MGA-23003 3.3-3.8 GHz WiMAX Power Amplifier (3x3mm) Data Sheet Description Features Avago Technologies MGA-23003 linear power amplifier is designed for mobile and fixed wireless data applications in the 3.3 to 3.8 GHz frequency ranges. The PA is optimized for IEEE 802.16 WiMAX modulation but can be used for any high linearity applications. The PA exhibits flat gain and good match while providing linear power efficiency to meet stringent mask conditions. It utilizes Avago Technologies proprietary GaAs Enhancement-mode pHEMT technology for superior performance across voltage and temperature levels. Advanced GaAs E-pHEMT The MGA-23003 is packaged in a 3x3x1 mm size for spaceconstrained applications. 50 all RF ports Full performance across entire 3.3-3.8GHz 13dB gain attenuation in low power mode with Idsq reduction Integrated CMOS compatible pins for shutdown and low power mode 3 to 5V supply ESD protection all ports above 1000V HBM Small size: 3 x 3 x 1 mm Stable under all loads or conditions Applications -40C to +85C operation Portable WiMAX applications WiMAX Access points Integrated DC blocking capacitors for Input and Output pins. Functional Block Diagram At 3.5GHz (BCTRL = 2.8V) GND 16 VCC1 15 GND 14 Gain of 35dB VCC2 13 RFIN 1 PAE of 18% GND 12 Meets ETSI/802.16 masks at 25 dBm Pout, 16QAM WiMAX with 3.3V and 514mA 16QAM WiMAX EVM < -31dB (2.8%) at 25dBm N/C 9 BSW 6 PMOD 7 N/C 8 23003 KAYYWW XXXXX RFIN 1 GND 2 GND 3 BCTRL 4 3mm x 3mm x 1mm GND VCC2 15 14 13 17 GND 5 6 7 8 NC BCTRL 4 16 PAMOD GND 10 BIAS NETWORK BSPLY 5 Device Marking Instruction VCC1 GND 3 Low power Idd, 94mA, 25dB gain, 0dBm Pout BSW ISMN RFOUT 11 GND OMN BSPLY GND 2 12 GND 11 RFOUT 10 GND 9 NC TOP VIEW "23003" = Product Code "KA" = Korea ASE "YY" = Year code indicates the year of manufacture "WW" = Workweek code indicates the workweek of manufacture "XXXXX" = Last 5 digit of assembly lot number Electrical Specifications Absolute Minimum and Maximum Ratings Table 1. Minimum and Maximum Ratings Parameter Specifications Description Pin Min. Typical Max. Unit Supply Voltage VCC1 VCC2 3 3.3 5.5 V Bias Supply BSPLY 3 3.3 5.5 V Bias Control BCTRL 1.65 2.8 5.5 V Bias ON/OFF BSW 1.65 1.8 5.5 V Mode Control PAMODE 1.65 1.8 5.5 V RF Input Power RFIN 15 dBm MSL MSL3 Channel Temperature 150 C 150 C Storage Temperature -65 Comments Using 16QAM Table 2. Recommended Operating Range Parameter Specifications Description Pin Min. Typical Max. Unit Supply Voltage VCC1 VCC2 3 3.3 5 V Bias Supply BSPLY 3 3.3 5 18 Bias Control BCTRL 2.75 Bias ON/OFF BSW 1.65 2.8 2.85 PAMODE RF Output Power RFOUT 1.65 1.8 3.3 Thermal Resistance, ch-b Case Temperature 2.2 V 25 dBm 3.8 GHz 2 uA 23.4 -40 V uA 15 Frequency Range V uA 2.2 36 Mode Control V mA 1 1.8 Comments C/W +85 C Using 16QAM Channel to board WiMAX (802.16e) Electrical Specifications All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3V, BCTRL = 2.8V, Tc = 25C, 50 at all ports. Unless otherwise specified, all data is taken with OFDM 16-QAM modulated signal per IEEE 802.16e with 10MHz BW operating over the BW of 3.3GHz to 3.8GHz. Table 3. RF Electrical Characteristics Performance Parameter Min. Typical Max. Unit Comments Input Return Loss -10 dB Gain Flatness 1 dB Over any 10MHz Gain Variation (VCC) High Power Mode -1 EVM 1 dB 3V to 5V -30 -27 dB Vcc=3.3V -32 -28 Vcc=3.6V SEM-A @5.05MHz -54 -32 dBm/100kHz IBW=100kHz SEM-B @7.1MHz -46 -37 dBm/MHz IBW=1MHz SEM-C @10.6MHz -51 -41 SEM-D @20MHz -66 -60 -68 -60 dBm ETSI EN 302 623 and ETSI EN 302 326-2 (3.3-3.8GHz) mA Pout=25dBm SEM-E @25MHz Pout (SEM Compliant) +25 Total DC Current 520 600 490 Gain Low Power Mode 32 EVM Gain Step 34 Pout=24dBm 38 -30 10 Total DC Current P1dB 13 dB dB 15 Pout=0dBm 3.4-3.8GHz dB 94 mA Pout=0dBm 31 dBm CW Single Tone Psat 32 dBm CW Single Tone 2fo -12 -10 dBm/MHz 3.3-3.8GHz 3fo -43 -37 dBm/MHz Settling Time 0.2 0.5 uS Icc leakage current 10 Noise Power in Cell Band -143 dBm/Hz Noise Power in GPS Band -142 dBm/Hz Noise Power in PCS Band -140 dBm/Hz Noise Power in 2.4GHz WiFi -138 dBm/Hz 3 40 uA Selected performance plots EVM Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm -20 3V0 3V3 3V6 4V2 5V0 -22 -24 EVM (dB) EVM (dB) -26 -28 -30 -32 -34 -36 -38 3300 3400 3500 3600 Frequency (MHz) 3700 3800 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 3300 EVM Frequency Sweep (Tambient=-30C to +85C) Vcc=4.2V and Pout=25dBm -30C 25C +85C 3400 3500 3600 Frequency (MHz) 3700 3800 EVM Power Sweep (Freq=3.3 to 3.8GHz) Tambient=-30C and Vcc=3.3V 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 20 21 22 23 Pout (dBm) 24 25 Figure 5. EVM Power Sweep at Vcc=3.3V and -30C over Frequency 4 3400 3500 3600 Frequency (MHz) 3700 3800 26 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 EVM Power Sweep (Freq=3.3 to 3.8GHz) Tambient=25C and Vcc=3.3V 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 20 21 22 23 Pout (dBm) 24 25 26 Figure 4. EVM Power Sweep at Vcc=3.3V and 25C over Frequency EVM (dB) EVM (dB) Figure 3. EVM Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -30C 25C +85C Figure 2. EVM Frequency Sweep at 25C and Pout=26dBm over Vcc EVM (dB) EVM (dB) Figure 1. EVM Frequency Sweep at 25C and Pout=25dBm over Vcc -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 3300 EVM Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 EVM Power Sweep (Freq=3.3 to 3.8GHz) Tambient=+85C and Vcc=3.3V 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 20 21 22 23 Pout (dBm) 24 25 Figure 6. EVM Power Sweep at Vcc=3.3V and +85C over Frequency 26 3V0 3V3 3V6 4V2 5V0 Gain (dB) Gain (dB) 40 39 38 37 36 35 34 33 32 31 30 3300 Gain Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm 3400 3500 3600 Frequency (MHz) 3700 3800 Gain Power Sweep (Freq=3.3 to 3.8GHz) Tambient=25C and Vcc=3.3V 40 39 38 37 36 35 34 33 32 31 30 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 20 21 22 23 Pout (dBm) 24 25 26 Gain (dB) Figure 9. Gain Power Sweep at Vcc=3.3V and 25C over Pout 40.00 39.00 38.00 37.00 36.00 35.00 34.00 33.00 32.00 31.00 30.00 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 21 22 23 Pout (dBm) 24 25 Figure 11. Gain Power Sweep at Vcc=3.3V and -+85C over Frequency 5 3400 3500 3600 Frequency (MHz) 3700 3800 Gain Power Sweep (Freq=3.3 to 3.8GHz) Tambient=-30C and Vcc=3.3V 40 39 38 37 36 35 34 33 32 31 30 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 20 21 22 23 Pout (dBm) 24 25 Figure 10. Gain Power Sweep at Vcc=3.3V and -30C over Frequency Gain Power Sweep (Freq=3.3 to 3.8GHz) Tambient=+85C and Vcc=3.3V 20 -30C 25C +85C Figure 8. Gain Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient Gain (dB) Gain (dB) Figure 7. Gain Frequency Sweep at 25C and Pout=25dBm over Vcc 40 39 38 37 36 35 34 33 32 31 30 3300 Gain Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm 26 26 Total Current Frequency Sweep (Tambient=-30C to +85C) Vcc=3.3V and Pout=25dBm 3V0 3V3 3V6 4V2 5V0 Itotal (A) Itotal (A) 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 3300 Total Current Frequency Sweep (Vcc=3.0 to 5.0V) Tambient=25C and Pout=25dBm 3400 3500 3600 Frequency (MHz) 3700 3800 Figure 12. Total Current Frequency Sweep at 25C and Pout=25dBm over Vcc Itotal (A) 0.54 0.50 0.54 0.46 0.42 3800 0.42 0.34 0.34 0.30 20 21 22 23 Pout (dBm) 24 25 26 Figure 14. Total Current Power Sweep at 3.3V and 25C over Frequency 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 0.58 0.54 0.50 0.46 0.42 0.38 0.34 20 21 22 23 Pout (dBm) 24 25 Figure 16. Total Current Power Sweep at 3.3V and +85C over Frequency 20 21 22 23 Pout (dBm) 24 25 Figure 15. Total Current Power Sweep at 3.3V and -30C over Frequency Total Current Power Sweep (Freq=3.3 to 3.8GHz) Tambient=+85C and Vcc=3.3V 0.62 Itotal (A) 3700 0.46 0.38 0.30 6 0.50 0.38 0.30 3500 3600 Frequency (MHz) 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz 0.58 Itotal (A) 0.58 3400 Total Current Power Sweep (Freq=3.3 to 3.8GHz) Tambient=-30C and Vcc=3.3V 0.62 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz -30C 25C +85C Figure 13. Total Current Frequency Sweep at 3.3V and Pout=25dBm over Tambient Total Current Power Sweep (Freq=3.3 to 3.8GHz) Tambient=25C and Vcc=3.3V 0.62 0.62 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.46 0.44 0.42 3300 26 26 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 Pout (dBm/MHz) Pout (dBm/MHz) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=3.3V and Tambient=25C -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 21. SEM at Vcc=3.3V, 25C and 3.4GHz over Vcc (2dB Post-PA loss assumed) 7 -5 0 5 10 freq_offset (MHz) 15 20 25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 20. SEM at Vcc=3.3V, 25C and 3.3GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.4GHz and Tambient=25C Spec 3V0 3V3 3V6 4V2 5V0 -10 Spec 3V0 3V3 3V6 4V2 5V0 -25 Pout (dBm/MHz) Pout (dBm/MHz) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -15 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.3GHz and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 25 Figure 19. SEM Frequency Sweep at Vcc=4.2V and 25C (2dB Post-PA loss assumed) -20 Figure 18. SEM Frequency Sweep at Vcc=3.6V and 25C (2dB Post-PA loss assumed) Pout (dBm/MHz) Pout (dBm/MHz) Spec 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz Spec 3.3GHz 3.4GHz 3.5GHz 3.6GHz 3.7GHz 3.8GHz -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=4.2V and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 25 Figure 17. SEM Frequency Sweep at Vcc=3.3V and 25C (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Vcc=3.6V and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.5GHz and Tambient=25C Spec 3V0 3V3 3V6 4V2 5V0 -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 22. SEM at Vcc=3.3V, 25C and 3.5GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 3V0 3V3 3V6 4V2 5V0 -25 -20 -15 -10 -5 0 5 freq_offset (MHz) 10 15 20 Pout (dBm/MHz) Pout (dBm/MHz) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.6GHz and Tambient=25C 25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.8GHz and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 3V0 3V3 3V6 4V2 5V0 -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 -25 -20 -15 -10 -5 0 5 freq_offset (MHz) 10 15 20 25 Figure 27. SEM at Vcc=3.3V, 25C and 3.4GHz over Vcc (2dB Post-PA loss assumed) 8 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 26. SEM at Vcc=3.3V, 25C and 3.3GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.4GHz and Tambient=25C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -15 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -25 Pout (dBm/MHz) Pout (dBm/MHz) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -20 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.3GHz and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 25 Figure 25. SEM at Vcc=3.3V, 25C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Spec 3V0 3V3 3V6 4V2 5V0 Figure 24. SEM at Vcc=3.3V, 25C and 3.7GHz over Vcc (2dB Post-PA loss assumed) Pout (dBm/MHz) Pout (dBm/MHz) Figure 23. SEM at Vcc=3.3V, 25C and 3.6GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Pout=25dBm, Freq=3.7GHz and Tambient=25C WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.5GHz and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 28. SEM at Vcc=3.3V, 25C and 3.5GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 Pout (dBm/MHz) Pout (dBm/MHz) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.6GHz and Tambient=25C 25 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.8GHz and Tambient=25C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.4GHz and Tambient=-30C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 33. SEM at Vcc=3.3V, -30C and 3.4GHz over Vcc (2dB Post-PA loss assumed) 9 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.3GHz and Tambient=-30C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 32. SEM at Vcc=3.3V, -30C and 3.3GHz over Vcc (2dB Post-PA loss assumed) Pout (dBm/MHz) Pout (dBm/MHz) Figure 31. SEM at Vcc=3.3V, 25C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Spec 25dBm 24dBm 23dBm 22dBm 21dBm Figure 30. SEM at Vcc=3.3V, 25C and 3.7GHz over Vcc (2dB Post-PA loss assumed) Pout (dBm/MHz) Pout (dBm/MHz) Figure 29. SEM at Vcc=3.3V, 25C and 3.6GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.7GHz and Tambient=25C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.5GHz and Tambient=-30C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 34. SEM at Vcc=3.3V, -30C and 3.5GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 Pout (dBm/MHz) Pout (dBm/MHz) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.6GHz and Tambient=-30C -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 Pout (dBm/MHz) Pout (dBm/MHz) Spec 25dBm 24dBm 23dBm 22dBm 21dBm 25 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 39. SEM at Vcc=3.3V, +85C and 3.4GHz over Vcc (2dB Post-PA loss assumed) 10 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 38. SEM at Vcc=3.3V, +85C and 3.3GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.4GHz and Tambient=+85C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.3GHz and Tambient=+85C -25 Pout (dBm/MHz) Pout (dBm/MHz) Figure 37. SEM at Vcc=3.3V, -30C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Spec 25dBm 24dBm 23dBm 22dBm 21dBm Figure 36. SEM at Vcc=3.3V, -30C and 3.7GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.8GHz and Tambient=-30C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 25 Figure 35. SEM at Vcc=3.3V, -30C and 3.6GHz over Vcc (2dB Post-PA loss assumed) WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.7GHz and Tambient=-30C 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.5GHz and Tambient=+85C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 40. SEM at Vcc=3.3V, +85C and 3.5GHz over Vcc (2dB Post-PA loss assumed) Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 freq_offset (MHz) 10 15 20 Pout (dBm/MHz) Pout (dBm/MHz) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.6GHz and Tambient=+85C 25 Pout (dBm/MHz) Figure 41. SEM at Vcc=3.3V, +85C and 3.6GHz over Vcc (2dB Post-PA loss assumed) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.8GHz and Tambient=+85C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 freq_offset (MHz) 10 15 20 25 Figure 43. SEM at Vcc=3.3V, +85C and 3.8GHz over Vcc (2dB Post-PA loss assumed) 11 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -25 WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4) Vcc=3.3V, Freq=3.7GHz and Tambient=+85C Spec 25dBm 24dBm 23dBm 22dBm 21dBm -20 -15 -10 -5 0 5 10 freq_offset (MHz) 15 20 25 Figure 42. SEM at Vcc=3.3V, +85C and 3.7GHz over Vcc (2dB Post-PA loss assumed) Evaluation Board Description Table 4. Evaluation Board Pin Description Top Pin No. Function Bottom Pin No. Function Recommended turn on sequence 1 VCC2 2 VCC2_S Apply VCC1 and VCC2 3 B_SPLY 4 GND Apply BSPLY 5 VCC1 6 GND Apply BCTRL 7 NC 8 GND Apply BSW 9 PAMOD 10 GND For HPM Apply PAMOD HI for LPM Apply PAMOD LO 11 NC 12 GND NC 14 B_SW Apply RF In not to exceed 15dBm 13 15 B_CTRL 16 GND 17 NC 18 GND 19 NC 20 GND Turn off in reverse order Table 5. Typical Test Conditions Pin HPM LPM VCC1,2 3.3V 3.3V Supply Voltage PAMOD 1.8V 0V Low Power Mode B_SPLY 3.3V 3.3V Bias Voltage B_CTRL 2.8V 2.8V Bias Control B_SW 1.8V 1.8V PA Enable Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply voltages, but B_CTRL needs to be a regulated voltage which is optimized for 2.8V. Demoboard Top Pins 12 Demoboard Bottom Pins Application Circuit MGA-23003 Vdd1 Vdd2 47uF 10uF 10uF 0.1uF 100pF VCC2 VCC2 1313 GND GND1414 RF In VCC1 VCC1 1515 GND GND1616 100pF 11 RF RF In In GND GND1212 22 GND GND RFRF OutOut 11 11 33 GND GND GND GND 1010 RF Out BCTRL 100pF NCNC9 9 88NC NC 100pF 77PAMOD PAMOD 100pF 66BSW BSW 0.1uF 55BSPLY BSPLY 44 BCTRL BCTRL 100pF BSPLY BSW PAMOD Using 3.3V or 5V Supply and tying Vcc1, Vcc2, BSPLY and BCTRL Vbat R1 R2 Vcc1 Vcc2 BSPLY 3.3V Example : VBCTRL = 2.8V = BCTRL Given : R2 R1 + R2 40K R1 + 40K *VBATT *3.3V Notes: BCTRL regulates the device current, thus R1 and R2 should have good tolerance rating. If available, a voltage regulator is the preferred method of bias. In this example we set R2 at 40KOhm and solve for R1 with simple voltage divider equation. Note this method will cause some leakage current through R2. 5.0V Example : VBCTRL = 2.8V VBAT = 3.3V R2 = 40K R1 =? VBCTRL = 2.0V = Given : R2 R1 + R2 20K R1 + 20K R1 = 7K R1 = 30K R2 = 40K R2 = 20K 13 *VBATT *5.0V VBCTRL = 2.0V VBAT = 5.0V R2 = 20K R1 =? Land Pattern 0.300.10 0.100.10 BCTRL 4 6 7 8 Figure 44. Recommended footprint Figure 45. Recommended mask opening VCC2 GND VCC1 GND 3.000.10 1.500.10 BCTRL 4 BSPLY 0.150.10 5 6 7 11 RFOUT 10 GND 9 NC 8 Top view through package Figure 46. Package dimensions 14 0.600.10 3 GND 0.200.10 GND 17 GND 12 0.300.10 0.300.10 2 13 NC GND 14 PAMOD 1 BSW 3.000.10 1.500.10 RFIN 15 RFOUT 10 GND 9 NC Top view through package Top view through package 16 VCC2 5 11 Notes: 1. All units are in millimeters 2. Package is symmetrical 0.400.10 0.550.10 3 GND 0.100.10 NC GND 17 GND 12 0.650.10 9 2 NC 8 GND GND 13 PAMOD 7 10 1 14 BSW 6 RFOUT RFIN 15 BSPLY 5 11 3.000.10 4 GND 0.600.10 BCTRL 12 0.200.10 3 16 0.550.10 GND 17 GND NC 2 PAMOD GND 13 BSW 1 14 BSPLY 3.000.10 1.500.10 RFIN 15 GND GND GND VCC1 GND VCC2 1.600.10 1.500.10 16 VCC1 3.000.10 3.000.10 Ordering Information Part Number No. of Devices Container MGA-23003-BLKG 100 7" Reel MGA-23003-TR1G 3000 13" Reel Package Dimensions 1.00 0.10 3.00 0.10 Pin 1 Dot By Marking 23003 KAYYWW XXXX 3.00 0.10 0.64 TYPICAL TOP VIEW SIDE VIEW Note 1. All dimensions are in millimeters. 2. Dimensions are inclusive of plating. 3. Dimensions are exclusive of mold flash and metal burr. Device Orientation REEL USER FEED DIRECTION CARRIER TAPE USER FEED DIRECTION 15 AVAGO 23003 YYWW XXXX AVAGO 23003 YYWW XXXX TOP VIEW COVER TAPE AVAGO 23003 YYWW XXXX END VIEW Tape and Reel Information W3 Size 12mm A 330 +2.0 2.0 B 1.5min. C 13.0 +0.5 0.2 D 20.2min. N 100 +3.0 0.0 W1 12.4 +3.0 0.0 W2 16.4 +2.0 2.0 W2 A N C B W3 13.65 +1.75 0.75 120 o1 3 .0 + -0 0.50 .20 10.50 W1 2.000.05 4.000.10 + -0 0.10 .00 3.400.10 1.700.10 16 8.000.10 o1.50MIN 12.000.30 .50 1.750.10 o1 5.500.05 0.300.05 2.00 Handling and Storage tp TP CRITICAL ZONE TL TO TP RAMP UP TEMPERATURE TL tL Tsmax Tsmin ts PREHEAT RAMP DOWN 25 t 25C TO PEAK TIME Typical SMT Reflow Profile for Maximum Temperature = 260+0/-5C Profile Feature Sn-Pb Solder Pb-Free Solder Average ramp-up rate (TL to TP) 3C/sec max 3C/sec max Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (mon to max) (ts) 100C 150C 60-120 sec 100C 150C 60-180 sec Tsmax to TL - Ramp-up Rate 3C/sec max Time maintained above: - Temperature (TL) - Time (TL) 183C 60-150 sec 217C 60-150 sec Peak temperature (Tp) 240 +0/-5C 260 +0/-5C Time within 5C of actual Peak Temperature (tp) 10-30 sec 10-30 sec Ramp-down Rate 6C/sec max 6C/sec max Time 25C to Peak Temperature 6 min max 8 min max For product information and a complete list of distributors, please go to our web site: www.avagotech.com Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright (c) 2005-2012 Avago Technologies. All rights reserved. AV02-1960EN - September 14, 2012