Recovery Current 60 A
Note (1): When using SiC Body Diode the maximum recommended VGS = -5V
Thermal Characteristics
Symbol Parameter Typ. Max. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 0.22 0.24 °C/W Fig. 21
RθJC Thermal Resistance from Junction to Ambient 40
3C2M0045170P Rev. A, 05-2019
0
25
50
75
100
125
150
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 150 °C
tp < 200 µs
V
GS
= 20 V
V
GS
= 10 V
V
GS
= 18 V
V
GS
= 16 V
V
GS
= 14 V
V
GS
= 12 V
0
25
50
75
100
125
150
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= -40 °C
tp < 200 µs
V
GS
= 20 V
V
GS
= 10 V
V
GS
= 18 V
V
GS
= 16 V
V
GS
= 14 V
V
GS
= 12 V
0
25
50
75
100
125
150
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Drain-Source Current, I
DS
(A)
Conditions:
T
J
= 25 °C
tp < 200 µs
V
GS
= 20 V
V
GS
= 10 V
V
GS
= 18 V
V
GS
= 16 V
V
GS
= 14 V
V
GS
= 12 V
Figure 2. Output Characteristics TJ = 25 °C
Typical Performance
Figure 1. Output Characteristics TJ = -40 °C
0
20
40
60
80
100
120
140
160
020 40 60 80 100 120 140
On Resistance, R
DS On
(mOhms)
Drain-Source Current, I
DS
(A)
Conditions:
VGS = 20 V
tp< 200 µs
TJ= 150 °C
TJ= -40 °C
TJ= 25 °C
0
20
40
60
80
100
120
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Junction Temperature, T
J
C)
Conditions:
IDS = 50 A
tp< 200 µs
VGS = 20 V
VGS = 18 V
VGS = 16 V
VGS = 14 V
Figure 3. Output Characteristics TJ = 150 °C
Figure 4.
Normalized On-Resistance vs. Temperature
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
0.0
0.5
1.0
1.5
2.0
2.5
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(P.U.)
Junction Temperature, T
J
C)
Conditions:
I
DS
= 50 A
V
GS
= 20 V
t
p
< 200 µs
4C2M0045170P Rev. A, 05-2019
Typical Performance
0
25
50
75
100
125
0 2 4 6 8 10 12 14
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
V
DS
= 20 V
tp < 200 µs
T
J
= 150 °C
T
J
= -40 °C
T
J
= 25 °C
-150
-120
-90
-60
-30
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -40°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V
V
GS
= 0 V
-150
-120
-90
-60
-30
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 25°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V V
GS
= 0 V
-150
-120
-90
-60
-30
0
-7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150°C
t
p
< 200 µs
V
GS
= -2 V
V
GS
= -5 V
V
GS
= 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
=V
DS
I
DS
= 18 mA
-5
0
5
10
15
20
25
020 40 60 80 100 120 140 160 180 200
Gate-Source Voltage, V
GS
(V)
Gate Charge, Q
G
(nC)
Conditions:
I
DS
= 50 A
I
GS
= 100 mA
V
DS
= 1200 V
T
J
= 25 °C
Figure 7. Transfer Characteristic For
Various Junction Temperatures Figure 8. Body Diode Characteristic at -40 ºC
Figure 9. Body Diode Characteristic at 25 ºC Figure 10. Body Diode Characteristic at 150 ºC
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristic
5C2M0045170P Rev. A, 05-2019
1
10
100
1000
10000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Typical Performance
-150
-120
-90
-60
-30
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= -40 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 20 V
V
GS
= 15 V
V
GS
= 0 V
-150
-120
-90
-60
-30
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
TJ= 25 °C
tp< 200 µs
VGS = 10 V
VGS = 5 V
VGS = 20 V
VGS = 15 V
VGS = 0 V
-150
-120
-90
-60
-30
0
-6 -5 -4 -3 -2 -1 0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage V
DS
(V)
Conditions:
T
J
= 150 °C
t
p
< 200 µs
V
GS
= 10 V
V
GS
= 5 V
V
GS
= 20 V
V
GS
= 15 V
V
GS
= 0 V
0
20
40
60
80
100
120
0200 400 600 800 1000 1200
Stored Energy, E
OSS
(µJ)
Drain to Source Voltage, V
DS
(V)
1
10
100
1000
10000
0200 400 600 800 1000
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Figure 13. 3rd Quadrant Characteristic at -40 ºC Figure 14. 3rd Quadrant Characteristic at 25 ºC
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 16.
Output Capacitor Stored Energy
Figure 17.
Capacitances vs. Drain-Source
Voltage (0-200 V)
Figure 18.
Capacitances vs. Drain-Source
Voltage (0-1000 V)
6C2M0045170P Rev. A, 05-2019
0.0
0.3
0.6
0.9
1.2
1.5
1.8
010 20 30 40 50 60 70 80 90
Switching Loss (mJ)
Drain to Source Current, I
DS
(A)
EOff
EOn
ETotal
Conditions:
TJ= 25 °C
VDD = 900 V
RG(ext) = 2.5
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
Typical Performance
0
10
20
30
40
50
60
70
80
-55 -30 -5 20 45 70 95 120 145
Drain-Source Continous Current, I
DS (DC)
(A)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0
100
200
300
400
500
600
-55 -30 -5 20 45 70 95 120 145
Maximum Dissipated Power, P
tot
(W)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
1E-3
10E-3
100E-3
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, Z
thJC
(
o
C/W)
Time, t
p
(s)
0.5
0.3
0.1
0.05
0.02
0.01
SinglePulse
0.01
0.10
1.00
10.00
100.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
0.0
0.5
1.0
1.5
2.0
2.5
3.0
010 20 30 40 50 60 70 80 90
Switching Loss (mJ)
Drain to Source Current, I
DS
(A)
EOff
EOn
ETotal
Conditions:
TJ= 25 °C
VDD = 1200 V
RG(ext) = 2.5
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 21. Transient Thermal Impedance
(Junction - Case) Figure 22. Safe Operating Area
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 900V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 1200V)
7C2M0045170P Rev. A, 05-2019
Typical Performance
0.0
1.0
2.0
3.0
4.0
5.0
6.0
0 5 10 15 20 25
Switching Loss (mJ)
External Gate Resistor RG(ext) (Ohms)
EOff
EOn
ETotal
Conditions:
TJ= 25 °C
VDD = 1200 V
IDS = 50 A
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
025 50 75 100 125 150 175
Switching Loss (mJ)
Junction Temperature, TJC)
E
Off
E
On
E
Total
Conditions:
I
DS
= 50 A
V
DD
= 1200 V
R
G(ext)
= 2.5
V
GS
= -5V/+20 V
FWD = C2M0045170P
(- - -)FWD = C3D25170H
L = 130 μH
E
On
E
Total
E
Off
0
25
50
75
100
125
150
0 5 10 15 20 25
Switching Times (ns)
External Gate Resistor RG(ext) (Ohms)
td(off)
Conditions:
TJ= 25 °C
VDD = 1200 V
IDS = 50 A
VGS = -5V/+20 V
FWD = C2M0045170P
L = 130 μH
tr
tf
td(on)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 28. Switching Times Denition
8C2M0045170P Rev. A, 05-2019
Test Circuit Schematic
Q2
Q1
VGS= - 5V
RG
RG
C2M0045170P
D.U.T
Figure 29a. Clamped Inductive Switching Test Circuit using
MOSFET intristic body diode
D1C3D25170H
25A, 1700V
SiC Schottky
D.U.T
C2M0045170P
Q2
VDC
RG
Figure 29b. Clamped Inductive Switching Test Circuit using
SiC Schottky diode
9C2M0045170P Rev. A, 05-2019
Package Dimensions
Package TO-247-4L Plus
BASE METAL
SECTION "F-F", "G-G" AND "H-H"
SCALE: NONE
E2
E
E3 E4
E1
TITLE:
SHEET
COMPANY ASE Weihai
1 OF 3
ASE
Advanced
Semiconductor
Engineering Weihai, Inc.
PACKAGE
OUTLINE ISSUE
DATE
DWG NO.
TO-247 Plus 4 LD
98W0004TO005
May.20, 2016
A
NOTE ;
1. ALL METAL SURFACES: TIN PLATED,EXCEPT AREA OF CUT
2. DIMENSIONING & TOLERANCEING CONFIRM TO
ASME Y14.5M-1994.
3. ALL DIMENSIONS ARE IN MILLIMETERS.
ANGLES ARE IN DEGREES.
MIN
MILLIMETERS
SYM MAX
A
A1
A2
b'
b
b1
b2
b3
b4
c'
c
D
D1
D2
E
E1
E2
E3
E4
e
N
L
L1
Q
T
W
X
4.83 5.21
2.29 2.54
1.91 2.16
1.07 1.28
1.07 1.33
2.39 2.94
2.39 2.84
1.07 1.60
1.07 1.50
0.55 0.65
0.55 0.68
23.30 23.60
16.25 17.65
0.95 1.25
15.75 16.13
13.10 14.15
3.68 5.10
1.00 1.90
12.38 13.43
2.54 BSC
4
17.31 17.82
3.97 4.37
5.49 6.00
17.5° REF.
3.5 ° REF.
4 ° REF.
e1 5.08 BSC
2.692.39
b5
b6 2.39 2.64
L2 2.35 2.65
TITLE:
SHEET
COMPANY ASE Weihai
2 OF 3
ASEAdvanced
Semiconductor
Engineering Weihai, Inc.
PACKAGE
OUTLINE ISSUE
DATE
DWG NO.
TO-247 Plus 4LD
98W0004TO005
A
May.20, 2016
1010 C2M0045170P Rev. A, 05-2019
Copyright © 2019 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
RoHS Compliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
REACh Compliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
to equipment used in the operation of nuclear facilities, life-support machines, cardiac debrillators or similar emergency medical
equipment, aircraft navigation or communication or control systems, air trafc control systems.
Notes
Related Links
C2M PSPICE Models: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Isolated Gate Driver reference design: http://wolfspeed.com/power/tools-and-support
SiC MOSFET Evaluation Board: http://wolfspeed.com/power/tools-and-support