Description
Avago Technologies MGA-23003 linear power ampli er is
designed for mobile and  xed wireless data applications
in the 3.3 to 3.8 GHz frequency ranges. The PA is optimized
for IEEE 802.16 WiMAX modulation but can be used for
any high linearity applications. The PA exhibits  at gain
and good match while providing linear power e ciency
to meet stringent mask conditions. It utilizes Avago Tech-
nologies proprietary GaAs Enhancement-mode pHEMT
technology for superior performance across voltage and
temperature levels.
The MGA-23003 is packaged in a 3x3x1 mm size for space-
constrained applications.
Applications
Portable WiMAX applications
WiMAX Access points
Functional Block Diagram
Features
Advanced GaAs E-pHEMT
50 all RF ports
Full performance across entire 3.3-3.8GHz
13dB gain attenuation in low power mode with Idsq
reduction
Integrated CMOS compatible pins for shutdown and
low power mode
3 to 5V supply
ESD protection all ports above 1000V HBM
Small size: 3 x 3 x 1 mm
Stable under all loads or conditions
-40C to +85C operation
Integrated DC blocking capacitors for Input and Output
pins.
At 3.5GHz (BCTRL = 2.8V)
Gain of 35dB
PAE of 18%
Meets ETSI/802.16 masks at 25 dBm Pout, 16QAM
WiMAX with 3.3V and 514mA
16QAM WiMAX EVM < -31dB (2.8%) at 25dBm
Low power Idd, 94mA, 25dB gain, 0dBm Pout
Device Marking Instruction
GND
16
RFIN
1
VCC1
15
BCTRL
4
GND
14 VCC2
13
BSPLY
5BSW
6PMOD
7
RFOUT
11
N/C
9
N/C
8
ISMN
BIAS NETWORK
OMN
GND
2
GND
3
GND
12
GND
10
MGA-23003
3.3-3.8 GHz WiMAX Power Ampli er (3x3mm)
Data Sheet
“23003” = Product Code
“KA = Korea ASE
“YY = Year code indicates the year of manufacture
“WW = Workweek code indicates the workweek of manufacture
“XXXXX = Last 5 digit of assembly lot number
NC
BSPLY
BSW
PAMOD
NC
RFOUT
GND
GND
16
GND
VCC2
VCC1
17
GND
GND
GND
GND
BCTRL
RFIN
5
15
1
3
6 7 8
9
10
11
12
13
14
2
4
23003
KAYYWW
XXXXX
3mm x 3mm x 1mm
TOP VIEW
2
Electrical Speci cations
Absolute Minimum and Maximum Ratings
Table 1. Minimum and Maximum Ratings
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage VCC1
VCC2
3 3.3 5.5 V
Bias Supply BSPLY 3 3.3 5.5 V
Bias Control BCTRL 1.65 2.8 5.5 V
Bias ON/OFF BSW 1.65 1.8 5.5 V
Mode Control PAMODE 1.65 1.8 5.5 V
RF Input Power RFIN 15 dBm Using 16QAM
MSL MSL3
Channel Temperature 150 °C
Storage Temperature -65 150 °C
Table 2. Recommended Operating Range
Parameter Speci cations
CommentsDescription Pin Min. Typical Max. Unit
Supply Voltage VCC1
VCC2
3 3.3 5 V
Bias Supply BSPLY 3 3.3 5 V
18 mA
Bias Control BCTRL 2.75 2.8 2.85 V
1uA
Bias ON/OFF BSW 1.65 1.8 2.2 V
36 uA
Mode Control PAMODE 1.65 1.8 2.2 V
15 uA
RF Output Power RFOUT 25 dBm Using 16QAM
Frequency Range 3.3 3.8 GHz
Thermal Resistance, ch-b 23.4 °C/W Channel to board
Case Temperature -40 +85 °C
3
WiMAX (802.16e) Electrical Speci cations
All data measured on an FR4 demo board at Vcc1 = Vcc2 = 3.3V, BCTRL = 2.8V, Tc = 25°C, 50 at all ports. Unless
otherwise speci ed, all data is taken with OFDM 16-QAM modulated signal per IEEE 802.16e with 10MHz BW operating
over the BW of 3.3GHz to 3.8GHz.
Table 3. RF Electrical Characteristics
Parameter
Performance
CommentsMin. Typical Max. Unit
Input Return Loss -10 dB
Gain Flatness 1 dB Over any 10MHz
Gain Variation (VCC) -1 1 dB 3V to 5V
High Power Mode EVM -30 -27 dB Vcc=3.3V
-32 -28 Vcc=3.6V
SEM-A @5.05MHz -54 -32 dBm/100kHz IBW=100kHz
SEM-B @7.1MHz -46 -37 dBm/MHz IBW=1MHz
SEM-C @10.6MHz -51 -41
SEM-D @20MHz -66 -60
SEM-E @25MHz -68 -60
Pout (SEM Compliant) +25 dBm ETSI EN 302 623 and
ETSI EN 302 326-2
(3.3-3.8GHz)
Total DC Current 520 600 mA Pout=25dBm
490 Pout=24dBm
Gain 32 34 38 dB
Low Power Mode EVM -30 dB Pout=0dBm
3.4-3.8GHz
Gain Step 10 13 15 dB
Total DC Current 94 mA Pout=0dBm
P1dB 31 dBm CW Single Tone
Psat 32 dBm CW Single Tone
2fo -12 -10 dBm/MHz 3.3-3.8GHz
3fo -43 -37 dBm/MHz
Settling Time 0.2 0.5 uS
Icc leakage current 10 40 uA
Noise Power in Cell Band -143 dBm/Hz
Noise Power in GPS Band -142 dBm/Hz
Noise Power in PCS Band -140 dBm/Hz
Noise Power in 2.4GHz WiFi -138 dBm/Hz
4
Selected performance plots
Figure 1. EVM Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 2. EVM Frequency Sweep at 25C and Pout=26dBm over Vcc
Figure 3. EVM Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient Figure 4. EVM Power Sweep at Vcc=3.3V and 25C over Frequency
Figure 5. EVM Power Sweep at Vcc=3.3V and -30C over Frequency Figure 6. EVM Power Sweep at Vcc=3.3V and +85C over Frequency
EVM Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
3300 3400 3500 3600 3700 3800
Frequency (MHz)
EVM (dB)
3V0
3V3
3V6
4V2
5V0
EVM Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=25C and Vcc=3.3V
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
20 21 22 23 24 25 26
Pout (dBm)
EVM (dB)
EVM Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
3300 3400 3500 3600 3700 3800
Frequency (MHz)
EVM (dB)
EVM Frequency Sweep (Tambient=-30C to +85C)
Vcc=4.2V and Pout=25dBm
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
3300 3400 3500 3600 3700 3800
Frequency (MHz)
EVM (dB)
EVM Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=-30C and Vcc=3.3V
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
20 21 22 23 24 25 26
Pout (dBm)
EVM (dB)
EVM Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=+85C and Vcc=3.3V
-48
-46
-44
-42
-40
-38
-36
-34
-32
-30
-28
-26
-24
-22
-20
-18
20 21 22 23 24 25 26
Pout (dBm)
EVM (dB)
-30C
25C
+85C
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
-30C
25C
+85C
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
5
Figure 7. Gain Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 8. Gain Frequency Sweep at Vcc=3.3V and Pout=25dBm over Tambient
Figure 9. Gain Power Sweep at Vcc=3.3V and 25C over Pout Figure 10. Gain Power Sweep at Vcc=3.3V and -30C over Frequency
Figure 11. Gain Power Sweep at Vcc=3.3V and -+85C over Frequency
Gain Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
30
31
32
33
34
35
36
37
38
39
40
3300 3400 3500 3600 3700 3800
Frequency (MHz)
Gain (dB)
Gain Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
30
31
32
33
34
35
36
37
38
39
40
3300 3400 3500 3600 3700 3800
Frequency (MHz)
Gain (dB)
Gain Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=25C and Vcc=3.3V
30
31
32
33
34
35
36
37
38
39
40
20 21 22 23 24 25 26
Pout (dBm)
Gain (dB)
Gain Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=-30C and Vcc=3.3V
30
31
32
33
34
35
36
37
38
39
40
20 21 22 23 24 25 26
Pout (dBm)
Gain (dB)
Gain Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=+85C and Vcc=3.3V
30.00
31.00
32.00
33.00
34.00
35.00
36.00
37.00
38.00
39.00
40.00
20 21 22 23 24 25 26
Pout (dBm)
Gain (dB)
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
-30C
25C
+85C
3V0
3V3
3V6
4V2
5V0
6
Figure 12. Total Current Frequency Sweep at 25C and Pout=25dBm over Vcc Figure 13. Total Current Frequency Sweep at 3.3V and Pout=25dBm over Tambient
Figure 14. Total Current Power Sweep at 3.3V and 25C over Frequency Figure 15. Total Current Power Sweep at 3.3V and -30C over Frequency
Figure 16. Total Current Power Sweep at 3.3V and +85C over Frequency
Total Current Frequency Sweep (Tambient=-30C to +85C)
Vcc=3.3V and Pout=25dBm
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
3300 3400 3500 3600 3700 3800
Frequency (MHz)
Itotal (A)
Itotal (A)
Total Current Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=25C and Vcc=3.3V
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout (dBm)
Total Current Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=-30C and Vcc=3.3V
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout (dBm)
Itotal (A)
Total Current Power Sweep (Freq=3.3 to 3.8GHz)
Tambient=+85C and Vcc=3.3V
0.30
0.34
0.38
0.42
0.46
0.50
0.54
0.58
0.62
20 21 22 23 24 25 26
Pout (dBm)
Itotal (A)
-30C
25C
+85C
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
Total Current Frequency Sweep (Vcc=3.0 to 5.0V)
Tambient=25C and Pout=25dBm
0.42
0.44
0.46
0.48
0.50
0.52
0.54
0.56
0.58
0.60
0.62
3300 3400 3500 3600 3700 3800
Frequency (MHz)
Itotal (A)
3V0
3V3
3V6
4V2
5V0
7
Figure 17. SEM Frequency Sweep at Vcc=3.3V and 25C (2dB Post-PA loss assumed) Figure 18. SEM Frequency Sweep at Vcc=3.6V and 25C (2dB Post-PA loss assumed)
Figure 19. SEM Frequency Sweep at Vcc=4.2V and 25C (2dB Post-PA loss assumed) Figure 20. SEM at Vcc=3.3V, 25C and 3.3GHz over Vcc (2dB Post-PA loss assumed)
Figure 21. SEM at Vcc=3.3V, 25C and 3.4GHz over Vcc (2dB Post-PA loss assumed) Figure 22. SEM at Vcc=3.3V, 25C and 3.5GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=3.3V and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=3.6V and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Vcc=4.2V and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.3GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.4GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.5GHz and Tambient=25C
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
Spec
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
Spec
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
Spec
3.3GHz
3.4GHz
3.5GHz
3.6GHz
3.7GHz
3.8GHz
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
8
Figure 23. SEM at Vcc=3.3V, 25C and 3.6GHz over Vcc (2dB Post-PA loss assumed) Figure 24. SEM at Vcc=3.3V, 25C and 3.7GHz over Vcc (2dB Post-PA loss assumed)
Figure 25. SEM at Vcc=3.3V, 25C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Figure 26. SEM at Vcc=3.3V, 25C and 3.3GHz over Vcc (2dB Post-PA loss assumed)
Figure 27. SEM at Vcc=3.3V, 25C and 3.4GHz over Vcc (2dB Post-PA loss assumed) Figure 28. SEM at Vcc=3.3V, 25C and 3.5GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.6GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.7GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Pout=25dBm, Freq=3.8GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.3GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.4GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.5GHz and Tambient=25C
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
3V0
3V3
3V6
4V2
5V0
Spec
3V0
3V3
3V6
4V2
5V0
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
3V0
3V3
3V6
4V2
5V0
9
Figure 29. SEM at Vcc=3.3V, 25C and 3.6GHz over Vcc (2dB Post-PA loss assumed) Figure 30. SEM at Vcc=3.3V, 25C and 3.7GHz over Vcc (2dB Post-PA loss assumed)
Figure 31. SEM at Vcc=3.3V, 25C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Figure 32. SEM at Vcc=3.3V, -30C and 3.3GHz over Vcc (2dB Post-PA loss assumed)
Figure 33. SEM at Vcc=3.3V, -30C and 3.4GHz over Vcc (2dB Post-PA loss assumed) Figure 34. SEM at Vcc=3.3V, -30C and 3.5GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.6GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.7GHz and Tambient=25C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.8GHz and Tambient=25C
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.3GHz and Tambient=-30C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.5GHz and Tambient=-30C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.4GHz and Tambient=-30C
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
10
Figure 35. SEM at Vcc=3.3V, -30C and 3.6GHz over Vcc (2dB Post-PA loss assumed) Figure 36. SEM at Vcc=3.3V, -30C and 3.7GHz over Vcc (2dB Post-PA loss assumed)
Figure 37. SEM at Vcc=3.3V, -30C and 3.8GHz over Vcc (2dB Post-PA loss assumed) Figure 38. SEM at Vcc=3.3V, +85C and 3.3GHz over Vcc (2dB Post-PA loss assumed)
Figure 39. SEM at Vcc=3.3V, +85C and 3.4GHz over Vcc (2dB Post-PA loss assumed) Figure 40. SEM at Vcc=3.3V, +85C and 3.5GHz over Vcc (2dB Post-PA loss assumed)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.6GHz and Tambient=-30C
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.7GHz and Tambient=-30C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.3GHz and Tambient=+85C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.8GHz and Tambient=-30C
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
freq_oset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.4GHz and Tambient=+85C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.5GHz and Tambient=+85C
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
11
Figure 43. SEM at Vcc=3.3V, +85C and 3.8GHz over Vcc (2dB Post-PA loss assumed)
Figure 41. SEM at Vcc=3.3V, +85C and 3.6GHz over Vcc (2dB Post-PA loss assumed) Figure 42. SEM at Vcc=3.3V, +85C and 3.7GHz over Vcc (2dB Post-PA loss assumed)
freq_oset (MHz)
Pout (dBm/MHz)
freq_oset (MHz)
Pout (dBm/MHz)
freq_oset (MHz)
Pout (dBm/MHz)
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.8GHz and Tambient=+85C
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
-70
-60
-50
-40
-30
-20
-10
0
10
20
30
-25 -20 -15 -10 -5 0 5 10 15 20 25
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.6GHz and Tambient=+85C
WiMAX Spectrum Emission Mask, 802.16e (16QAM 3/4)
Vcc=3.3V, Freq=3.7GHz and Tambient=+85C
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
Spec
25dBm
24dBm
23dBm
22dBm
21dBm
12
Table 4. Evaluation Board Pin Description
Top Pin No. Function
1 VCC2
3 B_SPLY
5 VCC1
7 NC
9 PAMOD
11 NC
13 NC
15 B_CTRL
17 NC
19 NC
Bottom Pin No. Function
2 VCC2_S
4 GND
6 GND
8 GND
10 GND
12 GND
14 B_SW
16 GND
18 GND
20 GND
Recommended turn on sequence
 Apply VCC1 and VCC2
 Apply BSPLY
 Apply BCTRL
 Apply BSW
 For HPM Apply PAMOD HI for LPM Apply PAMOD LO
 Apply RF In not to exceed 15dBm
Turn o in reverse order
Table 5. Typical Test Conditions
Pin HPM LPM
VCC1,2 3.3V 3.3V Supply Voltage
PAMOD 1.8V 0V Low Power Mode
B_SPLY 3.3V 3.3V Bias Voltage
B_CTRL 2.8V 2.8V Bias Control
B_SW 1.8V 1.8V PA Enable
Notes: VCC1, VCC2 and B_SPLY can be tied together to reduce supply
voltages, but B_CTRL needs to be a regulated voltage which is optimized
for 2.8V.
Evaluation Board Description
Demoboard Top Pins Demoboard Bottom Pins
13
Application Circuit MGA-23003
1 RF In
2 GND
3 GND
4 BCTRL
GND 12
RF Out 11
GND 10
NC 9
BCTRL
RF In
RF Out
100pF
GND 16
VCC1 15
GND 14
VCC2 13
5 BSPLY
6 BSW
7 PAMOD
8 NC
100pF
BSPLY BSW PAMOD
Vdd1
100pF
Vdd2
100pF
100pF0.1uF
100pF
0.1uF
10uF
47uF
10uF
1 RF In
2 GND
3 GND
4 BCTRL
GND 12
RF Out 11
GND 10
NC 9
GND 16
VCC1 15
GND 14
VCC2 13
5 BSPLY
6 BSW
7 PAMOD
8 NC
Using 3.3V or 5V Supply and tying Vcc1, Vcc2, BSPLY and BCTRL
Vbat
Vcc1 Vcc2BSPLY
R1
R2
BCTRL
3.3V Example :
R2
VBCTRL = *VBATT
R1 + R2
40K
2.8V = *3.3V
R1 + 40K
R1 = 7K
R2 = 40K
Given :
VBCTRL = 2.8V
VBAT = 3.3V
R2 = 40K
R1 = ?
5.0V Example :
R2
VBCTRL = *VBATT
R1 + R2
20K
2.0V = *5.0V
R1 + 20K
R1 = 30K
R2 = 20K
Given :
VBCTRL = 2.0V
VBAT = 5.0V
R2 = 20K
R1 = ?
Notes: BCTRL regulates the device current, thus R1 and R2 should have
good tolerance rating. If available, a voltage regulator is the preferred
method of bias.
In this example we set R2 at 40KOhm and solve for R1 with simple
voltage divider equation. Note this method will cause some leakage
current through R2.
14
Land Pattern
Figure 44. Recommended footprint Figure 45. Recommended mask opening
3.00±0.10
1.50±0.10
Top view through package
3.00±0.10
1.50±0.10
0.55±0.10
0.30±0.10
0.60±0.10
0.20±0.10
0.10±0.10
NCBCTRL 94
BSPLY
5
BSW
PAMOD
67
NC
8
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
3.00±0.10
Top view through package
3.00±0.10
0.65±0.10
0.40±0.10
1.60±0.10
0.55±0.10
0.10±0.10
NCBCTRL 94
5678
RFOUT
15
RFIN
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND12
10
11
GND
GND
BSPLY
BSW
PAMOD
NC
3.00±0.10
3.00±0.10
0.30±0.10
1.50±0.10
0.15±0.10
1.50±0.10
Top view through package
0.30±0.10
0.20±0.10
0.60±0.10
NC
94
5678
RFOUT
15
GND
GND
1
3
2
16
GND
VCC2
VCC1
17
14
GND
13
GND
12
10
11
GND
GND
BCTRL
RFIN
BSPLY
BSW
PAMOD
NC
Figure 46. Package dimensions
Notes:
1. All units are in millimeters
2. Package is symmetrical
15
Ordering Information
Part Number No. of Devices Container
MGA-23003-BLKG 100 7" Reel
MGA-23003-TR1G 3000 13" Reel
Note
1. All dimensions are in millimeters.
2. Dimensions are inclusive of plating.
3. Dimensions are exclusive of mold  ash and metal burr.
Package Dimensions
Pin 1 Dot
By Marking
3.00 ± 0.10
3.00 ± 0.10
23003
KAYYWW
XXXX
0.64 TYPICAL
1.00 ± 0.10
TOP VIEW SIDE VIEW
Device Orientation
USER FEED DIRECTION
TOP VIEW END VIEW
USER
FEED
DIRECTION COVER TAPE
CARRIER
TAPE
REEL
AVAGO
23003
YYWW
XXXX
AVAGO
23003
YYWW
XXXX
AVAGO
23003
YYWW
XXXX
16
Tape and Reel Information Size
A
B 1.5min.
C
D 20.2min.
N
W1
W2
12mm
W3
330 +2.0
2.0
13.0 +0.5
0.2
100 +3.0
0.0
12.4 +3.0
0.0
16.4 +2.0
2.0
13.65 +1.75
0.75
3.40±0.10
1.70±0.10
0.30±0.05
12.00±0.30
5.50±0.05
4.00±0.102.00±0.05
1.75±0.10
8.00±0.10ø1.50MIN
ø1.50
+0.10
0.00
B
A
N
C
W3
W2
W1
ø13.0 +0.50
0.20
120°
2.00
10.50
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2012 Avago Technologies. All rights reserved.
AV02-1960EN - September 14, 2012
Handling and Storage
Typical SMT Re ow Pro le for Maximum Temperature = 260+0/-5°C
Pro le Feature Sn-Pb Solder Pb-Free Solder
Average ramp-up rate (TL to TP) 3°C/sec max 3°C/sec max
Preheat
– Temperature Min (Tsmin)
– Temperature Max (Tsmax)
– Time (mon to max) (ts)
100°C
150°C
60-120 sec
100°C
150°C
60-180 sec
Tsmax to TL
– Ramp-up Rate 3°C/sec max
Time maintained above:
– Temperature (TL)
– Time (TL)
183°C
60-150 sec
217°C
60-150 sec
Peak temperature (Tp) 240 +0/-5°C260 +0/-5°C
Time within 5°C of actual Peak Temperature (tp) 10-30 sec 10-30 sec
Ramp-down Rate C/sec max C/sec max
Time 25°C to Peak Temperature 6 min max 8 min max
TIME
TEMPERATURE
tp
t 25°C TO PEAK
ts
PREHEAT
TL
TP
Tsmax
Tsmin
tL
CRITICAL ZONE
TL TO TP
RAMP UP
RAMP DOWN
25