ADC08D1020
SNAS372D –NOVEMBER 2007–REVISED MARCH 2013
www.ti.com
FUNCTIONAL DESCRIPTION
The ADC08D1020 is a versatile A/D Converter with an innovative architecture permitting very high speed
operation. The controls available ease the application of the device to circuit solutions. Optimum performance
requires adherence to the provisions discussed here and in the Applications Information Section.
While it is generally poor practice to allow an active pin to float, pins 4, 14 and 127 of the ADC08D1020 are
designed to be left floating without jeopardy. In all discussions throughout this data sheet, whenever a function is
called by allowing a control pin to float, connecting that pin to a potential of one half the VAsupply voltage will
have the same effect as allowing it to float.
OVERVIEW
The ADC08D1020 uses a calibrated folding and interpolating architecture that achieves 7.4 effective bits. The
use of folding amplifiers greatly reduces the number of comparators and power consumption. Interpolation
reduces the number of front-end amplifiers required, minimizing the load on the input signal and further reducing
power requirements. In addition to other things, on-chip calibration reduces the INL bow often seen with folding
architectures. The result is an extremely fast, high performance, low power converter.
The analog input signal that is within the converter's input voltage range is digitized to eight bits at speeds of 200
MSPS to 1.3 GSPS, typical. Differential input voltages below negative full-scale will cause the output word to
consist of all zeroes. Differential input voltages above positive full-scale will cause the output word to consist of
all ones. Either of these conditions at either the "I" or "Q" input will cause the OR (Out of Range) output to be
activated. This single OR output indicates when the output code from one or both of the channels is below
negative full scale or above positive full scale.
Each converter has a selectable output demultiplexer which feeds two LVDS buses. If the 1:2 demultiplexed
mode is selected, the output data rate is reduced to half the input sample rate on each bus. When non-
demultiplexed mode is selected, that output data rate on channels DI and DQ are at the same rate as the input
sample clock.
The output levels may be selected to be normal or reduced. Using reduced levels saves power but could result in
erroneous data capture of some or all of the bits, especially at higher sample rates and in marginally designed
systems.
Calibration
A calibration is performed upon power-up and can also be invoked by the user upon command. Calibration trims
the 100 Ωanalog input differential termination resistor and minimizes full-scale error, offset error, DNL and INL,
resulting in maximizing SNR, THD, SINAD (SNDR) and ENOB. Internal bias currents are also set with the
calibration process. All of this is true whether the calibration is performed upon power up or is performed upon
command. Running the calibration is an important part of this chip's functionality and is required in order to obtain
adequate performance. In addition to the requirement to be run at power-up, an on-command calibration must be
run whenever the sense of the FSR pin is changed. For best performance, we recommend that an on-command
calibration be run 20 seconds or more after application of power and whenever the operating temperature
changes significantly relative to the specific system performance requirements. See On-Command Calibration for
more information. Calibration can not be initiated or run while the device is in the power-down mode. See Power
Down for information on the interaction between Power Down and Calibration.
In normal operation, calibration is performed just after application of power and whenever a valid calibration
command is given, which is holding the CAL pin low for at least tCAL_L clock cycles, then hold it high for at least
another tCAL_H clock cycles as defined in the Converter Electrical Characteristics. The time taken by the
calibration procedure is specified as tCALin Converter Electrical Characteristics. Holding the CAL pin high upon
power up will prevent the calibration process from running until the CAL pin experiences the above-mentioned
tCAL_L clock cycles followed by tCAL_H clock cycles.
CalDly (pin 127) is used to select one of two delay times that apply from the application of power to the start of
calibration. This calibration delay time is depedent on the setting of the CalDly pin and is specified as tCalDly in the
Converter Electrical Characteristics. These delay values allow the power supply to come up and stabilize before
calibration takes place. If the PD pin is high upon power-up, the calibration delay counter will be disabled until the
PD pin is brought low. Therefore, holding the PD pin high during power up will further delay the start of the
power-up calibration cycle. The best setting of the CalDly pin depends upon the power-on settling time of the
power supply.
28 Submit Documentation Feedback Copyright © 2007–2013, Texas Instruments Incorporated
Product Folder Links: ADC08D1020