1C3M0065100J Rev. -, 04-2017
C3M0065100J
Silicon Carbide Power MOSFET
C3MTM MOSFET Technology
N-Channel Enhancement Mode
Features
• C3MTM SiC MOSFET technology
• Low parasitic inductance with separate driver source pin
• 7mm of creepage distance between drain and source
• High blocking voltage with low On-resistance
• Fast intrinsic diode with low reverse recovery (Qrr)
• Low output capacitance (60pF)
• Halogen free, RoHS compliant
Benets
• Reduce switching losses and minimize gate ringing
• Highersystemefciency
• Increase power density
• Increase system switching frequency
Applications
• Renewable energy
• EV battery chargers
• High voltage DC/DC converters
• Switch Mode Power Supplies
Package
Part Number Package Marking
C3M0065100J TO-263-7 C3M0065100J
V
DS
1000 V
I
D
@
25˚C
35 A
R
DS(on)
65 m
Maximum Ratings (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Value Unit Test Conditions Note
VDSmax Drain - Source Voltage 1000 V VGS = 0 V, ID=100μA
VGSmax Gate - Source Voltage (dynamic) -8/+19 V AC (f >1 Hz) Note. 1
VGSop Gate - Source Voltage (static) -4/+15 V Static Note. 2
ID Continuous Drain Current
35
AVGS = 15 V, TC =25˚C Fig. 19
22.5 VGS = 15 V, TC =100˚C
ID(pulse) Pulsed Drain Current 90 A Pulse width tP limited by Tjmax Fig. 22
EAS Avalanche energy, Single pulse 110 mJ ID = 22A, VDD = 50V
PDPower Dissipation 113.5 W TC=25˚C,TJ=150˚C Fig. 20
TJ , Tstg Operating Junction and Storage Temperature -55 to
+150 ˚C
TLSolder Temperature 260 ˚C 1.6mm (0.063”) from case for 10s
Note (1): When using MOSFET Body Diode VGSmax = -4V/+19V
Note (2): MOSFET can also safely operate at 0/+15 V
1 2 3 4 5 6 7
G KS S S S S S
TAB
Drain
Drain
(TAB)
Power
Source
(Pin 3,4,5,6,7)
Driver
Source
(Pin 2)
Gate
(Pin 1)
2C3M0065100J Rev. -, 04-2017
Electrical Characteristics (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Min. Typ. Max. Unit Test Conditions Note
V(BR)DSS Drain-Source Breakdown Voltage 1000 V VGS = 0 V, ID=100μA
VGS(th) Gate Threshold Voltage 1.8 2.1 3.5 VVDS = VGS, ID = 5 mA Fig. 11
1.6 VVDS = VGS, ID = 5 mA, TJ = 150ºC
IDSS Zero Gate Voltage Drain Current 1 100 μA VDS = 1000 V, VGS = 0 V
IGSS Gate-Source Leakage Current 10 250 nA VGS = 15 V, VDS = 0 V
RDS(on) Drain-Source On-State Resistance 65 78 mVGS = 15 V, ID = 20 A Fig. 4,
5, 6
90 VGS = 15 V, ID = 20A, TJ = 150ºC
gfs Transconductance 14.3 SVDS= 20 V, IDS= 20 A Fig. 7
11.9 VDS= 20 V, IDS= 20 A, TJ = 150ºC
Ciss Input Capacitance 660
pF VGS = 0 V, VDS = 600 V
f = 1 MHz
VAC = 25 mV
Fig. 17,
18
Coss Output Capacitance 60
Crss Reverse Transfer Capacitance 4.0
Eoss Coss Stored Energy 16 μJ Fig. 16
EON Turn-On Switching Energy (Body Diode FWD) 157
μJ VDS = 700 V, VGS = -4 V/15 V, ID = 20A,
RG(ext) =2.5Ω,L=130μH,TJ = 150ºC
Fig. 26,
30
Note. 3
EOFF Turn Off Switching Energy (Body Diode FWD) 35
td(on) Turn-On Delay Time 13
ns
VDD = 700 V, VGS = -4 V/15 V
ID = 20 A, RG(ext)=2.5Ω,
Timing relative to VDS
Inductive load
Fig. 27
trRise Time 9
td(off) Turn-Off Delay Time 13
tfFall Time 7.5
RG(int) Internal Gate Resistance 4.7 f = 1 MHz, VAC = 25 mV
Qgs Gate to Source Charge 9
nC
VDS = 700 V, VGS = -4 V/15 V
ID = 20 A
Per IEC60747-8-4 pg 21
Fig. 12
Qgd Gate to Drain Charge 16
QgTotal Gate Charge 35
Reverse Diode Characteristics (TC=25˚Cunlessotherwisespecied)
Symbol Parameter Typ. Max. Unit Test Conditions Note
VSD Diode Forward Voltage
4.8 V VGS = -4 V, ISD = 10 A Fig. 8,
9, 10
4.4 V VGS = -4 V, ISD = 10 A, TJ = 150 °C
ISContinuous Diode Forward Current 22 A VGS = -4 V Note 1
IS, pulse Diode pulse Current 90 A VGS = -4 V, pulse width tP limited by Tjmax Note 1
trr Reverse Recovery time 14 ns
VGS = -4 V, ISD = 20 A, VR = 700 V
dif/dt = 4500 A/µs, TJ = 150 °C Note 1
Qrr Reverse Recovery Charge 310 nC
Irrm Peak Reverse Recovery Current 34 A
Thermal Characteristics
Symbol Parameter Max. Unit Test Conditions Note
RθJC Thermal Resistance from Junction to Case 1.1 °C/W Fig. 21
RθJA Thermal Resistance From Junction to Ambient 40
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode
3C3M0065100J Rev. -, 04-2017
0
10
20
30
40
50
60
70
80
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 150 °C
tp < 200 µs
V
GS
= 15 V
V
GS
= 7 V
V
GS
= 13 V V
GS
= 11 V
V
GS
= 9 V
0
10
20
30
40
50
60
70
80
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= -55 °C
tp < 200 µs
V
GS
= 7 V
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
V
GS
= 9 V
0
10
20
30
40
50
60
70
80
0.0 2.5 5.0 7.5 10.0 12.5 15.0
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
Conditions:
T
J
= 25 °C
tp < 200 µs
V
GS
= 7 V
V
GS
= 15 V
V
GS
= 13 V
V
GS
= 11 V
V
GS
= 9 V
Figure 2. Output Characteristics TJ = 25 ºC
Typical Performance
Figure 5. On-Resistance vs. Drain Current
For Various Temperatures
Figure 1. Output Characteristics TJ = -55 ºC
Figure 3.
Output Characteristics TJ = 150 ºC
Conditions:
I
DS
= 20 A
V
GS
= 15 V
t
p
< 200 µs
Conditions:
V
GS
= 15 V
t
p
< 200 µs
T
J
= 150 °C
T
J
= -55 °C
T
J
= 25 °C
Figure 4. Normalized On-Resistance vs. Temperature
0
20
40
60
80
100
120
140
160
-50 -25 025 50 75 100 125 150
On Resistance, R
DS On
(mOhms)
Junction Temperature, T
J
C)
Conditions:
IDS = 20 A
t
p
< 200 µs
VGS = 15 V
VGS = 13 V
VGS = 11 V
Figure 6. On-Resistance vs. Temperature
For Various Gate Voltage
4C3M0065100J Rev. -, 04-2017
Typical Performance
Figure 8. Body Diode Characteristic at -55 ºC
Figure 9. Body Diode Characteristic at 25 ºC
0
10
20
30
40
50
0246810
Drain-Source Current, I
DS
(A)
Gate-Source Voltage, V
GS
(V)
Conditions:
V
DS
= 20 V
tp < 200 µs
T
J
= 150 °C
T
J
= -55 °C
T
J
= 25 °C
-80
-70
-60
-50
-40
-30
-20
-10
0
-9 -8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= -55°C
tp< 200 µs
VGS = -2 V
VGS = -4 V
VGS = 0 V
-80
-70
-60
-50
-40
-30
-20
-10
0
-9 -8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= 25°C
tp< 200 µs
VGS = -2 V
VGS = -4 V
VGS = 0 V
-80
-70
-60
-50
-40
-30
-20
-10
0
-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= 150°C
tp< 200 µs
VGS = -2 V
VGS = -4 V
VGS = 0 V
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 025 50 75 100 125 150
Threshold Voltage, V
th
(V)
Junction Temperature T
J
C)
Conditons
V
GS
= V
DS
I
DS
= 5 mA
Figure 10. Body Diode Characteristic at 150 ºC
-4
0
4
8
12
16
0 5 10 15 20 25 30 35 40
Gate-Source Voltage, VGS (V)
Gate Charge, QG(nC)
Conditions:
I
DS
= 20 A
I
GS
= 100 mA
V
DS
= 700 V
T
J
= 25 °C
Figure 7. Transfer Characteristic for
Various Junction Temperatures
Figure 11. Threshold Voltage vs. Temperature Figure 12. Gate Charge Characteristics
5C3M0065100J Rev. -, 04-2017
Typical Performance
Figure 15. 3rd Quadrant Characteristic at 150 ºC
Figure 13. 3rd Quadrant Characteristic at -55 ºC
-80
-70
-60
-50
-40
-30
-20
-10
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= -55 °C
tp< 200 µs
VGS = 10 V
VGS = 5 V
VGS = 15 V
VGS = 0 V
-80
-70
-60
-50
-40
-30
-20
-10
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= 25 °C
tp< 200 µs
VGS = 10 V
VGS = 5 V
VGS = 15 V
VGS = 0 V
-80
-70
-60
-50
-40
-30
-20
-10
0
-8 -7 -6 -5 -4 -3 -2 -1 0
Drain-Source Current, IDS (A)
Drain-Source Voltage VDS (V)
Conditions:
TJ= 150 °C
tp< 200 µs
VGS = 10 V
VGS = 5 V
VGS = 15 V
VGS = 0 V
Figure 14. 3rd Quadrant Characteristic at 25 ºC
Figure 16. Output Capacitor Stored Energy
Figure 17. Capacitances vs. Drain-Source
Voltage (0 - 200V)
1
10
100
1000
10000
050 100 150 200
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
1
10
100
1000
10000
0200 400 600 800 1000
Capacitance (pF)
Drain-Source Voltage, V
DS
(V)
C
iss
C
oss
Conditions:
T
J
= 25 °C
V
AC
= 25 mV
f = 1 MHz
C
rss
Figure 18. Capacitances vs. Drain-Source
Voltage (0 - 1000V)
6C3M0065100J Rev. -, 04-2017
10E-3
100E-3
1
1E-6 10E-6 100E-6 1E-3 10E-3 100E-3 1
Junction To Case Impedance, Z
thJC
(
o
C/W)
Time, t
p
(s)
0.5
0.3
0.1
0.05
0.02
0.01 SinglePulse
Typical Performance
0
5
10
15
20
25
30
35
40
-50 -25 025 50 75 100 125 150
Drain-Source Continous Current, I
DS (DC)
(A)
Case Temperature, T
C
C)
Conditions:
T
J
≤ 150 °C
0
20
40
60
80
100
120
-50 -25 025 50 75 100 125 150
Maximum Dissipated Power, P
tot
(W)
Case Temperature, T
C
C)
Conditions:
TJ 150 °C
0.01
0.10
1.00
10.00
100.00
0.1 110 100 1000
Drain-Source Current, I
DS
(A)
Drain-Source Voltage, V
DS
(V)
100 µs
1 ms
10 µs
Conditions:
T
C
= 25 °C
D = 0,
Parameter: t
p
100 ms
Limited by R
DS On
Figure 22. Safe Operating Area
Figure 21. Transient Thermal Impedance
(Junction - Case)
0
50
100
150
200
250
010 20 30 40 50
Switching Loss (uJ)
Drain to Source Current, IDS (A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 500 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0065100J
L = 130 μH
Figure 23. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 500V)
Figure 24. Clamped Inductive Switching Energy vs.
Drain Current (VDD = 700V)
0
50
100
150
200
250
300
350
400
010 20 30 40 50
Switching Loss (uJ)
Drain to Source Current, IDS (A)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 700 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0065100J
L = 130 μH
Figure 19. Continuous Drain Current Derating vs.
Case Temperature
Figure 20. Maximum Power Dissipation Derating vs.
Case Temperature
7C3M0065100J Rev. -, 04-2017
Typical Performance
0
100
200
300
400
500
0 5 10 15 20 25
Switching Loss (uJ)
External Gate Resistor RG(ext) (Ohms)
E
Off
E
On
E
Total
Conditions:
T
J
= 25 °C
V
DD
= 700 V
I
DS
= 20 A
V
GS
= -4V/+15 V
FWD = C3M0065100J
L = 130 μH
0
10
20
30
40
0 5 10 15 20 25
Switching Times (ns)
External Gate Resistor RG(ext) (Ohms)
t
d(off)
Conditions:
T
J
= 25 °C
V
DD
= 700 V
I
DS
= 20 A
V
GS
= -4V/+15 V
FWD = C3M065100J
L = 130 μH
t
r
t
f
t
d(on)
0
50
100
150
200
250
025 50 75 100 125 150 175
Switching Loss (uJ)
Junction Temperature, TJC)
E
Off
E
On
E
Total
Conditions:
I
DS
= 20 A
V
DD
= 700 V
R
G(ext)
= 2.5
V
GS
= -4V/+15 V
FWD = C3M0065100J
L = 130 μH
Figure 26. Clamped Inductive Switching Energy vs.
Temperature
Figure 27. Switching Times vs. RG(ext)
Figure 25. Clamped Inductive Switching Energy vs. RG(ext)
Figure28.SwitchingTimesDenition
0
5
10
15
20
25
30
35
020 40 60 80 100
Avalanche Current (A)
Time in Avalanche T
AV
(us)
Conditons:
V
DD
= 50 V
Figure 29. Single Avalanche SOA curve
8C3M0065100J Rev. -, 04-2017
Test Circuit Schematic
Q
2
V
DC
Q
1
V
GS
= - 4 V
R
G
R
G
KS
KS
Figure 30. Clamped Inductive Switching
Waveform Test Circuit
Note (3): Turn-off and Turn-on switching energy and timing values measured using SiC MOSFET Body Diode as shown above.
9C3M0065100J Rev. -, 04-2017
Package Dimensions
Package 7L D2PAK
Dim All Dimensions in Millimeters
Min typ Max
A 4.300 4.435 4.570
A1 0.00 0.125 0.25
b 0.500 0.600 0.700
b2 0.600 0.800 1.000
c 0.330 0.490 0.650
C2 1.170 1.285 1.400
D 9.025 9.075 9.125
D1 4.700 4.800 4.900
E 10.130 10.180 10.230
E1 6.500 7.550 8.600
E2 6.778 7.223 7.665
e 1.27
H 15.043 16.178 17.313
L 2.324 2.512 2.700
L1 0.968 1.418 1.868
Ø
Ø1 4.5˚ 5.5˚
1010 C3M0065100J Rev. -, 04-2017
Copyright © 2015 - 2017 Cree, Inc. All rights reserved.
The information in this document is subject to change without notice.
Cree, the Cree logo, and Zero Recovery are registered trademarks of Cree, Inc.
Cree, Inc.
4600 Silicon Drive
Durham, NC 27703
USA Tel: +1.919.313.5300
Fax: +1.919.313.5451
www.cree.com/power
• RoHSCompliance
The levels of RoHS restricted materials in this product are below the maximum concentration values (also referred to as the
threshold limits) permitted for such substances, or are used in an exempted application, in accordance with EU Directive 2011/65/
EC (RoHS2), as implemented January 2, 2013. RoHS Declarations for this product can be obtained from your Cree representative or
from the Product Documentation sections of www.cree.com.
• REAChCompliance
REACh substances of high concern (SVHCs) information is available for this product. Since the European Chemical Agency (ECHA)
has published notice of their intent to frequently revise the SVHC listing for the foreseeable future,please contact a Cree represen-
tative to insure you get the most up-to-date REACh SVHC Declaration. REACh banned substance information (REACh Article 67) is
also available upon request.
• This product has not been designed or tested for use in, and is not intended for use in, applications implanted into the human body
nor in applications in which failure of the product could lead to death, personal injury or property damage, including but not limited
toequipmentusedintheoperationofnuclearfacilities,life-supportmachines,cardiacdebrillatorsorsimilaremergencymedical
equipment,aircraftnavigationorcommunicationorcontrolsystems,airtrafccontrolsystems.
Notes
Related Links
• SiC MOSFET Isolated Gate Driver reference design: www.cree.com/power/Tools-and-Support
• Application Considerations for Silicon-Carbide MOSFETs: www.cree.com/power/Tools-and-Support