C3M0065100J Silicon Carbide Power MOSFET TM C3M MOSFET Technology VDS 1000 V ID @ 25C 35 A RDS(on) 65 m N-Channel Enhancement Mode Features * * * * * * * Package C3MTM SiC MOSFET technology Low parasitic inductance with separate driver source pin 7mm of creepage distance between drain and source High blocking voltage with low On-resistance Fast intrinsic diode with low reverse recovery (Qrr) Low output capacitance (60pF) Halogen free, RoHS compliant TAB Drain Benefits * * * * Drain (TAB) Reduce switching losses and minimize gate ringing Higher system efficiency Increase power density Increase system switching frequency 1 2 3 G KS S 4 5 S S 6 S 7 S Gate (Pin 1) Applications * * * * Driver Source (Pin 2) Renewable energy EV battery chargers High voltage DC/DC converters Switch Mode Power Supplies Power Source (Pin 3,4,5,6,7) Part Number Package Marking C3M0065100J TO-263-7 C3M0065100J Maximum Ratings (TC = 25 C unless otherwise specified) Symbol Parameter Value Unit Test Conditions 1000 V VGS = 0 V, ID = 100 A Note VDSmax Drain - Source Voltage VGSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note. 1 VGSop Gate - Source Voltage (static) -4/+15 V Static Note. 2 VGS = 15 V, TC = 25C Fig. 19 ID ID(pulse) Continuous Drain Current 22.5 A VGS = 15 V, TC = 100C Pulsed Drain Current 90 A EAS Avalanche energy, Single pulse 110 mJ ID = 22A, VDD = 50V PD Power Dissipation 113.5 W TC=25C, TJ = 150 C Operating Junction and Storage Temperature -55 to +150 C 260 C TJ , Tstg TL Solder Temperature Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V Note (2): MOSFET can also safely operate at 0/+15 V 1 35 C3M0065100J Rev. -, 04-2017 Pulse width tP limited by Tjmax 1.6mm (0.063") from case for 10s Fig. 22 Fig. 20 Electrical Characteristics (TC = 25C unless otherwise specified) Symbol Parameter V(BR)DSS Drain-Source Breakdown Voltage VGS(th) Gate Threshold Voltage Min. Typ. Max. 1000 1.8 2.1 3.5 1.6 Unit Test Conditions V VGS = 0 V, ID = 100 A V VDS = VGS, ID = 5 mA V VDS = VGS, ID = 5 mA, TJ = 150C IDSS Zero Gate Voltage Drain Current 1 100 A VDS = 1000 V, VGS = 0 V IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V 65 78 RDS(on) Drain-Source On-State Resistance 90 14.3 gfs Transconductance Ciss Input Capacitance 660 Coss Output Capacitance 60 Crss Reverse Transfer Capacitance 4.0 Eoss Coss Stored Energy 16 EON Turn-On Switching Energy (Body Diode FWD) 157 EOFF Turn Off Switching Energy (Body Diode FWD) 35 td(on) Turn-On Delay Time 13 Rise Time 9 Turn-Off Delay Time 13 Fall Time 7.5 Internal Gate Resistance 4.7 tr td(off) tf RG(int) S 11.9 Qgs Gate to Source Charge 9 Qgd Gate to Drain Charge 16 Qg Total Gate Charge 35 m pF VGS = 15 V, ID = 20 A VGS = 15 V, ID = 20A, TJ = 150C VDS= 20 V, IDS= 20 A VDS= 20 V, IDS= 20 A, TJ = 150C VGS = 0 V, VDS = 600 V f = 1 MHz J VAC = 25 mV Note Fig. 11 Fig. 4, 5, 6 Fig. 7 Fig. 17, 18 Fig. 16 J VDS = 700 V, VGS = -4 V/15 V, ID = 20A, RG(ext) = 2.5, L= 130 H, TJ = 150C Fig. 26, 30 Note. 3 ns VDD = 700 V, VGS = -4 V/15 V ID = 20 A, RG(ext) = 2.5 , Timing relative to VDS Inductive load Fig. 27 f = 1 MHz, VAC = 25 mV nC VDS = 700 V, VGS = -4 V/15 V ID = 20 A Per IEC60747-8-4 pg 21 Fig. 12 Reverse Diode Characteristics (TC = 25C unless otherwise specified) Symbol VSD IS IS, pulse Parameter Typ. Diode Forward Voltage Max. Unit Test Conditions 4.8 V VGS = -4 V, ISD = 10 A 4.4 V VGS = -4 V, ISD = 10 A, TJ = 150 C Note Fig. 8, 9, 10 Continuous Diode Forward Current 22 A VGS = -4 V Note 1 Diode pulse Current 90 A VGS = -4 V, pulse width tP limited by Tjmax Note 1 VGS = -4 V, ISD = 20 A, VR = 700 V dif/dt = 4500 A/s, TJ = 150 C Note 1 trr Reverse Recovery time 14 ns Qrr Reverse Recovery Charge 310 nC Irrm Peak Reverse Recovery Current 34 A Thermal Characteristics Symbol Parameter Max. RJC Thermal Resistance from Junction to Case 1.1 RJA Thermal Resistance From Junction to Ambient 40 Unit C/W Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode 2 C3M0065100J Rev. -, 04-2017 Test Conditions Note Fig. 21 Typical Performance 70 Drain-Source Current, IDS (A) 80 Conditions: TJ = -55 C tp < 200 s 70 VGS = 13 V 60 VGS = 11 V 50 40 VGS = 9 V 30 20 10 0 2.5 5.0 7.5 10.0 12.5 VGS = 15 V VGS = 11 V 60 50 VGS = 9 V 40 30 20 VGS = 7 V 0 15.0 0.0 2.5 5.0 Drain-Source Voltage, VDS (V) Conditions: TJ = 150 C tp < 200 s 2.0 VGS = 15 V VGS = 11 V 1.6 60 VGS = 9 V 50 40 30 VGS = 7 V 20 10 0 1.2 1.0 0.8 0.6 0.4 0.2 0.0 2.5 5.0 7.5 10.0 12.5 0.0 15.0 -50 Figure 3. Output Characteristics TJ = 150 C 140 -25 0 25 TJ = 150 C 80 TJ = -55 C 60 TJ = 25 C 40 20 0 10 20 30 40 Drain-Source Current, IDS (A) Figure 5. On-Resistance vs. Drain Current For Various Temperatures C3M0065100J Rev. -, 04-2017 50 75 100 125 150 Conditions: IDS = 20 A tp < 200 s 140 On Resistance, RDS On (mOhms) On Resistance, RDS On (mOhms) 160 100 50 Junction Temperature, TJ (C) Figure 4. Normalized On-Resistance vs. Temperature Conditions: VGS = 15 V tp < 200 s 120 3 15.0 1.4 Drain-Source Voltage, VDS (V) 0 12.5 Conditions: IDS = 20 A VGS = 15 V tp < 200 s 1.8 VGS = 13 V 10.0 Figure 2. Output Characteristics TJ = 25 C On Resistance, RDS On (P.U.) Drain-Source Current, IDS (A) 70 7.5 Drain-Source Voltage, VDS (V) Figure 1. Output Characteristics TJ = -55 C 80 VGS = 13 V 10 VGS = 7 V 0.0 Conditions: TJ = 25 C tp < 200 s VGS = 15 V Drain-Source Current, IDS (A) 80 60 120 100 VGS = 11 V VGS = 13 V 80 60 VGS = 15 V 40 20 0 -50 -25 0 25 50 75 Junction Temperature, TJ (C) 100 Figure 6. On-Resistance vs. Temperature For Various Gate Voltage 125 150 Typical Performance 50 40 -7 -6 -5 -4 -3 -2 -1 0 VGS = -4 V TJ = 150 C 30 TJ = 25 C 20 TJ = -55 C 10 0 -8 -20 VGS = 0 V -30 VGS = -2 V -40 -50 -60 0 2 4 6 8 Conditions: TJ = -55C tp < 200 s 10 Gate-Source Voltage, VGS (V) -8 -6 -7 -5 -4 -3 -2 -1 0 Drain-Source Current, IDS (A) VGS = -4 V 0 -10 -20 VGS = 0 V -30 VGS = -2 V -40 -50 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 Conditions: TJ = 25C tp < 200 s Drain-Source Voltage VDS (V) VGS = 0 V -20 -30 -40 VGS = -2 V -50 -60 Conditions: TJ = 150C tp < 200 s -70 -80 Drain-Source Voltage VDS (V) Figure 9. Body Diode Characteristic at 25 C 3.0 Gate-Source Voltage, VGS (V) Threshold Voltage, Vth (V) 1.0 0.5 0 25 50 75 Junction Temperature TJ (C) 100 C3M0065100J Rev. -, 04-2017 -80 125 Conditions: IDS = 20 A IGS = 100 mA VDS = 700 V TJ = 25 C 12 1.5 Figure 11. Threshold Voltage vs. Temperature 4 16 2.0 -25 -70 Figure 10. Body Diode Characteristic at 150 C Conditons VGS = VDS IDS = 5 mA 2.5 0 -10 VGS = -4 V -60 -50 -80 Figure 8. Body Diode Characteristic at -55 C Drain-Source Current, IDS (A) -9 -70 Drain-Source Voltage VDS (V) Figure 7. Transfer Characteristic for Various Junction Temperatures 0.0 0 -10 Drain-Source Current, IDS (A) Drain-Source Current, IDS (A) -9 Conditions: VDS = 20 V tp < 200 s 150 8 4 0 -4 0 5 10 15 20 25 30 Gate Charge, QG (nC) Figure 12. Gate Charge Characteristics 35 40 Typical Performance -6 -5 -4 -3 -2 -1 0 0 -10 VGS = 0 V -20 VGS = 5 V -30 VGS = 10 V -40 VGS = 15 V -50 -8 -7 -6 -5 -4 -3 -2 -1 0 -20 VGS = 5 V VGS = 10 V -50 -60 Conditions: TJ = 25 C tp < 200 s -70 -80 Drain-Source Voltage VDS (V) Drain-Source Voltage VDS (V) Figure 13. 3rd Quadrant Characteristic at -55 C -7 -6 -5 -4 -3 -2 -1 0 Drain-Source Current, IDS (A) VGS = 0 V 35 -20 -30 VGS = 5 V -40 VGS = 10 V VGS = 15 V 30 -50 25 20 15 10 -60 Conditions: TJ = 150 C tp < 200 s Drain-Source Voltage VDS (V) 5 -70 0 -80 0 200 Figure 15. 3rd Quadrant Characteristic at 150 C Capacitance (pF) Capacitance (pF) Coss Crss 0 50 100 Drain-Source Voltage, VDS (V) Figure 17. Capacitances vs. Drain-Source Voltage (0 - 200V) 5 C3M0065100J Rev. -, 04-2017 1000 Ciss 100 Coss 10 150 800 Conditions: TJ = 25 C VAC = 25 mV f = 1 MHz 1000 100 1 600 10000 Ciss 10 400 Drain to Source Voltage, VDS (V) Figure 16. Output Capacitor Stored Energy Conditions: TJ = 25 C VAC = 25 mV f = 1 MHz 1000 -80 0 -10 10000 -70 Figure 14. 3rd Quadrant Characteristic at 25 C Stored Energy, EOSS (J) -8 -30 -40 VGS = 15 V -60 Conditions: TJ = -55 C tp < 200 s 0 -10 VGS = 0 V Drain-Source Current, IDS (A) -7 Drain-Source Current, IDS (A) -8 200 1 Crss 0 200 400 600 Drain-Source Voltage, VDS (V) 800 Figure 18. Capacitances vs. Drain-Source Voltage (0 - 1000V) 1000 Typical Performance 120 Conditions: TJ 150 C 35 Maximum Dissipated Power, Ptot (W) Drain-Source Continous Current, IDS (DC) (A) 40 30 25 20 15 10 5 0 -50 -25 0 25 50 75 100 Case Temperature, TC (C) 125 Conditions: TJ 150 C 100 80 60 40 20 0 150 -50 Figure 19. Continuous Drain Current Derating vs. Case Temperature -25 0 25 50 75 Case Temperature, TC (C) 100 125 150 Figure 20. Maximum Power Dissipation Derating vs. Case Temperature 1 0.3 0.1 100E-3 0.05 0.02 0.01 10E-3 1 ms 100 ms 1.00 0.10 100E-6 1E-3 10E-3 Time, tp (s) 100E-3 1 300 ETotal 150 100 EOn 50 0 10 20 30 Drain to Source Current, IDS (A) 40 Figure 23. Clamped Inductive Switching Energy vs. Drain Current (VDD = 500V) 6 C3M0065100J Rev. -, 04-2017 250 100 1000 ETotal 200 EOn 150 100 EOff 50 EOff 0 10 Conditions: TJ = 25 C VDD = 700 V RG(ext) = 2.5 VGS = -4V/+15 V FWD = C3M0065100J L = 130 H 350 Switching Loss (uJ) Switching Loss (uJ) 200 1 Figure 22. Safe Operating Area 400 Conditions: TJ = 25 C VDD = 500 V RG(ext) = 2.5 VGS = -4V/+15 V FWD = C3M0065100J L = 130 H 0.1 Drain-Source Voltage, VDS (V) Figure 21. Transient Thermal Impedance (Junction - Case) 250 Conditions: TC = 25 C D = 0, Parameter: tp SinglePulse 10E-6 100 s 10.00 0.01 1E-6 10 s Limited by RDS On 0.5 Drain-Source Current, IDS (A) Junction To Case Impedance, ZthJC (oC/W) 100.00 50 0 0 10 20 30 Drain to Source Current, IDS (A) 40 Figure 24. Clamped Inductive Switching Energy vs. Drain Current (VDD = 700V) 50 Typical Performance 400 Switching Loss (uJ) 250 Conditions: TJ = 25 C VDD = 700 V IDS = 20 A VGS = -4V/+15 V FWD = C3M0065100J L = 130 H ETotal 300 EOn 200 EOff 100 0 0 5 10 15 External Gate Resistor RG(ext) (Ohms) Conditions: TJ = 25 C VDD = 700 V IDS = 20 A VGS = -4V/+15 V FWD = C3M065100J L = 130 H Switching Times (ns) 30 20 25 0 EOff 0 25 50 75 100 125 Junction Temperature, TJ (C) tr tf 0 5 10 15 External Gate Resistor RG(ext) (Ohms) 20 25 Figure 28. Switching Times Definition 35 Conditons: VDD = 50 V 30 Avalanche Current (A) 100 25 20 15 10 5 0 20 40 60 Time in Avalanche TAV (us) 80 Figure 29. Single Avalanche SOA curve C3M0065100J Rev. -, 04-2017 150 Figure 26. Clamped Inductive Switching Energy vs. Temperature Figure 27. Switching Times vs. RG(ext) 7 EOn td(on) 10 0 150 td(off) 20 0 ETotal 50 Figure 25. Clamped Inductive Switching Energy vs. RG(ext) 40 Conditions: IDS = 20 A VDD = 700 V RG(ext) = 2.5 VGS = -4V/+15 V FWD = C3M0065100J L = 130 H 200 Switching Loss (uJ) 500 100 175 Test Circuit Schematic Q1 RG VDC VGS= - 4 V KS Q2 RG KS Figure 30. Clamped Inductive Switching Waveform Test Circuit Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above. 8 C3M0065100J Rev. -, 04-2017 Package Dimensions Package 7L D2PAK Dim All Dimensions in Millimeters Min C3M0065100J Rev. -, 04-2017 Max 4.570 A 4.300 4.435 A1 0.00 0.125 0.25 b 0.500 0.600 0.700 b2 0.600 0.800 1.000 c 0.330 0.490 0.650 C2 1.170 1.285 1.400 9.125 D 9.025 9.075 D1 4.700 4.800 4.900 E 10.130 10.180 10.230 E1 6.500 7.550 8.600 E2 6.778 7.223 7.665 e 9 typ 1.27 H 15.043 16.178 17.313 L 2.324 2.512 2.700 L1 0.968 1.418 1.868 O 0 4 8 O1 4.5 5 5.5 Notes * RoHS Compliance The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/ EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or from the Product Documentation sections of www.cree.com. * REACh Compliance REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA) has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree representative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is also available upon request. * This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited to equipment used in the operation of nuclear facilities, life-support machines, cardiac defibrillators or similar emergency medical equipment, aircraft navigation or communication or control systems, air traffic control systems. Related Links * * SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support Copyright (c) 2015 - 2017 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc. 10 C3M0065100J Rev. -, 04-2017 Cree, Inc. 4600 Silicon Drive Durham, NC 27703 USA Tel: +1.919.313.5300 Fax: +1.919.313.5451 www.cree.com/power