Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
CMOS Schmitt-triggered inputs with pull-down
Matched propagation delay for both channels
Internally set deadtime
High side output in phase with input
Also available LEAD-FREE
Typical Connection
Data Sheet No. PD60028-M
HALF-BRIDGE DRIVER
Product Summary
VOFFSET 600V max.
IO+/- 200 mA / 420 mA
VOUT 10 - 20V
ton/off (typ.) 750 & 150 ns
Deadtime (typ.) 650 ns
www.irf.com 1
IR2111(S) & (PbF)
VCC VB
VS
HO
LO
IN
COM
IN
up to 600V
TO
LOAD
VCC
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections
only . Please refer to our Application Notes and DesignT ips for proper circuit board layout.
Description
The IR2111(S) is a high voltage, high speed power
MOSFET and IGBT driver with dependent high and
low side referenced output channels designed for half-
bridge applications. Proprietary HVIC and latch
immune CMOS technologies enable ruggedized
monolithic construction. Logic input is compatible with
standard CMOS outputs. The output drivers feature a
high pulse current buffer stage designed for minimum
driver cross-conduction. Internal deadtime is provided
to avoid shoot-through in the output half-bridge. The
floating channel can be used to drive an N-channel
power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
Packages
8-Lead PDIP 8-Lead SOIC
IR2111(S) & (PbF)
2www.irf.com
Symbol Definition Min. Max. Units
VBHigh side floating supply voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
VIN Logic input voltage -0.3 VCC + 0.3
dVs/dt Allowable offset supply voltage transient (figure 2) 50 V/ns
PDPackage power dissipation @ TA +25°C (8 Lead PDIP) 1.0
(8 lead SOIC) 0.625
RthJA Thermal resistance, junction to ambient (8 lead PDIP) 125
(8 lead SOIC) 200
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in figures 7 through 10.
V
W
°C/W
°C
Symbol Definition Min. Max. Units
VBHigh side floating supply absolute voltage VS + 10 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage 0 VCC
TAAmbient temperature -40 125
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
°C
V
IR2111(S) & (PbF)
www.irf.com 3
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” input voltage for HO & logic “0” for LO 6.4 VCC = 10V
9.5 VCC = 15V
12.6 VCC = 20V
VIL Logic “0” input voltage for HO & logic “1” for LO 3.8 VCC = 10V
6.0 VCC = 15V
8.3 VCC = 20V
VOH High level output voltage, VBIAS - VO 100 IO = 0A
VOL Low level output voltage, VO 100 IO = 0A
ILK Offset supply leakage current 50 VB = VS = 600V
IQBS Quiescent VBS supply current 50 100 VIN = 0V or VCC
IQCC Quiescent VCC supply current 70 180 VIN = 0V or VCC
IIN+ Logic “1” input bias current 30 50 VIN = VCC
IIN- Logic “0” input bias current 1.0 VIN = 0V
VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6
VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2
VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6
VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2
IO+ Output high short circuit pulsed current 200 250 VO = 0V, VIN = VCC
PW10 µs
IO- Output low short circuit pulsed current 420 500 VO = 15 V, V IN = 0V
PW10 µs
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25°C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to
COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO.
mV
mA
V
V
µA
Symbol Definition Min. Typ. Max. Units Test Conditions
ton T urn-on propagation delay 550 750 950 VS = 0V
toff Turn-off propagation delay 150 180 VS = 600V
trTurn-on rise time 80 130
tfTurn-off fall time 40 65
DT Deadtime, LS turn-off to HS turn-on & 480 650 820
HS turn-off to LS turn-on
MT Delay matching, HS & LS turn-on/off 30
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25°C unless otherwise specified. The dynamic electrical characteristics
are measured using the test circuit shown in figure 3.
ns
IR2111(S) & (PbF)
4www.irf.com
Symbol Description
IN Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return
Functional Block Diagram
8 Lead DIP 8 Lead SOIC
IR2111 IR2111S
Part Number
Lead Assignments
Lead Definitions
PULSE
GEN
IN UV
DETECT
COM
HO
VS
VCC
LO
VB
Q
S
R
R
PULSE
FILTER
HV
LEVEL
SHIFT
DEAD
TIME
DEAD
TIME
UV
DETECT
IR2111(S) & (PbF)
www.irf.com 5
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit
Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition
Figure 5. Deadtime Waveform Definitions Figure 6. Delay Matching Waveform Definitions
HO
IN
LO
IN(HO)
tr
ton tf
toff
LO
HO
50% 50%
90% 90%
10% 10%
IN(LO)
IN
HO
50% 50%
90%
10%
LO 90%
10%
DT
HO
50% 50%
10%
LO
90%
MT
HOLO
MT
IN(LO)
IN(HO)
IR2111(S) & (PbF)
6www.irf.com
0
50
100
150
200
250
300
350
400
-50 -25 0 25 50 75 100 125
Turn-Off Delay Time (ns
)
Temper a ture (°C)
0
50
100
150
200
250
300
350
400
10 12 14 16 18 20
Turn-Off Delay Time (ns
)
VBI AS Supply Voltage (V)
0
50
100
150
200
250
300
350
400
-50 -25 0 25 50 75 100 125
Turn-On rise Time (ns
)
Tem perature (°C)
0
50
100
150
200
250
300
350
400
10 12 14 16 18 20
Turn-On Rise Time (ns
)
VBIAS Supply Voltage (V)
Figure 11B Turn-On Time vs Voltage
Figure 12A Turn-Off Time vs Temperature
Figure 11A Turn-On Time vs T emperature
Figure 12B Turn-Off Time vs Voltage
Figure 13A Turn-On RiseTime vs Temperature Figure 13B Turn-On RiseTime vs Voltage
Max
Typ
Max
Typ
Max
Typ
Max
Typ
0
250
500
750
1000
1250
1500
-50 -25 0 25 50 75 100 125
Temperature (oC)
Turn-On Delay Time (ns
)
Typ.
Max.
Min.
0
250
500
750
1000
1250
1500
10 12 14 16 18 20
VBIAS Supply Voltage (V)
Turn-On Delay Time (ns
)
Typ.
Max.
Min.
IR2111(S) & (PbF)
www.irf.com 7
0
50
100
150
200
-50 -25 0 25 50 75 100 125
Turn -Off Fall Time (ns
)
Temperature (°C)
Figure 14A Turn-Off Fall Time vs Temperature
0
50
100
150
200
10 12 14 16 18 20
Turn-Off Fall Time (ns
)
VBIAS Suppl y Voltage (V )
0
3
6
9
12
15
-50 -25 0 25 50 75 100 125
Logic "1" Input Threshold (V)
Tem p er ature (°C)
03691215
10 12 14 16 18 20
Logic " 1 " Input Treshold (V)
Min
Figure 14B Turn-Off Fall Time vs Voltage
Figure 15A Dead Time vs Temperature Figure 15B Dead Time vs Voltage
Figure 16A Logic “I” Input voltage for HO &
Logic “0” for LO vs Temperature Figure 16B Logic “I” Input voltage for HO &
Logic “0” for LO vs Voltage
Max
Typ
Max
Typ
Min
0
250
500
750
1000
1250
-50 -25 0 25 50 75 100 125
Temperature (oC)
Deadtime (ns)
Typ.
Max.
Min.
0
250
500
750
1000
1250
10 12 14 16 18 20
VB IAS Suppl y Voltage (V)
Deadtime (ns)
Typ.
Max.
Min.
IR2111(S) & (PbF)
8www.irf.com
Figure 18B. High Level Output vs. Voltage
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 20
VBAIS S upply V otage (V )
High Lev el O utput V oltage (V )
M ax.
Figure 19A. Low Level Output vs. Temperature
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 12
5
High Level O u tp u t V o lta g e (V )
Tem perature
Max.
Figure 18A. High Level Output vs. Temperature
Figure 17A Logic “0” Input voltage for HO &
Logic “I” for LO vs Temperature Figure 17B Logic “0” Input voltage for HO &
Logic “I” for LO vs Voltage
0
3
6
9
12
-50 -25 0 25 50 75 100 12
5
Logic "0" Input Threshold (V)
Tem peratur e (°C)
Max
0 3 6 9 12 15
10 12 14 16 18 20
Logic " 0 " Input Treshold (V
)
VCC Logic Supply V oltage (V)
Max
0
0.2
0.4
0.6
0.8
1
-50 -25 0 25 50 75 100 12
5
Low Level Output Voltage (V
)
Temperature (°C)
Max.
0
0.2
0.4
0.6
0.8
1
10 12 14 16 18 2
0
Low Level Output Voltage (V)
Max.
VBIAS Supply Votage (V)
Figure 19B. Low Level Output vs. Voltage
IR2111(S) & (PbF)
www.irf.com 9
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Offset Supply Leakage Current (uA
)
Max.
Tem perature (°C)
0
100
200
300
400
500
0 100 200 300 400 500 600
Offset Supply Leakage Current (uA)
Max.
V B B oos t V oltage (v)
Figure 20B Offset Supply Current vs Voltage
Figure 20A Offset Supply Current vs
Temperature
0
50
100
150
200
-50 -25 0 25 50 75 100 12
5
VBS Supply Current (uA)
Max.
Typ.
Tem perature (°C)
0
50
100
150
200
10 12 14 16 18 20
VBS Supply Current (uA)
Max.
Typ.
VBS Floating Suppl y V ol tage (V )
0
100
200
300
400
500
-50 -25 0 25 50 75 100 12
5
Vcc Supply Current (uA)
Typ.
Max.
Tem pera t ure (°C)
Figure 21A VBS Supply Current vs Temperature Figure 21B VBS Supply Current vs Voltage
Figure 22A VCC Supply Current vs Temperature Figure 22B VCC Supply Current vs Voltage
0
100
200
300
400
500
10 12 14 16 18 2
0
V cc Supply C u rre n t (u A )
Vcc Fixed S upply Volta g e (V )
Max
Typ
IR2111(S) & (PbF)
10 www.irf.com
Figure 23B Logic “1” Input Current vs VCC Voltage
Figure 24A. Logic “0” Input Current vs. Temperature Figure 24B. Logic “0” Input Current vs. VCC Voltage
Figure 23A Logic “1” Input Current vs Temperature
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Logic "0" Input Bias Current (uA)
Tem
p
erature
(
°C
)
Max.
0
20
40
60
80
100
120
-50 -25 0 25 50 75 100 12
5
L
og
i
c
"1
"
I
npu
t
Bi
as
C
urren
t
(
u
A)
Tem perat ure (°C)
0
20
40
60
80
100
120
10 12 14 16 18 20
V CC Suppl y V oltage (V )
Logic " 1" Input B i as Current (uA )
Typ.
Max.
0
1
2
3
4
5
10 12 14 16 18 2
0
Logic "0" Input Current (uA)
Max.
VCC Supply Voltage (V)
6
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
VBS UVL O T h re s h o ld -(V )
Tem perature (° C
)
Min
.
Typ.
Max
.
Figure 25 VBS Undervoltage Threshold (+)
vsTemperature Figure 26 VBS Undervoltage Threshold (-)
vsTemperature
6
7
8
9
10
11
12
-50 -25 0 25 50 75 100 125
VBS UVLO Threshold +(V)
Tem perat ure (°C)
Min.
Typ.
Max.
IR2111(S) & (PbF)
www.irf.com 11
Figure 27 VCC Undervoltage (-) vs Temperature
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Vcc Undervoltage Lockout +(V)
T em perature (°C)
Max.
Typ.
Min.
Figure 28 VCC Undervoltage (-) vs Temperature
6
7
8
9
10
11
-50-250255075100125
VCC Undervoltage Lockout - (V
)
Temperat ure (°C)
Max.
Typ.
Min.
Figure 29A Output Source Current vs Temperature Figure 29B Output Source Current vs Voltage
Figure 30B Output Sink Current vs Voltage
0
100
200
300
400
500
-50-250 255075100125
Output source Current (mA)
Tem perature (°C)
Typ.
Min.
0
100
200
300
400
500
10 12 14 16 18 20
Output source Current (mA)
VBIAS Supply Voltage (V)
Typ.
Min.
Figure 30A Output Sink Current vs Temperature
0
150
300
450
600
750
-50 -25 0 25 50 75 100 125
Output Sink Current (mA)
Tem perat ure (°C)
Typ.
Min.
0
150
300
450
600
750
10 12 14 16 18 20
VBIAS Supply V olt age (V)
Output Sink Current (mA)
Typ.
Min.
IR2111(S) & (PbF)
12 www.irf.com
Frequency (Hz)
Figure33. IR2111 TJ vs. Frequency (IRFBC40)
RGATE = 15
, VCC = 15V
Frequency (Hz)
Figure 34. IR2111 TJ vs. Frequency (IRFPC50)
RGATE = 10
, VCC = 15V
Frequency (Hz)
Figure 31. IR2111 TJ vs. Frequency (IRFBC20)
RGATE = 33
, VCC = 15V
Frequency (Hz)
Figure 32. IR2111 TJ vs. Frequency (IRFBC30)
RGATE = 22
, VCC = 15V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320
160
30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320V 160V
30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem per ature (°C)
320V 160V
30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320V 160V 30V
IR2111(S) & (PbF)
www.irf.com 13
Frequency (Hz)
Figure 37. IR2111S TJ vs. Frequency (IRFBC40)
RGATE = 15
, VCC = 15V
Frequency (Hz)
Figure 38. IR2111S TJ vs. Frequency (IRFPC50)
RGATE = 10
, VCC = 15V
Frequency (Hz)
Figure 35. IR2111S TJ vs. Frequency (IRFBC20)
RGATE = 33
, VCC = 15V
Frequency (Hz)
Figure 36. IR2111S TJ vs. Frequency (IRFBC30)
RGATE = 22
, VCC = 15V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320V
160
30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem per atur e (°C)
320V 140V
30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320V 140V 30V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
Junction Tem perature (°C )
320V 140V 30V
IR2111(S) & (PbF)
14 www.irf.com
01-6014
01-3003 01 (MS-001AB)
8-Lead PDIP
Case outlines
01-6027
01-0021 11 (MS-012AA)
8-Lead SOIC
87
5
65
D B
E
A
e
6X
H
0. 25 [. 010] A
6
4312
4 . OUTLINE CONFORMS TO JE DEC OUTLINE MS-01 2AA.
NOTES:
1. DI MENSI ONING & TOLERANCI NG PER ASME Y14. 5M-1994.
2 . CONTROLLING D IMENSION: MILLIMET ER
3 . D IMENSIONS ARE SHOW N IN MILL IMET ERS [INCHES].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.72 [ . 02 8]
6. 46 [ . 2 55]
3X 1.27 [ . 05 0] 8X 1.78 [ . 07 0]
5 D IMENSION DOES NOT INCL UDE MOLD PROTRUSIONS.
6 D IMENSION DOES NOT INCL UDE MOLD PROTRUSIONS.
MOLD PROTRUSIONS NOT T O EXCEED 0.25 [.010].
7 D IMENSION IS T HE L ENGT H OF L EAD FOR SOLD ERING TO
A SUBSTRATE.
MOLD PROTRUSIONS NOT T O EXCEED 0.15 [.006].
0. 25 [. 010] CAB
e1 A
A1
8X b
C
0. 10 [. 004]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BASIC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BASIC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX MILLIMETERSINC HES MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BASI C 0.635 BASIC
IR2111(S) & (PbF)
www.irf.com 15
LEADFREE PART MARKING INFORMATION
ORDER INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
Basic Part (Non-Lead Free)
8-Lead PDIP IR2111 order IR2111
8-Lead SOIC IR2111S order IR2111S
Leadfree Part
8-Lead PDIP IR2111 order IR2111PbF
8-Lead SOIC IR2111S order IR2111SPbF
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
This product has been qualified per industrial level
Data and specifications subject to change without notice. 4/12/2004